Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования Уфимский государственный авиационный технический университет

ПОДБОР ГЕОМЕТРИЧЕСКИХ ПАРАМЕТРОВ ЗВЕНЬЕВ ПРИ ПРОЕКТИРОВАНИИ РЫЧАЖНЫХ МЕХАНИЗМОВ

Методические указания по выполнению курсовой работы по дисциплине «Теория механизмов и машин»

Уфа 2011

Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования Уфимский государственный авиационный технический университет

Кафедра основ конструирования механизмов и машин

ПОДБОР ГЕОМЕТРИЧЕСКИХ ПАРАМЕТРОВ ЗВЕНЬЕВ ПРИ ПРОЕКТИРОВАНИИ РЫЧАЖНЫХ МЕХАНИЗМОВ

Методические указания по выполнению курсовой работы по дисциплине «Теория механизмов и машин» Составители: Б.И. Гурьев, Л.С. Кутушева, Л.Л. Русак

УДК 621.833 (07) ББК 34.444 (я7)

Подбор геометрических параметров звеньев при проектировании рычажных механизмов: Методические указания по выполнению курсовой работы по дисциплине «Теория механизмов и машин» для студентов механических специальностей / Уфимск. гос. авиац. техн. ун-т: Сост.: Б.И. Гурьев, Л.С. Кутушева, Л.Л. Русак, 2011 - 109 с.

Содержат описание процесса геометрического синтеза рычажных механизмов.

Предназначены для студентов, обучающихся по направлению подготовки дипломированного специалиста 150200 – «Машиностроительные технологии и о борудование» всех специальностей.

Ил. 80. Библ.: 3 назв.

Рецензенты: док. техн. наук, проф. Мигранов М.Ш. канд. техн. наук, доц. Рокитянская И.В.

© Уфимский государственный авиационный технический университет, 2011

введение

Настоящее учебно-методическое пособие содержит описание процедуры синтеза рычажных механизмов, т.к. эта часть работы нередко вызывает у студентов значительные затруднения.

Рассматриваемые в пособии схемы механизмов систематизированы и пронумерованы так же, как и в сборнике заданий на курсовую работу.

Кафедра ОКМиМ намерена использовать настоящее пособие не только в типографском виде, но и в виде набора электронных файлов. Поскольку каждому студенту к его заданию может потребоваться не более двух - трех страниц текста, то авторы применили такой способ макетирования пособия, когда описание синтеза каждого механизма начинается с новой страницы.

Расчетные уравнения и формулы ориентированы на получение механизмов с заранее заданными кинематическими свойствами и предполагают использование компьютерной среды САМАС.

Рисунок 1.1

Заданы:

Н – ход рабочего звена (ползуна 5);

коэффициент изменения средней скорости хода ползуна

$$K_{v} = \varphi_{p} / \varphi_{x} , \qquad (1.1)$$

где ϕ_p и ϕ_x – углы поворота кривошипа *ОА* за время рабочего и холостого ходов ползуна 5 соответственно;

соотношения длин звеньев:

$$BD = \alpha \cdot BC; \qquad OC + OA = \beta \cdot H; \qquad (1.2)$$

(коэффициенты α и β задаются в виде диапазонов).

Требуется рассчитать и выбрать размеры OA, OC, CB и BD.

Если за время рабочего хода ползуна 5 (рис. 1.2) кривошип *ОА* поворачивается на угол ϕ_p , а за время холостого хода – на угол ϕ_x , то справедливы соотношения

$$K_{\nu} = \frac{\varphi_{\rm p}}{\varphi_{\rm x}}; \qquad \qquad \varphi_{\rm p} + \varphi_{\rm x} = 360^{\circ}; \qquad (1.3)$$

отсюда находим

$$\varphi_{\rm x} = \frac{360^{\circ}}{1+K_{\nu}}; \qquad \qquad \varphi_{\rm p} = K_{\nu} \cdot \varphi_{\rm x}. \qquad (1.4)$$

На расчетной схеме (рис. 1.2) показаны два крайних положения механизма; очевидно, что длина кулисы должна быть равна

$$CB = 0.5 H;$$
 (1.5)

поскольку из $\Delta OCA'$ следует соотношение

$$\cos\left(\frac{\Phi_{\rm x}}{2}\right) = \frac{OC}{OA},\tag{1.6}$$

то, сопоставляя (1.2) и (1.6), найдем длины остальных звеньев:

$$OA = \frac{\beta \cdot H}{1 + \cos\left(\frac{\varphi_x}{2}\right)}; \quad OC = OA \cdot \cos\left(\frac{\varphi_x}{2}\right); \quad BD = \alpha \cdot BC. \quad (1.7)$$

Поскольку величины β и α заданы в виде диапазонов, то значения размеров *OA* и *BD* при расчете по (1.7) допускают округление, которое не влияет на величину хода ползуна *H*=2 *CB*; однако, из-за округления этих размеров возможно искажение коэффициента изменения средней скорости хода ползуна, т.к.

$$\phi_{\rm x} = 2 \, \arccos\left(\frac{OC}{OA}\right);$$
(1.8)

$$K_{\nu} = \frac{360^{\circ} - \varphi_{\mathrm{x}}}{\varphi_{\mathrm{x}}}.$$
 (1.9)

Новое значение коэффициента K_v не должно отличаться от заданного более, чем на 2%.

Угловые координаты кривошипа *ОА* в моменты начала $\phi_{_{Hpx}}$ и окончания $\phi_{_{Kpx}}$ рабочего хода ползуна 5:

$$\phi_{\text{Hpx}} = \frac{\phi_x}{2} - 90^\circ; \qquad \phi_{\text{Kpx}} = 270^\circ - \frac{\phi_x}{2};$$
(1.10)

в (1.10) следует подставлять ϕ_x , найденное из (1.8).

Рисунок 2.1

Заданы:

H – ход рабочего звена (ползуна 5); $K_{\theta} = \frac{\theta_{p}}{\theta_{x}}$ – отношение углов поворота кулисы 3 за время рабо-

чего θ_p и холостого θ_x ходов ползуна 5 (рис. 2.2);

соотношения геометрических параметров:

$$OC = H/\alpha;$$
 $OA + OC = \beta \cdot BC$ (2.1)

(коэффициенты α и β задаются в виде диапазонов).

Требуется рассчитать и выбрать размеры *OA*, *OC*, *BC* и *BD*.

Решение

На рис. 2.2 показана расчетная схема для определения длин звеньев *OC*, *BC* и *BD*.

Рисунок 2.2

Первое из соотношений (2.1) позволяет выбрать значение межосевого расстояния *OC*.

Для определения остальных незаданных размеров звеньев выполним следующие действия: из соотношения

$$K_{\theta} = \frac{\theta_{\rm p}}{\theta_{\rm x}} = \frac{180^{\circ} + \theta}{180^{\circ} - \theta} \tag{2.2}$$

найдем вспомогательный угол θ (рис. 2.2)

$$\theta = \frac{K_{\theta} - 1}{K_{\theta} + 1} 180^{\circ}; \qquad (2.3)$$

радиус окружности, описанной около $\Delta CD''D'$

$$R = \frac{H}{2\sin\theta};\tag{2.4}$$

абсциссы L' и L'' центра шарнира D в начале и конце рабочего хода ползуна 5:

$$L' = \sqrt{R^{2} - (R\cos\theta - OC)^{2}} + 0.5H;$$

$$L'' = \sqrt{R^{2} - (R\cos\theta - OC)^{2}} - 0.5H.$$
(2.5)

Длина шатуна 4

$$BD = 0.5 \left(\sqrt{OC^2 + (L')^2} + \sqrt{OC^2 + (L'')^2} \right);$$
(2.6)

длина кулисы 3

$$BC = 0.5 \left(\sqrt{OC^2 + (L')^2} - \sqrt{OC^2 + (L'')^2} \right);$$
(2.7)

длина кривошипа 1

$$OA = \beta \cdot BC - OC \,. \tag{2.8}$$

Результаты вычисления размеров *OC*, *BC* и *BD* (особенно, если производилось их округление) желательно проверить:

фактическая величина хода ползуна 5

$$H = \sqrt{(BD + BC)^{2} - OC^{2}} - \sqrt{(BD - BC)^{2} - OC^{2}}; \qquad (2.9)$$

фактическая величина угла θ , соответствующая найденной здесь величине хода H

$$\theta = \arcsin \frac{H \cdot OC}{BD^2 - BC^2}.$$
(2.10)

Коэффициент K_{θ} (формула (2.2)) и величина хода H не должны отличаться от заданных более чем на 2%.

Найдем угловые координаты кривошипа *ОА* в моменты начала $(\phi_{_{Hpx}})$ и окончания $(\phi_{_{\kappa px}})$ рабочего хода ползуна:

$$\Psi_{\rm H} = \arcsin \frac{OC}{BD + BC}; \qquad (2.11)$$

$$\varphi_{\rm Hpx} = \Psi_{\rm H} + \arccos\left(\frac{OC}{OA}\cos\Psi_{\rm H}\right) - 90^{\circ}.$$
(2.12)

$$\Psi_{\kappa} = \arcsin \frac{OC}{BD - BC}; \qquad (2.13)$$

$$\varphi_{\kappa px} = 270^{\circ} + \psi_{\kappa} - \arccos\left(\frac{OC}{OA}\cos\psi_{\kappa}\right).$$
(2.14)

напоминаем, что в (2.9) – (2.14) следует подставлять значения *OC*, *OA*, *BC* и *BD*, полученные в результате подбора и последующего кругления длин звеньев.

Рисунок 3.1

Заданы:

H – ход рабочегозвена (ползуна 5);

коэффициент изменения средней скорости хода ползуна

$$K_{v} = \varphi_{\rm p} / \varphi_{\rm x} , \qquad (3.1)$$

где ϕ_p и ϕ_x – углы

поворота кривошипа ОА

за время рабочего и холостого ходов ползуна 5 соответственно;

соотношения длин звеньев:

$$BD = \alpha \cdot BC; \qquad OC + OA = \beta \cdot H \tag{3.2}$$

(коэффициенты α и β задаются в виде диапазонов).

Требуется рассчитать и выбрать размеры *ОА*, *ОС*, *СВ* и *BD*.

Решение

Расчетная схема для нахождения длин звеньев механизма приведена на рис. 3.2; показаны крайние положения рабочего звена (ползуна 5) и соответствующие им положения шарниров *A*, *B* и *D*.

Если за время рабочего хода ползуна 5 кривошип *ОА* поворачивается на угол ϕ_p , а за время холостого хода – на угол ϕ_x (рис. 3.2), то справедливы соотношения

$$\begin{cases} K_{v} = \frac{\varphi_{p}}{\varphi_{x}}, \\ \varphi_{p} + \varphi_{x} = 360^{\circ}; \end{cases}$$
(3.3)

отсюда

$$\varphi_{\rm x} = \frac{360^{\circ}}{1+K_{\rm v}}; \qquad \qquad \varphi_{\rm p} = K_{\rm v} \cdot \varphi_{\rm x}. \qquad (3.4)$$

Из рассмотрения крайних положений механизма следует, что B'B'' = D'D'' = H и длина кулисы

$$CB = 0.5 H;$$
 (3.5)

поскольку из $\Delta OCA'$ следует соотношение

$$\cos\left(\frac{\Phi_x}{2}\right) = \frac{OC}{OA},\tag{3.6}$$

то, сопоставляя (3.6) и (3.1), найдем длины остальных звеньев:

$$OA = \frac{\beta \cdot H}{1 + \cos\left(\frac{\varphi_x}{2}\right)}; \quad OC = OA \cdot \cos\left(\frac{\varphi_x}{2}\right); \quad BD = \alpha \cdot BC. \quad (3.7)$$

Поскольку величины β и α заданы в виде диапазонов, то значения размеров *OA* и *BD* при расчете по (3.7) допускают округление, которое не влияет на величину хода ползуна *H*=2 *CB*; однако, из-за округления этих размеров возможно искажение коэффициента изменения средней скорости хода ползуна, т.к.

$$\phi_{\rm x} = 2 \, \arccos\left(\frac{OC}{OA}\right);$$
(3.8)

$$K_{v} = \frac{360^{\circ} - \varphi_{x}}{\varphi_{x}}.$$
 (3.9)

Новое значение коэффициента K_v не должно отличаться от заданного более, чем на 2%.

Угловые координаты кривошипа *ОА* в момент начала – и окончания рабочего хода ползуна

$$\phi_{\text{Hpx}} = \frac{\phi_{\text{x}}}{2} - 90^{\circ}; \qquad \phi_{\text{Kpx}} = 270^{\circ} - \frac{\phi_{\text{x}}}{2};$$
(3.10)

в (3.10) следует подставлять значение, найденное из (3.8).

Заданы:

H – ход рабочегозвена (ползуна 5);

 K_{θ} – отношение углов поворота кулисы 3 за время рабочего θ_{p} и холостого θ_{x} ходов ползуна 5 (рис. 2.2);

соотношения геометрических параметров:

 $OC = H/\alpha;$ $OA = \beta \cdot OC.$ (4.1)

(коэффициенты α и β задаются в виде диапазонов).

Требуется рассчитать и выбрать размеры OA, OC, BC и BD.

Решение

На рис. 4.2 показана расчетная схема для определения длин звеньев *OC*, *BC* и *BD*.

Рисунок 4.2

Первое из соотношений (4.1) позволяет выбрать значение межосевого расстояния *OC*.

Для нахождения остальных незаданных размеров звеньев выполним следующие действия: из соотношения

$$K_{\theta} = \frac{\theta_{p}}{\theta_{x}} = \frac{180^{\circ} + \theta}{180^{\circ} - \theta}$$
(4.2)

найдем вспомогательный угол θ (рис. 4.2)

$$\theta = \frac{K_{\theta} - 1}{K_{\theta} + 1} 180; \qquad (4.3)$$

радиус окружности, описанной около $\Delta CD''D'$

$$R = \frac{H}{2\sin\theta};\tag{4.4}$$

абсциссы L' и L'' центра шарнира D в конце и начале рабочего хода ползуна 5:

$$L' = \sqrt{R^2 - (R\cos\theta - OC)^2} + 0.5H;$$

$$L'' = \sqrt{R^2 - (R\cos\theta - OC)^2} - 0.5H.$$
(4.5)

Длина шатуна 4

$$BD = 0.5 \left(\sqrt{OC^2 + (L')^2} + \sqrt{OC^2 + (L'')^2} \right);$$
(4.6)

длина кулисы 3

$$BC = 0.5 \left(\sqrt{OC^2 + (L')^2} - \sqrt{OC^2 + (L'')^2} \right);$$
(4.7)

длина кривошипа 1

$$OA = \beta \cdot OC \,. \tag{4.8}$$

Результаты вычисления размеров *OC*, *BC* и *BD* (особенно, если производилось их округление) желательно проверить:

фактическая величина хода ползуна 5

$$H = \sqrt{(BD + BC)^{2} - OC^{2}} - \sqrt{(BD - BC)^{2} - OC^{2}}; \qquad (4.9)$$

фактическая величина угла θ , соответствующая найденной здесь величине хода *H*

$$\theta = \arcsin \frac{H \cdot OC}{BD^2 - BC^2}.$$
(4.10)

Коэффициент K_{θ} (формула (4.2)) и величина хода H не должны отличаться от заданных более чем на 2%.

Найдем угловые координаты кривошипа *ОА* в моменты начала $(\phi_{_{Hpx}})$ и окончания $(\phi_{_{Kpx}})$ рабочего хода ползуна:

$$\Psi_{\rm H} = \arcsin \frac{OC}{BD - BC}; \tag{4.11}$$

$$\varphi_{\rm Hpx} = \Psi_{\rm H} + \arccos\left(\frac{OC}{OA}\cos\Psi_{\rm H}\right) - 90^{\circ}. \tag{4.12}$$

$$\psi_{\kappa} = \arcsin \frac{OC}{BD + BC}; \qquad (4.13)$$

$$\varphi_{\kappa px} = 270^{\circ} + \psi_{\kappa} - \arccos\left(\frac{OC}{OA}\cos\psi_{\kappa}\right).$$
(4.14)

Напоминаем, что в (4.9) – (4.14) следует подставлять значения *OC*, *OA*, *BC* и *BD*, полученные в результате подбора и последующего округления длин звеньев.

Заданы:

Н – ход рабочего звена (ползуна 5);

коэффициент изменения средней скорости хода ползуна

$$K_{v} = \varphi_{\rm p} / \varphi_{\rm x} \,, \tag{5.1}$$

где ϕ_p и ϕ_x – углы поворота кривошипа *ОА* за время рабочего и холостого ходов ползуна 5 соответственно;

соотношения длин звеньев:

 $b = \alpha \cdot BC$; $OC + OA = \beta \cdot BC$; (5.2) (коэффициенты α и β заданы в виде диапазонов).

Максимальный допустимый угол давления шатуна *BD* на ползун $5 - \alpha_{max}$.

Рисунок 5.1

размеры *ОА*, *ОС*, *BC*, *BD* и *b*.

Требуется рассчитать и выбрать

Решение

На рис. 5.2 показана расчетная схема для определения искомых размеров.

Если за время рабочего хода ползуна 5 кривошип *ОА* поворачивается на угол ϕ_p , а за время холостого хода – на угол ϕ_x (рис. 5.2), то из соотношений

$$K_{\nu} = \frac{\varphi_{\rm p}}{\varphi_{\rm x}}; \qquad \qquad \varphi_{\rm p} + \varphi_{\rm x} = 360^{\circ} \qquad (5.3)$$

найдем эти углы:

$$\varphi_{\rm x} = \frac{360^{\circ}}{1 + K_{\nu}}; \qquad \qquad \varphi_{\rm p} = K_{\nu} \cdot \varphi_{\rm x}. \tag{5.4}$$

поскольку B'B'' = D'D'' = H, то из $\Delta CB'B''$ найдем

$$BC = \frac{H}{2\cos\left(\frac{\varphi_{\rm x}}{2}\right)};\tag{5.5}$$

сопоставляя (5.2) и очевидное соотношение

 $\frac{OA}{OC} = \cos\left(\frac{\varphi_x}{2}\right), \quad (5.6)$

найдем:

$$OC = \frac{\beta \cdot BC}{1 + \cos\left(\frac{\varphi_x}{2}\right)}; \quad (5.7)$$
$$OA = OC \cdot \cos\left(\frac{\varphi_x}{2}\right). \quad (5.8)$$

Значение *OC* перед подстановкой в (5.8) можно округлить, учитывая диапазон β .

Рисунок 5.2

Расстояние b (рис. 5.1и 5.2) найдем из соотношения (5.2).

Длину шатуна *BD* найдем из рис. 5.2 и ограничения по углу давления:

$$BD \ge \frac{b - BC \cdot \sin\left(\frac{\Phi_x}{2}\right)}{\sin \alpha_{\max}};$$
(5.9)

в качестве окончательного значения размера *BD* пригоден результат округления правой части неравенства (5.9) в сторону увеличения до ближайшего предпочтительного числа.

Принятые значения размеров желательно проверить на соответствие заданным условиям синтеза: коэффициент изменения средней скорости хода ползуна и фактическая величина хода ползуна 5

$$\varphi_{\rm x} = \arccos \frac{OA}{OC}; \qquad K_{\rm v} = \frac{360^{\circ} - \varphi_{\rm x}}{\varphi_{\rm x}}; \qquad H = 2 BC \cdot \frac{OA}{OC}.$$
(5.11)

Найденные здесь значения K_v и *H* не должны отличаться от заданных более, чем на 2%.

Угловые координаты кривошипа *ОА* в момент начала – $\phi_{_{Hpx}}$ и окончания – $\phi_{_{Kpx}}$ рабочего хода ползуна

$$\phi_{\text{Hpx}} = 270^{\circ} + \frac{\phi_{x}}{2};$$
 $\phi_{\text{Kpx}} = 270^{\circ} - \frac{\phi_{x}}{2}.$
(5.12)

В формулы (5.12) следует подставлять ϕ_x из (5.11).

Заданы:

Н – ход рабочего звена (ползуна 5);

коэффициент изменения средней скорости хода ползуна

$$K_{v} = \varphi_{\rm p} / \varphi_{\rm x} , \qquad (6.1)$$

где ϕ_p и ϕ_x – углы поворота кривошипа *ОА* за время рабочего и холостого ходов ползуна 5 соответственно;

соотношения длин звеньев

$$b = \alpha \cdot BC$$
; $OC + OA = \beta \cdot BC$ (6.2)

(коэффициенты α и β заданы в виде диапазонов).

Рисунок 6.1

Требуется подобрать размеры *OA*, *OC*, *BC* и *b*.

Решение

На рис. 6.2 показана расчетная схема для определения требуемых размеров. Кривошип *OA* за время рабочего хода ползуна 5 поворачивается на угол φ_p , а за время холостого хода – на угол φ_x ; тогда из соотношений

$$K_{v} = \frac{\varphi_{p}}{\varphi_{x}}, \qquad \qquad \varphi_{p} + \varphi_{x} = 360^{\circ} \qquad (6.3)$$

найдем эти углы:

$$\phi_{\rm x} = \frac{360^{\circ}}{1 + K_{\rm v}};$$
 $\phi_{\rm p} = K_{\rm v} \phi_{\rm x}$
(6.4)

поскольку B'B'' = H, то из $\Delta CB'B''$ найдем размер кулисы

$$BC = \frac{H}{2\cos\left(\frac{\varphi_x}{2}\right)};$$
(6.5)

сопоставляя (6.2) и очевидное соотношение для $\Delta OA'C$

$$\frac{OA}{OC} = \cos\left(\frac{\varphi_x}{2}\right),\tag{6.6}$$

найдем межосевое расстояние ОС и длину кривошипа ОА:

$$\begin{cases}
OC = \frac{\beta \cdot BC}{1 + \cos\left(\frac{\varphi_x}{2}\right)}; \\
OA = OC \cdot \cos\left(\frac{\varphi_x}{2}\right);
\end{cases}$$
(6.7)

размер *b*, определяющий положение направляющей для ползуна 5, определим из заданного условиями синтеза соотношения – $b = \alpha \cdot BC$.

Рисунок 6.2

Размеры *OC* и *b* допускают округление в пределах, определяемых диапазонами α и β.

Принятые значения размеров желательно проверить на соответствие заданным условиям синтеза: коэффициент изменения средней скорости хода ползуна K_{ν} и фактическая величина хода *H*, опре-

деляемые из формул

$$\varphi_{\rm x} = 2 \arccos\left(\frac{OA}{OC}\right); \quad K_{\rm v} = \frac{360^{\circ} - \varphi_{\rm x}}{\varphi_{\rm x}}; \quad H = 2 BC \cdot \frac{OA}{OC}, \quad (6.8)$$

не должны отличаться от заданных более, чем на 2%.

Угловые координаты кривошипа *ОА* в момент начала – $\phi_{_{Hpx}}$ и окончания – $\phi_{_{kpx}}$ рабочего хода ползуна

$$\phi_{\text{нрх}} = 270^{\circ} + \frac{\phi_{x}}{2};$$
 $\phi_{\text{крх}} = 270^{\circ} - \frac{\phi_{x}}{2}.$
(6.9)

В формулы (6.9) следует подставлять ϕ_{x} из (6.8).

Заданы (рис. 7.1 и 7.2):

Н – величина хода штока 5;

К_v – коэффициент изменения средней скорости хода штока:

$$K_{v} = \varphi_{p} / \varphi_{x}, \qquad (7.1)$$

где $\phi_p u \phi_x - y$ глы поворота кривошипа 1 за время рабочего и холостого ходов ползуна 5 соответственно;

соотношение размеров звеньев $OC + OA = \beta \cdot b$ (7.2)

(коэффициент β задан в виде диапазона).

Требуется подобрать размеры *ОА*, *ОС* и *b*.

Решение

На рис. 7.2 показана расчетная схема для определения требуемых размеров.

Кривошип *OA* за время рабочего хода ползуна 5 поворачивается на угол ϕ_p , а за время холостого хода - на угол ϕ_x ; тогда из соотношений

$$K_{v} = \frac{\varphi_{p}}{\varphi_{x}}, \qquad \varphi_{p} + \varphi_{x} = 360^{\circ} \qquad 7.3)$$

Рисунок 7.2

найдем эти углы:

$$\phi_{\rm x} = \frac{360^{\circ}}{1+K_{\nu}}; \quad \phi_{\rm p} = K_{\nu} \; \phi_{\rm x}.$$
(7.4)

Т.к. B'B'' = H, то из $\Delta CB'B''$ найдем ординату направляющей штока 5

$$b = 0.5 H \operatorname{tg}\left(\frac{\varphi_{\mathrm{x}}}{2}\right). \tag{7.5}$$

Поскольку из $\Delta OA'C$ следует соотношение

$$\frac{OA}{OC} = \cos\left(\frac{\varphi_x}{2}\right),\tag{7.6}$$

то из (7.2) и (7.6) найдем межосевое расстояние *OC* и длину кривошипа *OA*

$$\begin{cases}
OC = \frac{\beta \cdot b}{1 + \cos\left(\frac{\varphi_x}{2}\right)}; \\
OA = OC \cdot \cos\left(\frac{\varphi_x}{2}\right).
\end{cases}$$
(7.7)

Размер *OC* допускает округление в пределах, определяемых диапазоном β.

Принятые значения размеров желательно проверить на соответствие заданным условиям синтеза: коэффициент изменения средней скорости хода K_v и фактическая величина H хода штока 5, определяемые из формул

$$\varphi_{\rm x} = 2 \arccos\left(\frac{OA}{OC}\right); \qquad K_{\nu} = \frac{360^{\circ} - \varphi_{\rm x}}{\varphi_{\rm x}}; \qquad H = \frac{2b}{\operatorname{tg}\left(\frac{\varphi_{\rm x}}{2}\right)}.$$
(7.8)

не должны отличаться от заданных более, чем на 2%.

Угловые координаты кривошипа *ОА* в момент начала – $\phi_{_{Hpx}}$ и окончания – $\phi_{_{Kpx}}$ рабочего хода ползуна

$$\phi_{_{\rm Hpx}} = 270^{\circ} + \frac{\phi_{_{X}}}{2};$$
 $\phi_{_{\rm Kpx}} = 270^{\circ} - \frac{\phi_{_{X}}}{2}.$
(7.9)

В формулы (7.9) следует подставлять $\phi_{_{X}}$ из (7.8).

Заданы:

Н – величина хода штока 5;

К_v – коэффициент изменения средней скорости хода штока:

$$K_{v} = \varphi_{p} / \varphi_{x}, \qquad (8.1)$$

где ϕ_p и ϕ_x – углы поворота кривошипа 1 за время рабочего и холостого ходов штока 5 соответственно;

соотношение размеров звеньев

$$OC + OA = \beta \cdot a \tag{8.2}$$

(коэффициент β задан в виде диапазона).

Требуется подобрать размеры OA, OC и a, обеспечивая получение заданных значений K_{v} и *H*.

Решение

Кривошип ОА за время рабочего хода штока 5 поворачивается на угол $\phi_{\rm p},$ а за время холостого хода – на угол ϕ_x (рис. 8.2); тогда из соотношений

$$K_{\nu} = \frac{\varphi_{\rm p}}{\varphi_{\rm x}}; \qquad \varphi_{\rm p} + \varphi_{\rm x} = 360^{\circ} \qquad (8.3)$$

найдем эти углы:

$$\phi_{\rm x} = \frac{360^{\circ}}{1 + K_{\nu}}; \quad \phi_{\rm p} = K_{\nu} \cdot \phi_{\rm x}.$$
(8.4)

Из того же рисунка, учитывая равен-

Рисунок 8.2

ство B'B'' = H, устанавливаем, что

$$a = 0.5 H \operatorname{tg}\left(\frac{\Phi_{\mathrm{x}}}{2}\right). \tag{8.5}$$

Сопоставляя (8.2) и очевидное соотношение

$$\frac{OA}{OC} = \cos\left(\frac{\varphi_x}{2}\right),\tag{8.6}$$

найдем размеры ОС и ОА:

$$\begin{cases}
OC = \frac{\beta \cdot a}{1 + \cos\left(\frac{\varphi_x}{2}\right)}; \\
OA = OC \cdot \cos\left(\frac{\varphi_x}{2}\right).
\end{cases}$$
(8.7)

Размер *OC* в соответствии с диапазоном β допускает округление.

Полученные в результате подбора размеры *OA*, *OC* и *a* следует проверить на соответствие заданным условиям синтеза механизма.

Фактические значения угла поворота кривошипа OA за время холостого хода ϕ_x , коэффициента изменения средней скорости хода K_v и величины хода H штока 5:

$$\varphi_{\rm x} = 2 \arccos\left(\frac{OA}{OC}\right); \qquad K_{\rm v} = \frac{360^{\circ} - \varphi_{\rm x}}{\varphi_{\rm x}}; \qquad H = \frac{2 a}{\operatorname{tg}\left(\frac{\varphi_{\rm x}}{2}\right)}.$$
(8.8)

Отличие фактических значений K_v и H от заданных не должно превышать 2%.

Угловые координаты кривошипа *ОА* в момент начала – $\phi_{_{Hpx}}$ и окончания – $\phi_{_{Kpx}}$ рабочего хода штока

$$\phi_{_{\rm Hpx}} = \frac{\phi_{_{\rm X}}}{2}; \qquad \qquad \phi_{_{\rm Kpx}} = 360^{\circ} - \frac{\phi_{_{\rm X}}}{2}.$$
(8.9)

В формулы (8.9) следует подставлять ϕ_x из (8.8).

Заданы (рис. 9.1 и 9.2):

Н – ход рабочего звена (штока 5);

K_v – коэффициент изменения средней скорости хода штока

$$K_{v} = \varphi_{p} / \varphi_{x}, \qquad (9.1)$$

где ϕ_p и ϕ_x – углы поворота кривошипа *ОА* за время рабочего и холостого ходов штока 5 соответственно;

соотношение размеров звеньев

$$OB + OA = \beta \cdot b \tag{9.2}$$

(коэффициент β задан в виде диапазона).

Требуется подобрать размеры ОА, ОВ и b.

Решение

На рис. 9.2 показана расчетная схема для определения требуемых размеров.

Кривошип *OA* за время рабочего хода штока 5 поворачивается на угол ϕ_p , а за время холостого хода – на угол ϕ_x ; тогда из соотношений

$$K_{v} = \frac{\varphi_{p}}{\varphi_{x}}, \qquad \varphi_{p} + \varphi_{x} = 360^{\circ} \qquad (9.3)$$

(9.4)

найдем эти углы:

$$\phi_{\rm x} = \frac{360^{\circ}}{1+K_{\nu}}; \ \phi_{\rm p} = K_{\nu} \ \phi_{\rm x}.$$

Поскольку C'C'' = H, то из $\Delta BC'C''$ найдем ординату направляющей штока 5

$$b = 0.5 H \operatorname{tg}\left(\frac{\varphi_{\mathrm{x}}}{2}\right). \tag{9.5}$$

Из рассмотрения $\Delta OA'B$ следует соотношение

$$\frac{OA}{OB} = \cos\left(\frac{\varphi_{\rm x}}{2}\right);\tag{9.6}$$

тогда из (9.2) и (9.6) найдем размеры ОВ и ОА:

$$\begin{cases}
OB = \frac{\beta \cdot b}{1 + \cos\left(\frac{\varphi_x}{2}\right)}; \\
OA = OB \cdot \cos\left(\frac{\varphi_x}{2}\right).
\end{cases}$$
(9.7)

В соответствии с диапазоном β размер *OB* допускает округление (до подстановки во вторую из формул (9.7)).

Полученные в результате подбора и округления размеры *OA*, *OB* и *b* необходимо проверить на соответствие условиям синтеза механизма.

Фактические значения угла поворота кривошипа OA за время холостого хода ϕ_x , коэффициента изменения средней скорости хода K_v и величины хода H штока 5:

$$\varphi_{\rm x} = 2 \arccos\left(\frac{OA}{OB}\right); \quad K_{\rm v} = \frac{360^{\circ} - \varphi_{\rm x}}{\varphi_{\rm x}}; \quad H = \frac{2 b}{\operatorname{tg}\left(\frac{\varphi_{\rm x}}{2}\right)}.$$
(9.8)

Отличие фактических значений K_v и H от заданных не должно превышать 2%.

Угловые координаты кривошипа *ОА* в момент начала – $\phi_{_{Hpx}}$ и окончания – $\phi_{_{kpx}}$ рабочего хода штока

$$\phi_{_{\rm Hpx}} = 270^{\circ} + \frac{\phi_{_{X}}}{2};$$

 $\phi_{_{\rm Kpx}} = 270^{\circ} - \frac{\phi_{_{X}}}{2}.$

(9.9)

В формулы (9.9) следует подставлять $\phi_{_{X}}$ из (9.8).

Рисунок 10.1

Заданы:

Н – ход рабочего звена (штока 5);

коэффициент изменения средней скорости хода штока

$$K_{\nu} = \varphi_{\rm p} / \varphi_{\rm x} \quad , \tag{10.1}$$

где ϕ_p и ϕ_x – углы поворота кривошипа *OA* за время рабочего и холостого ходов штока 5 соответственно;

соотношение размеров звеньев ОВ и ОА:

 $OB + OA = \beta \cdot a \tag{10.2}$

(коэффициент β задан в виде диапазона).

Требуется подобрать размеры ОА, ОВ и а.

Решение

Кривошип *OA* за время рабочего хода штока 5 поворачивается на угол ϕ_p , а за время холостого хода – на угол ϕ_x (рис. 10.2); тогда из соотношений

$$K_{v} = \frac{\varphi_{p}}{\varphi_{x}}, \qquad \qquad \varphi_{p} + \varphi_{x} = 360^{\circ} \qquad (10.3)$$

найдем углы ϕ_x и ϕ_p :

$$\varphi_{\rm x} = \frac{360^{\circ}}{1 + K_{\rm y}}; \qquad \varphi_{\rm p} = K_{\rm y} \cdot \varphi_{\rm x} \quad . \tag{10.4}$$

Учитывая равенство C'C'' = H, получаем

$$a = 0.5 H \operatorname{tg}\left(\frac{\varphi_{\mathrm{x}}}{2}\right). \tag{10.5}$$

Сопоставляя (10.2) и очевидное соотношение

$$\frac{OA}{OB} = \cos\left(\frac{\Phi_{\rm x}}{2}\right),\tag{10.6}$$

найдем размеры ОВ и ОА:

$$\begin{cases}
OB = \frac{\beta \cdot a}{1 + \cos\left(\frac{\varphi_x}{2}\right)}; \\
OA = OB \cdot \cos\left(\frac{\varphi_x}{2}\right).
\end{cases}$$
(10.7)

Перед подстановкой размера *OB* во вторую из формул (10.7) его можно округлить в пределах, определяемых диапазоном β.

Найденные размеры *OA*, *OB* и *а* должны быть проверены на соответствие условиям синтеза механизма.

Фактические значения угла поворота кривошипа OA за время холостого хода ϕ_x , коэффициента изменения средней скорости хода K_v и величины хода H штока 5:

$$\varphi_{\rm x} = 2 \arccos\left(\frac{OA}{OB}\right); \qquad K_{\nu} = \frac{360^{\circ} - \varphi_{\rm x}}{\varphi_{\rm x}}; \qquad H = \frac{2 a}{\operatorname{tg}\left(\frac{\varphi_{\rm x}}{2}\right)}. \quad (10.8)$$

Отличие фактических значений K_v и H от заданных не должно превышать 2%.

Угловые координаты кривошипа *ОА* в момент начала – $\phi_{\text{нрх}}$ и окончания – $\phi_{\text{крх}}$ рабочего хода ползуна

$$\phi_{\text{Hpx}} = \frac{\phi_x}{2}; \qquad \phi_{\text{Kpx}} = 360^{\circ} - \frac{\phi_x}{2}.$$
(10.9)

В формулы (10.9) следует подставлять ϕ_x из (10.8).

Заданы:

длина кривошипа *ОА*;

вылет центра шарнира *С* – размер *AC*;

соотношение длин звеньев *ОВ* и *ОА*

$$OB = \alpha \cdot OA \tag{11.1}$$

(параметр α задан как диапазон);

требуемый угол качания кулисы 5 – ψ (с допуском ±2°).

Необходимо подобрать размеры межосевых расстояний ОВ и ОD.

Рисунок 11.2

Решение

Размер *ОВ* находим из соотношения (11.1).

Для подбора подходящего значения размера *ОD* можно использовать компьютерную среду САМАС; в этом случае параметру *OD* задают ряд значений, для каждого из которых определяют величину угла качания кулисы ψ и тем са-

мым подбирают подходящую величину ОД.

Можно также воспользоваться графическим методом: для этого из бумаги вырезают два угловых шаблона с внутренними углами

(ψ +2°) и (ψ -2°) и каждый из этих шаблонов поочередно пытаются поместить вершиной угла в такую точку *D* (рис. 11.2), чтобы траектория точки *C* (предварительно построенная) поместилась внутри указанного угла и касалась его сторон. Таким образом, будут найдены два предельных положения точки *D* и соответственно два предельных значения искомого расстояния – OD_{max} и OD_{min} ; в качестве окончательного значения размера *OD* можно принять любое, удовлетворяющее неравенству $OD_{\text{max}} \ge OD \ge OD_{\text{min}}$.

Угловые координаты кривошипа *OA* в моменты начала – $\phi_{\mu px}$ и окончания – $\phi_{\kappa px}$ рабочего хода кулисы, а также фактическое значение ψ этого хода наиболее просто и в то же время достаточно точно можно определить в среде САМАС.

Заданы:

длина кривошипа *ОА*;

вылет центра шарнира C – размер AC;

соотношение размеров *OB* и *OA*

$$OB = \beta \cdot OA \tag{12.1}$$

(параметр β задан как диапазон);

эксцентриситет направляющей ползуна 5 – *e*;

наибольший допустимый угол давления шатуна 4 на ползун 5 – α_{max} .

Необходимо подобрать размеры – межосевое расстояние *OB* и длину шатуна *CD*.

Решение

Размер ОВ выбираем из соотношения (12.1).

Угол давления шатуна *CD* на ползун 5 (угол) достигает наибольшего значения, когда точка *C* занимает положение максимального удаления от направляющей ползуна 5, равного (OA + AC - e). Тогда очевидно, что условие по ограничению угла давления будет выполнено при соблюдении неравенства

$$\frac{OA + AC - e}{CD} \le \sin \alpha_{\max}, \qquad (12.2)$$

откуда

$$CD \ge \frac{OA + AC - e}{\sin \alpha_{\max}}.$$
(12.3)

В качестве окончательного значения размера *CD* следует принять результат округления в большую сторону значения правой части выражения (12.3) до ближайшего предпочтительного числа.

Угловые координаты кривошипа *OA* в моменты начала – $\phi_{\text{нрх}}$ и окончания – $\phi_{\text{крх}}$ рабочего хода ползуна 5 и фактическую величину *H* этого хода наиболее просто и в то же время достаточно точно можно определить в компьютерной среде САМАС.

Заданы:

длина кривошипа *OA*;

вылет центра шарнира *С* – размер *AC*;

соотношение размеров *AB* и *OA*

$$AB = \beta \cdot OA, \qquad (13.1)$$

(параметр β задан как диапазон);

эксцентриситет направляю-

щей ползуна 5 – е;

наибольший допустимый угол давления α_{max} шатуна 4 на ползун 5 .

Необходимо подобрать размеры звеньев - длины шатунов *АВ* и *CD*.

Решение

Длину шатуна АВ находим из соотношения (13.1).

Угол давления шатуна *CD* на ползун 5 достигает наибольшего значения, когда точка *C* занимает положение наибольшего удаления от направляющей ползуна 5, равного (OA + AC - e). Очевидно, что условие по ограничению угла давления будет выполнено при соблюдении неравенства

$$\frac{OA + AC - e}{CD} \le \sin \alpha_{\max}; \qquad (13.2)$$

отсюда

$$CD \ge \frac{OA + AC - e}{\sin \alpha_{\max}}.$$
(13.3)

В качестве окончательного значения размера *CD* следует принять результат округления в большую сторону значения правой части выражения (13.3) до ближайшего предпочтительного числа.

Угловые координаты кривошипа *OA* в моменты начала – $\varphi_{\rm hpx}$ и окончания – $\varphi_{\rm kpx}$ рабочего хода ползуна 5, а также фактическую величину *H* этого хода наиболее просто и в то же время достаточно точно можно определить в компьютерной среде CAMAC.

расстояния OD.

Заданы:

длина кривошипа *ОА*;

вылет центра шарнира C - размер AC;

эксцентриситет направляющей ползуна 3 – *e*;

соотношение длин звеньев *АВ* и *ОА*

$$AB = \beta \cdot OA \tag{14.1}$$

(параметр β задан как диапазон);

требуемый угол качания кулисы 5 – ψ (с допуском $\pm 2^{\circ}$).

Необходимо подобрать размеры шатуна *АВ* и межосевого

Размер *АВ* находим из соотношения (14.1).

Для подбора подходящего значения размера *OD* можно использовать компьютер-ную среду САМАС; в этом случае параметру *OD* задают ряд значений, для каждого из них определяют величину угла качания ψ и таким образом подбирают подходящую величину *OD*.

Рисунок

14.2

Можно также воспользоваться графическим методом: для этого из бумаги вырезают два угловых шаблона с внутренними углами (ψ +2°) и (ψ-2°) и каждый из этих шаблонов поочередно пытаются повершиной угла В такую точку D местить (рис. 14.2), чтобы траектория точки С (предварительно построенная) поместилась внутри указанного угла и касалась его сторон. Таким образом, будут найдены два предельных положения точки D и соответственно два предельных значения искомого расстояния – *OD*_{max} и OD_{min}; в качестве окончательного значения размера OD можно принять любое, удовлетворяющее неравенству $OD_{max} \ge OD \ge OD_{min}$.

Угловые координаты кривошипа *OA* в моменты начала – $\phi_{\mu px}$ и окончания – $\phi_{\kappa px}$ рабочего хода кулисы, а также фактическое значение ψ этого хода наиболее просто и в то же время достаточно точно можно определить в среде САМАС.

Рисунок 15.1

Заданы:

длина кривошипа *ОА*;

эксцентриситет направляющей ползуна 3 – *e*;

соотношение размеров звеньев *АВ, АС* и *ОА*

 $AB = \alpha \cdot OA; AC = \beta \cdot OA$ (15.1)

(параметры α и β заданы в виде диапазонов);

требуемый угол качания звена 5 – ψ (с допуском $\pm 2^{\circ}$).

Необходимо подобрать размеры шатуна *АВ* и межосевого расстояния *OD*.

Размер *АВ* находим из соотношения (15.1).

Для подбора подходящего значения размера *ОD* можно использовать компьютерную среду САМАС; в этом случае параметру *OD* задают ряд значений, для каждого из них определяют величину угла качания ψ и таким образом подбирают подходящую величину *OD*.

также

BOC-

Можно

пользоваться графическим методом: для этого из бумаги вырезают два угловых шаблона с внутренними углами (ψ+2°) и (ψ-2°) и каждый из этих шаблонов поочередно пытаются поместить вершиной угла в

такую точку D (рис. 15.2), чтобы траектория точки C (предварительно построенная) поместилась внутри указанного угла и касалась его сторон. Таким образом, будут найдены два предельных положения точки D и соответственно два предельных значения искомого расстояния – OD_{max} и OD_{min} ; в качестве окончательного значения размера OD можно принять любое, удовлетворяющее неравенству $OD_{\text{max}} \ge OD \ge OD_{\text{min}}$.

Угловые координаты кривошипа *OA* в моменты начала – $\phi_{\mu px}$ и окончания – $\phi_{\kappa px}$ рабочего хода звена 5, а также фактическое значение ψ этого хода наиболее просто и в то же время достаточно точно можно определить в среде САМАС.

Заданы:

длина кривошипа *OA*; эксцентриситет направляющей ползуна 3 – *e*;

соотношение размеров звеньев *AB*, *AC* и *OA*

$$AB = \alpha \cdot OA; \quad AC = \beta \cdot OA$$
 (16.1)

(параметры α и β заданы в виде диапазонов);

Рисунок 16.1

абсцисса центра *D* качания кулисы 5 – *a*;

угол качания кулисы 5 – ψ (с допуском $\pm 2^{\circ}$).

Необходимо подобрать размер шатуна *АВ* и ординату центра *D* качания кулисы – *b*.

Решение

Размеры *АВ* и *АС* находим из соотношений (16.1).

Для подбора подходящего значения размера b можно использовать компьютерную среду САМАС; в этом случае параметру b задают ряд значений, для каждого из них определяют величину угла качания Ψ и таким образом подбирают подходящую

величину b.

Можно также воспользоваться графическим методом: для этого из бумаги вырезают два угловых шаблона с внутренними углами $(\psi+2^\circ)$ и $(\psi-2^\circ)$ и каждый из этих шаблонов поочередно пытаются поместить вершиной угла в такую точку *D* с абсциссой *a* (рис. 16.2), чтобы траектория точки *C* (предварительно построенная) поместилась внутри указанного угла и касалась его сторон. Таким образом,
будут найдены два предельных положения точки D и соответственно два предельных значения искомого расстояния – b_{max} и b_{min} ; в качестве окончательного значения ординаты b можно принять любое, удовлетворяющее неравенству и $b_{\text{max}} \ge b \ge b_{\text{min}}$.

Угловые координаты кривошипа *OA* в моменты начала – $\phi_{\mu px}$ и окончания – $\phi_{\kappa px}$ рабочего хода кулисы, а также фактическое значение ψ этого хода наиболее просто и в то же время достаточно точно можно определить в среде САМАС.

Заданы:

длина кривошипа *ОА*;

угол $\angle BAC$, определяющий положение центра шарнира C на шатуне AB;

эксцентриситет направляющей ползуна 3 – *e*;

соотношение размеров звеньев *АВ, АС* и *ОА*

 $AB = \alpha \cdot OA$; $AC = \beta \cdot OA$ (17.1) (параметры α и β заданы как диа-

пазоны);

φ₅^p – угол, определяющий положение кулисы 5 (значение угла φ₅) в начале ее рабочего хода.

требуемый угол качания кулисы – ψ (с допуском $\pm 2^{\circ}$).

Необходимо подобрать размеры шатуна *AB*, *AC* и координаты *a* и *b* центра шарнира *D*.

Решение

Размеры шатуна *АВ* и *АС* находим из соотношений (17.1).

Для подбора подходящих значений размеров *а* и *b* можно использовать:

– компьютерную среду САМАС; для этого координатам *a* и *b* задают ряд пар значений, для каждой из них определяют фактические значения угла φ_5^p и угла качания кулисы Ψ и таким

Рисунок 17.2

образом в результате некоторого количества попыток подбирают подходящую пару (a, b);

– графический метод; в этом случае строят траекторию точки *C* и касательную к ней *DT*, расположенную под углом $\varphi_5 = \varphi_5^p + 2^\circ$ к оси абсцисс; из бумаги вырезают два угловых шаблона с внутренними углами (ψ +2°) и (ψ -2°) (рис. 17.2) и вершину угла каждого шаблона помещают в такую точку *D* прямой *DT*, чтобы траектория точки *C* помещалась между сторонами этого угла, касаясь их; тем самым получают на прямой *DT* два предельно допустимых положения центра шарнира *D*; описанные построения повторяют при угле $\varphi_5 = \varphi_5^p - 2^\circ$ для прямой *DT* и получают еще два предельно допустимых положения точки *D*, которые в совокупности с ранее построенными аналогичными точками ограничат четырехугольную область, внутри которой можно выбрать любую точку, координаты которой *a* и *b* следует принять за окончательные.

Отметим, что существует множество приемлемых решений.

Угловые координаты кривошипа *OA* в моменты начала – $\phi_{\text{нрх}}$ и окончания – $\phi_{\text{крх}}$ рабочего хода кулисы, а также фактическое значение ψ этого хода наиболее просто и в то же время достаточно точно можно определить в среде САМАС.

Рисунок 18.1

Заданы:

длина кривошипа *ОА*;

эксцентриситет направляющей ползуна 3 – *e*;

угол $\angle ABC$, определяющий положение шарнира C на шатуне AB;

соотношение размеров звеньев *AB*, *BC* и *OA*

 $AB = \alpha \cdot OA$; $BC = \beta \cdot OA$ (18.1) (параметры α и β заданы как

диапазоны);

требуемый угол качания кулисы 5 – ψ и угол ϕ_5^p , определяющий ее положение (значение угла ϕ_5) в начале рабочего хода.

Необходимо подобрать размеры шатуна *AB*, *BC* и координаты *a* и *b* центра шарнира *D*.

Решение

Размеры *АВ* и *ВС* находим из соотношения (18.1).

Для подбора подходящих значений размеров *а* и *b* можно использовать:

компьютерную среду
 САМАС; в этом случае координатам *а* и *b* задают ряд пар значений,
 для каждой из них определяют величину угла качания ψ, угла φ^p₅ и

таким образом подбирают подходящую пару значений (a, b);

- графический метод; в этом случае строят траекторию точки *C* и касательную к ней *DT*, расположенную под углом $\varphi_5 = \varphi_5^p + 2^\circ$ к оси абсцисс; из бумаги вырезают два угловых шаблона с внутренними

углами ($\psi + 2^{\circ}$) и ($\psi - 2^{\circ}$) (рис. 18.2) и вершину угла каждого шаблона помещают в такую точку *D* прямой *DT*, чтобы траектория точки *C* находилась между сторонами этого угла, касаясь их; тем самым получают на прямой *DT* два предельно допустимых положения центра шарнира *D*; описанные построения повторяют при угле $\varphi_5 = \varphi_5^p - 2^{\circ}$ для прямой *DT* и получают еще два предельно допустимых положения точки *D*, которые в совокупности с ранее построенными аналогичными точками ограничат четырехугольную область, внутри которой можно выбрать любую точку, координаты которой *a* и *b* следует принять за окончательные.

Отметим, что существует множество приемлемых решений.

Угловые координаты кривошипа *OA* в моменты начала – $\phi_{\text{нрх}}$ и окончания – $\phi_{\text{крх}}$ рабочего хода кулисы, а также фактическое значение ψ этого хода наиболее просто и в то же время достаточно точно можно определить в среде САМАС.

Заданы:

длина кривошипа *ОА*;

эксцентриситет направляющей ползуна 3 – *e*;

угол $\angle ABC$, определяющий положение шарнира *C* на шатуне *AB*;

соотношение размеров звеньев *AB*, *BC* и *OA*

 $AB = \alpha \cdot OA$; $BC = \beta \cdot OA$ (19.1) (параметры α и β заданы как диапазоны);

требуемый угол качания звена 5 – ψ (с допуском $\pm 2^{\circ}$);

значение угла $\phi_5 = \phi_5^p$ в начале рабочего хода звена 5.

Необходимо подобрать размеры шатуна *AB*, *BC* и координаты *a* и *b* центра шарнира *D*, обеспечив значения углов ψ и φ_5^p с точностью $\pm 2^\circ$ для каждого.

Решение

Размеры АВ и ВС находим из соотношения (19.1).

Для подбора подходящих значений размеров *а* и *b* можно использовать:

- компьютерную среду САМАС; в этом случае координатам *a* и *b* задают ряд пар значений, для каждой из них определяют величину угла качания Ψ , угла φ_5^p и таким образом подбирают подходящую пару значений (*a*, *b*);

Рисунок 19.2 - графический метод; в этом случае строят траекторию точки *C* и касательную к ней *DT*, располо-

женную под углом $\phi_5 = \phi_5^p + 2^\circ$ к оси абсцисс; из бумаги вырезают два угловых шаблона с внутренними углами ($\psi + 2^\circ$) и ($\psi - 2^\circ$) (рис. 19.2) и вершину угла каждого шаблона помещают в такую точку *D* прямой *DT*, чтобы траектория точки *C* находилась между сторонами этого угла, касаясь их; тем самым получают на прямой *DT* два предельно допустимых положения центра шарнира *D*; описанные построения повторяют при угле $\phi_5 = \phi_5^p - 2^\circ$ для прямой *DT* и получают еще два предельно допустимых положения точки *D*, которые в совокупности с ранее построенными аналогичными точками ограничат четырехугольную область, внутри которой можно выбрать любую точку, координаты которой *a* и *b* следует принять за окончательные.

Отметим, что существует множество приемлемых решений.

Угловые координаты кривошипа *OA* в моменты начала – $\phi_{\text{нрх}}$ и окончания – $\phi_{\text{крх}}$ рабочего хода кулисы, а также фактическое значение ψ этого хода наиболее просто и в то же время достаточно точно можно определить в среде САМАС.

Рисунок 20.1

Заданы:

длина кривошипа *ОА*;

эксцентриситет направляющей ползуна 3 – *e*;

длина шатуна *АВ*;

величина хода штока 5 – H_5 ;

Необходимо подобрать размер *a*, обеспечивая за-

данную величину хода штока $H_5 \pm 0.010$ м.

Решение

Синтез этого механизма сводится к нахождению единственного параметра – размера a, выбираемого исходя из заданной величины хода H_5 .

Рисунок 20.2

Для решения указанной задачи синтеза возможно применение компьютерной среды САМАС: в этом случае параметру *a* (рис. 20.2) задают ряд значений, пока не получат величину хода звена 5 в диапазоне $H = H_5 \pm 0.01$ м.

Возможно также применение графического метода, для реализации которого необходимо построить не менее 12 положений звеньев 1, 2 и 3, равноотстоящих по углу поворота кривошипа *OA* (рис. 20.2). Используя построенный план положений можно найти диапазон допустимых величин параметра *a*. Границы этого диапазона: a_{max} , при котором $H = H_5 - 0.01$ м и a_{min} , при котором $H = H_5 + 0.01$ м. Из найденного диапазона можно принять любое значение параметра *a* в качестве окончательного.

У рассматриваемого механизма два рабочих звена – ползун 3 и шток 5, нагруженные силами полезного сопротивления Q_{nc}^3 и Q_{nc}^5 соответственно; каждое из этих звеньев может находиться в состоянии как рабочего, так и холостого ходов. Согласно этому для каждого из рабочих звеньев существуют два положения кривошипа *OA*, соответствующих началу и окончанию рабочего хода.

Для звена 3: угловые координаты кривошипа в момент начала и конца рабочего хода

Для штока 5 аналогичные величины – $\varphi_{\text{нрх}}^5$, $\varphi_{\text{крх}}^5$ и H_5 можно найти только приблизительно, но при использовании возможностей компьютерной среды САМАС – с любой желаемой точностью.

Заданы:

длина кривошипа *ОА*;

параметры, определяющие положение добавочной точки C на шатуне – размер AC и угол $\angle BAC$;

размер *е* – вертикальное смещение горизонтальной направляющей ползуна 3;

соотношение размеров звеньев AB и OA $AB = \beta \cdot OA$

(21.1)

(параметр β задан как диапазон).

Подбором координат a и b необходимо совместить центр D вращения кулисы 5 с центром траектории точки C, обеспечивая тем самым минимальное колебание размера CD за цикл работы механизма.

Решение

Расчетная схема подбора длин звеньев механизма представлена на рис. 21.2.

Рисунок 21.2

Размер АВ находим из соотношения (21.1).

Для подбора приемлемых значений *а* и *b* можно воспользоваться графическим методом. Для этого в подходящем масштабе вычерчи-

вают траекторию точки C (это замкнутая центральная кривая четвертого порядка) и находят ее центр – точку D; координаты a и b определяют простым замером.

Можно также воспользоваться компьютерной средой САМАС; для этого устанавливают за цикл движения механизма пределы изменения координат точки $C - x_{C_{\min}}, x_{C_{\max}}, y_{C_{\min}}, y_{C_{\max}};$ тогда координаты точки D

$$\begin{cases} x_{D} = \frac{x_{C_{\min}} + x_{C_{\max}}}{2}; \\ y_{D} = \frac{y_{C_{\min}} + y_{C_{\max}}}{2}. \end{cases}$$
(21.2)

Значения *а* и *b* найдутся как разности координат точек *O* и *D*:

$$\begin{cases} a = x_D - x_O; \\ b = y_D - y_O. \end{cases}$$
(21.3)

Размер а обычно получается отрицательным.

Отметим, что цикл работы этого механизма не содержит периода холостого хода, т. к. вращение рабочего звена совершается непрерывно в одном и том же направлении и момент производственного сопротивления $T_{\rm nc}$ действует на выходное звено механизма (кулису 5) в течение всего цикла.

Заданы:

длина кривошипа *OA*; параметры, определяющие положение добавочной точки *C* на шатуне – размер *AC* и угол ∠*BAC*;

размер *е* – вертикальное смещение горизонтальной направляющей ползуна 3;

соотношение размеров звеньев АВ и ОА

 $AB = \beta \cdot OA$

(22.1)

(параметр β задан как диапазон).

Необходимо подобрать координаты центра *E* вращения звена 5 (размеры *a* и *b*) так, чтобы оно за цикл работы механизма совершало полный оборот; размеры *CD* и *DE* выбрать такими, чтобы угол передачи $\gamma = \angle CDE$ имел наименьшие возможные отклонения от 90°.

Решение

Размер АВ находим из соотношения (22.1).

Рисунок 22.2

Для подбора приемлемых значений a и b можно воспользоваться графическим методом: в подходящем масштабе вычерчивают траекторию точки C (замкнутую центральную кривую четвертого порядка). Колебание размера CE (и угла $\angle CDE$) будут минимальными, если центр шарнира E поместить в центр указанной траектории; координаты a и b этого центра определяют простым замером.

Можно также воспользоваться компьютерной средой САМАС; для этого устанавливают за цикл движения механизма пределы изменения координат точки $C - x_{C_{\min}}, x_{C_{\max}}, y_{C_{\min}}, y_{C_{\max}};$ тогда координат ты точки E

$$\begin{cases} x_E = \frac{x_{C_{\min}} + x_{C_{\max}}}{2}; \\ y_E = \frac{y_{C_{\min}} + y_{C_{\max}}}{2}. \end{cases}$$
(22.2)

Значения а и b найдутся как разности координат точек О и E:

$$\begin{cases} a = x_E - x_O; \\ b = y_E - y_O. \end{cases}$$
(22.3)

Значение а обычно получается отрицательным.

Для выбора длин звеньев *CD* и *DE* нужно найти предельные значения расстояния *CE*, т.е. CE_{min} и CE_{max} (это можно сделать с помощью измерений на плане положений механизма).

Текущие значения расстояния *CE* и угла γ для произвольного положения механизма связаны с длинами звеньев *CD* и *DE* формулой

 $CD^{2} + DE^{2} - 2 \cdot CD \cdot DE \cdot \cos \gamma = CE^{2};$ (22.4) если обозначить буквой δ значение наибольшего отличия угла γ от 90°, то будут верны равенства

$$\gamma_{\text{max}} = 90^{\circ} + \delta;$$
 $\gamma_{\text{min}} = 90^{\circ} - \delta$ (22.5)

и тогда для определения длин *CD* и *DE* можно использовать уравнения

$$CD^{2} + DE^{2} + 2 \cdot CD \cdot DE \cdot \sin \delta = CE_{\max}^{2};$$

$$CD^{2} + DE^{2} - 2 \cdot CD \cdot DE \cdot \sin \delta = CE_{\min}^{2}.$$
(22.6)

Можно показать, что система (22.6) разрешима только при

$$\delta \ge \delta_{\min} = \arcsin \frac{CE_{\max}^2 - CE_{\min}^2}{CE_{\max}^2 + CE_{\min}^2}.$$
(22.7)

Если принять $\delta = \delta_{\min}$, то искомые длины звеньев будут равны

$$CD = DE = \frac{\sqrt{CE_{\max}^2 + CE_{\min}^2}}{2};$$
 (22.8)

при любом другом значении угла δ, удовлетворяющем неравенству (22.7), получим два решения, симметричных друг другу: обозначим

$$P = \frac{CE_{\text{max}}^2 + CE_{\text{min}}^2}{2},$$

$$Q = \frac{CE_{\text{max}}^2 - CE_{\text{min}}^2}{2};$$
(22.10)

 $Q = \frac{1000}{2 \sin \delta};$ если принять, что *CD>DE*, то решение системы (22.6)

 $CD = \frac{\sqrt{P+Q} + \sqrt{P-Q}}{2};$ $DE = \frac{\sqrt{P+Q} - \sqrt{P-Q}}{2}.$ (22.11)

При *CD*<*DE* правые части формул (22.11) для расчета *CD* и *DE* меняются местами, т. е.

$$CD = \frac{\sqrt{P+Q} - \sqrt{P-Q}}{2};$$

$$DE = \frac{\sqrt{P+Q} + \sqrt{P-Q}}{2}.$$
(22.12)

Отметим, что цикл работы этого механизма не содержит периода холостого хода, т. к. вращение рабочего звена совершается непрерывно в одном и том же направлении.

Рисунок 23.1

Заданы:

длина кривошипа *ОА*;

параметры, определяющие положение добавочной точки C на шатуне – размер BC и угол $\angle ABC$;

размер *е* – вертикальное смещение горизонтальной направляющей ползуна 3;

соотношение размеров звеньев АВ и ОА

 $AB = \alpha \cdot OA; \tag{23.1}$

соотношение, определяющее координату *b* направляющей для звена 5

$$b = \beta \cdot BC \tag{23.2}$$

(параметры α и β заданы как диапазоны).

Необходимо подобрать значения параметров АВ и b.

Решение

Синтез данного механизма сводится к выбору подходящих значений AB и b из диапазонов, определяемых соотношениями (23.1) и (23.2).

Величину рабочего хода H ползуна 5 и углы $\phi_{\mu px}$ и $\phi_{\kappa px}$, определяющий положение кривошипа OA в момент начала и окончания рабочего хода, наиболее точно можно найти, используя компьютерную среду САМАС. Допускается также применение графического метода с использованием плана положений механизма.

Заданы: длина кривошипа OA; соотношение размеров OC и OA $OC = OA/\alpha$; (24.1) $A \xrightarrow{2} S_2 \xrightarrow{3} B \xrightarrow{4} E, S_5$ $OC = S_3 \xrightarrow{6} M \xrightarrow{5} C \xrightarrow{1} Q_{nc}$

Рисунок 24.1

параметры, определяющие положение добавочной точки D на шатуне – угол $\angle ABD$ и соотношение

$$\frac{BD}{AB} = \beta; \tag{24.2}$$

(параметры α и □ β заданы в виде диапазонов);

условие подбора длин звеньев *AB* и *BC* – угол $\gamma = \angle ABC$ при работе механизма должен изменяться в заданных пределах [$\gamma_{\min}...\gamma_{\max}$], при этом должно соблюдаться соотношение *AB* ≤ *BC*;

длина шатуна *DE* должна быть подобрана так, чтобы угол его давления на ползун 5 (угол наклона шатуна к направляющей) не превышал заданной величины α_{max} .

Решение

Величину межосевого расстояния *ОС* принимаем из диапазона, определяемого равенством (24.1).

Для составления уравнений, решением которых будут требуемые значения *AB* и *BC*, воспользуемся равенством

$$AB^{2} + BC^{2} - 2 \cdot AB \cdot BC \cdot \cos \gamma = AC^{2}; \qquad (24.3)$$

очевидно, что при $\gamma = \gamma_{\max}$ имеем

$$AC = AC_{\max} = OA \pm OC; \qquad (24.4)$$

тогда для определения длин АВ и ВС получим уравнения

$$AB^{2} + BC^{2} - 2 \cdot AB \cdot BC \cdot \cos \gamma_{\max} = AC_{\max}^{2};$$

$$AB^{2} + BC^{2} - 2 \cdot AB \cdot BC \cdot \cos \gamma_{\min} = AC_{\min}^{2}.$$
Для удобства решения обозначим $\frac{AC_{\max}}{AC_{\min}} = \lambda.$
(24.5)

Можно показать, что система (24.5) имеет решение только при $\sin(0.5\gamma_{max})$

$$\lambda \le \frac{\sin(0.5\gamma_{\text{max}})}{\sin(0.5\gamma_{\text{min}})}.$$
(24.6)

В этом случае решение находим так: вычисляем вспомогательные величины

$$P = \frac{AC_{\max}^2 \cos \gamma_{\min} - AC_{\min}^2 \cos \gamma_{\max}}{\cos \gamma_{\min} - \cos \gamma_{\max}}; \qquad (24.7)$$

$$Q = \frac{AC_{\max}^2 - AC_{\min}^2}{\cos\gamma_{\min} - \cos\gamma_{\max}};$$
(24.8)

тогда

$$AB = 0.5(\sqrt{P+Q} - \sqrt{P-Q}); \}$$

BC = 0.5(\sqrt{P+Q} + \sqrt{P-Q}). \} (24.9)

При нарушении условия (24.6) (неудачно заданы исходные данные) пределы [$\gamma_{min}...\gamma_{max}$] необходимо несколько расширить: если, например, сохранить величину γ_{max} прежней, то значение γ_{min} необходимо уменьшить согласно неравенству

$$\gamma_{\min} \le 2 \arcsin\left(\frac{\sin(0.5\gamma_{\max})}{\lambda}\right);$$
 (24.10)

если же сохранить величину γ_{min} прежней, то значение γ_{max} потребуется увеличить так, чтобы стало справедливо соотношение

$$\gamma_{\max} \ge 2 \arcsin(\lambda \sin(0.5\gamma_{\min}));$$
 (24.11)

можно сохранить прежним среднее значение угла ү -

$$\gamma_m = \frac{\gamma_{\max} + \gamma_{\min}}{2}; \qquad (24.12)$$

тогда новые предельные значения этого угла

$$\gamma_{\max}_{\min} = \gamma_m \pm \Delta, \qquad (24.13)$$

где вспомогательный угол Δ теоретически может быть любым, удовлетворяющим неравенству

$$\Delta \ge \Delta_{\min} = 2 \operatorname{arctg}\left(\frac{\lambda - 1}{\lambda + 1} \operatorname{tg}\frac{\gamma_m}{2}\right).$$
(24.14)

Последний способ вынужденного расширения диапазона углов $[\gamma_{\min}...\gamma_{\max}]$ предпочтительнее.

Для подбора размера *DE* необходимо определить величину наибольшего по абсолютной величине удаления $|h_{D_{\text{max}}}|$ центра шарнира *D* от горизонтальной направляющей ползуна 5 (это можно сделать, используя компьютерную среду САМАС, или графически – вычертив в подходящем масштабе траекторию точки *D* и замерив расстояние ее наиболее удаленной точки от направляющей). Тогда в качестве окончательного значения длины шатуна *DE* можно взять любое, удовлетворяющее неравенству

$$DE \ge \frac{\left|h_{D_{\max}}\right|}{\sin \alpha_{\max}}.$$
(24.15)

Рабочий ход механизма начинается при положении кривошипа *OA*, определяемом углом $\phi_{\text{нрх}}$ (ползун 5 при этом занимает крайнее левое положение) и заканчивается при $\phi_{\text{крх}}$ – (ползун находится в крайнем правом положении); значения этих углов и величину хода H_5 рабочего звена можно найти только приближенно, но при использовании компьютерной среды CAMAC – с любой желаемой точностью.

Рисунок 25.1

 $BD = \beta \cdot BC$

Заданы:

координаты центра шарнира *С* – размеры *а* и *b*;

координата направляющей для ползуна 5 – размер *c*;

соотношение размеров *OC* и *OA*

 $OA = OC/\alpha \tag{25.1}$

(параметр α задан как диапазон);

параметры, определяющие положение добавочной точки Dна коромысле – угол $\angle CBD$ и соотношение между размерами BD и BC

(25.2)

(параметр β задан как диапазон);

условие подбора длин звеньев *AB* и *BC* – угол $\gamma = \angle ABC$ при работе механизма должен изменяться в заданных пределах [$\gamma_{\min} ... \gamma_{\max}$], при этом должно соблюдаться соотношение *AB* ≥ *BC*;

длина шатуна *DE* должна быть подобрана так, чтобы угол его давления на ползун 5 (угол наклона шатуна к направляющей) не превышал величины α_{max} .

Решение

Вначале находим размер

$$OC = \sqrt{a^2 + b^2} \tag{25.3}$$

и затем выбираем подходящую длину *OA* из диапазона, определяемого соотношением (25.1).

Рассматривая на схеме механизма изменяемый ΔABC , заметим, что угол γ принимает предельные значения в случаях: $\gamma = \gamma_{max}$ при

 $AC = AC_{max} = OC + OA$; $\gamma = \gamma_{min}$ при $AC = AC_{min} = OC - OA$. Очевидно, что для подбора длин *AB* и *BC*, удовлетворяющих условиям синтеза, можно использовать уравнения:

$$AB^{2} + BC^{2} - 2 \cdot AB \cdot BC \cdot \cos \gamma_{\max} = AC_{\max}^{2};$$

$$AB^{2} + BC^{2} - 2 \cdot AB \cdot BC \cdot \cos \gamma_{\min} = AC_{\min}^{2};$$
(25.4)

для их решения найдем вспомогательные величины

$$P = \frac{AC_{\max}^2 \cos \gamma_{\min} - AC_{\min}^2 \cos \gamma_{\max}}{\cos \gamma_{\min} - \cos \gamma_{\max}};$$
 (25.5)

$$Q = \frac{AC_{\max}^2 - AC_{\min}^2}{\cos\gamma_{\min} - \cos\gamma_{\max}};$$
(25.6)

тогда, при $AB \ge BC$

$$BC = 0.5(\sqrt{P+Q} - \sqrt{P-Q});$$

$$AB = 0.5(\sqrt{P+Q} + \sqrt{P-Q}).$$
(25.7)

Очевидно, что решение (25.7) существует только при $P \ge Q$, или, что то же самое, при

$$\lambda = \frac{AC_{\max}}{AC_{\min}} \le \frac{\sin(0.5\gamma_{\max})}{\sin(0.5\gamma_{\min})}.$$
(25.8)

Несоблюдение неравенства (25.8) означает, что исходные данные выбраны неудачно и требуют корректировки, которая может быть произведена разными способами:

можно расширить пределы допустимых углов [$\gamma_{min}...\gamma_{max}$] за счет только нижней границы, выбрав ее из неравенства

$$\gamma_{\min} \le 2 \arcsin\left(\frac{\sin(0.5\gamma_{\max})}{\lambda}\right),$$
 (25.9)

или за счет только верхней границы -

$$\gamma_{\max} \ge 2 \arcsin(\lambda \sin(0.5\gamma_{\min}));$$
 (25.10)

можно также сохранить неизменным среднее значение

$$\gamma_m = (\gamma_{\min} + \gamma_{\max})/2, \qquad (25.11)$$

и назначить новые верхнюю и нижнюю границы:

$$\gamma_{\max}_{\min} = \gamma_m \pm \Delta, \qquad (25.12)$$

где вспомогательный угол Δ теоретически может быть любым, удовлетворяющим неравенству

$$\Delta \ge \Delta_{\min} = 2 \operatorname{arctg}\left(\frac{\lambda - 1}{\lambda + 1} \operatorname{tg}\frac{\gamma_m}{2}\right).$$
(25.13)

Последний способ вынужденного расширения диапазона углов [$\gamma_{\min}...\gamma_{\max}$] предпочтительнее.

Для подбора размера DE необходимо определить величину наибольшего по абсолютной величине удаления центра шарнира D $y_{D_{\max}}$ от горизонтальной направляющей ползуна 5; это можно сделать либо графически, либо ИСпользуя компьютерную среду САМАС. В каче-

стве окончательного значения длины шатуна *DE* можно взять любое, удовлетворяющее неравенству $DE \ge |y_{D_{\text{max}}}| / \sin \alpha_{\text{max}}$.

Угол $\phi_{\mu px}$, определяющий положение кривошипа *OA* в момент начала рабочего хода ползуна 5, можно найти аналитически, используя формулы, которые следуют из рис. 25.2:

$$\delta = \operatorname{arctg}\left(\frac{b}{a}\right); \tag{25.14}$$

$$\lambda = \arccos \frac{OC^2 + (OA + AB)^2 - BC^2}{2 \cdot OC(OA + AB)}; \qquad (25.15)$$

$$\varphi_{\rm Hpx} = \delta - \lambda \,. \tag{25.16}$$

Угол $\phi_{\kappa px}$, определяющий положение кривошипа *OA* в момент окончания рабочего хода, найдем из аналогичной расчетной схемы, соответствующей крайнему левому положению ползуна 5; при этом для расчета угла δ используем ту же формулу (25.14), а для расчета λ и $\phi_{\kappa px}$ – формулы

$$\lambda = \arccos \frac{OC^2 + (AB - OA)^2 - BC^2}{2 \cdot OC(AB - OA)}; \qquad (25.17)$$

$$\varphi_{\rm kpx} = 180^\circ + \delta - \lambda. \tag{25.18}$$

Для определения величины рабочего хода ползуна H_5 существуют аналитические формулы, но ввиду их громоздкости более оправданным считаем обращение для этой цели к компьютерной среде САМАС. В этом случае определяют значение абсциссы центра шарнира *E* для двух положений механизма, определяемых углами $\varphi_{\text{нрх}}$ и $\varphi_{\text{крх}}$ – разность этих абсцисс и представляет собой искомую величину H_5 .

Заданы (рисунок 26.1):

эксцентриситет направляющей ползуна 3 – *e*;

длина кривошипа OA = 5e;

параметры, определяющие положение центра шарнира C на шатуне AB -угол $\angle ABC = \gamma$ и размер BC;

соотношение размеров звеньев *АВ* и *ОА*

$$AB = \beta \cdot OA \tag{26.1}$$

(параметр β задан как диапазон);

требуемый угол качания кулисы 5 – ψ ;

значение угла $\phi_5 = \phi_5^p$ в начале рабочего хода кулисы.

Необходимо подобрать размеры шатуна *AB* и координаты *a* и *b* центра шарнира *D* так, чтобы обеспечить получение заданных углов ψ и φ_5^p с точностью $\pm 2^\circ$ для каждого.

Решение

Размер *АВ* находим из соотношения (26.1).

Для подбора любого подходящего (из многих возможных) варианта значений размеров *a* и *b* можно использовать:

- компьютерную среду САМАС; в этом случае координатам a и b задают ряд пар значений, для каждой из них определяют величины угла качания ψ и угла ϕ_5 в начале рабочего хода кулисы 5; таким образом, b:

подбирают подходящую пару (a, b);

- графический метод; в этом случае строят траекторию точки С и

касательную к ней *DT*, расположенную под углом $\varphi_5 = \varphi_5^p + 2^\circ$ к оси абсцисс; из бумаги вырезают два угловых шаблона с внутренними углами ($\psi + 2^\circ$) и ($\psi - 2^\circ$) (рис. 26.2) и вершину угла каждого шаблона помещают в такую точку *D* прямой *DT*, чтобы траектория точки *C* находилась между сторонами этого угла, касаясь их; тем самым получают на прямой *DT* два предельно допустимых положения центра шарнира *D*; описанные построения повторяют при угле $\varphi_5 = \varphi_5^p - 2^\circ$ для прямой *DT* и получают еще два предельно допустимых положения точки *D*, которые в совокупности с ранее построенными аналогичными точками ограничат четырехугольную область, внутри которой можно выбрать любую точку, координаты которой *a* и *b* следует принять за окончательные.

Угловые координаты кривошипа *OA* в моменты начала – $\phi_{\text{нрх}}$ и окончания – $\phi_{\text{крх}}$ рабочего хода кулисы, а также фактическое значение ψ этого хода наиболее просто и в то же время достаточно точно можно определить в среде САМАС.

Заданы:

длина кривошипа *OA*;

соотношение размеров ОС и ОА

$$OC = \alpha OA$$
 (27.1)

(параметр α задан как диапазон);

(27.2)

когда

соотношение размеров СД и ОС $CD = \beta \cdot OC$;

(параметр β задан как диапазон);

условие подбора длин звеньев AB и BC – угол $\angle ABC = \gamma$ при работе механизма должен изменяться в заданных пределах $[\gamma_{min}...\gamma_{max}]$, при этом должно соблюдаться соотношение $AB \ge BC$.

Решение

Вначале выбираем размер ОС из диапазона, определяемого соотношением (27.1) и затем – СД из (27.2).

Для выбора подходящих значений АВ и ВС воспользуемся следующим способом: из ΔABC на схеме механизма видим, что $\angle ABC = \gamma$ принимает угол предельное значение $\gamma_{\rm max}$, когда $AC = AC_{max} = OC + OA$

ответственно

 γ_{\min} , $AC = AC_{\min} = OC - OA$; тогда очевидно, что для подбора длин AB и ВС, удовлетворяющих условиям синтеза, можно использовать уравнения:

$$AB^{2} + BC^{2} - 2 \cdot AB \cdot BC \cdot \cos \gamma_{\max} = AC_{\max}^{2};$$

$$AB^{2} + BC^{2} - 2 \cdot AB \cdot BC \cdot \cos \gamma_{\min} = AC_{\min}^{2};$$
(27.3)

их решение найдем в виде: введем обозначения

$$P = \frac{AC_{\max}^2 \cos \gamma_{\min} - AC_{\min}^2 \cos \gamma_{\max}}{\cos \gamma_{\min} - \cos \gamma_{\max}}; \qquad (27.4)$$

$$Q = \frac{AC_{\max}^2 - AC_{\min}^2}{\cos\gamma_{\min} - \cos\gamma_{\max}};$$
(27.5)

тогда длины звеньев

$$BC = 0.5(\sqrt{P+Q} - \sqrt{P-Q}); \}$$

$$AB = 0.5(\sqrt{P+Q} + \sqrt{P-Q}). \}$$
(27.6)

Очевидно, что искомое решение существует только при $P \ge Q$, или, как это можно показать, при

$$\lambda = \frac{AC_{\max}}{AC_{\min}} \le \frac{\sin(0.5\gamma_{\max})}{\sin(0.5\gamma_{\min})}.$$
(27.7)

Несоблюдение неравенства (27.7) означает, что исходные данные выбраны не совсем удачно и требуют корректировки, которая может быть произведена разными способами:

можно расширить пределы допустимых углов [$\gamma_{min}...\gamma_{max}$] за счет только нижней границы, выбрав ее из неравенства

$$\gamma_{\min} \le 2 \arcsin((\sin(0.5\gamma_{\max}))/\lambda), \qquad (27.8)$$

или за счет только верхней границы -

$$\gamma_{\max} \ge 2 \arcsin(\lambda \sin(0.5\gamma_{\min})); \qquad (27.9)$$

можно также сохранить неизменным среднее значение

$$\gamma_m = (\gamma_{\min} + \gamma_{\max})/2, \qquad (27.10)$$

и назначить новые верхнюю и нижнюю границы:

$$\gamma_{\max}_{\min} = \gamma_m \pm \Delta \tag{27.11}$$

где вспомогательный угол Δ может быть любым, удовлетворяющим неравенству

$$\Delta \ge \Delta_{\min} = 2 \operatorname{arctg}\left(\frac{\lambda - 1}{\lambda + 1} \operatorname{tg} \frac{\gamma_m}{2}\right).$$
Puc. 27.2
$$(27.12)$$

После назначения новых пределов γ_{max} и γ_{min} можно воспользоваться формулами (27.4) – (27.6).

Найдем угол $\phi_{\text{нрх}}$, определяющий положение кривошипа *ОА* в момент начала рабочего хода механизма и кулисы 5

$$\phi_{\rm Hpx} = \arccos \frac{(AB + OA)^2 + OC^2 - BC^2}{2(AB + OA)OC}.$$
(27.13)

Угол $\phi_{\kappa px}$, определяющий положение кривошипа в момент окончания рабочего хода кулисы 5 найдем из аналогичной расчетной схемы по формуле

$$\varphi_{\text{kpx}} = 180^{\circ} + \arccos \frac{(AB - OA)^2 + OC^2 - BC^2}{2(AB - OA)OC}.$$
 (27.13)

Для определения величины рабочего хода кулисы ψ существуют аналитические формулы, но ввиду их громоздкости оправданным считаем обращение для этой цели к компьютерной среде CAMAC.

Заданы: длина кривошипа *ОА*; координата добавочной точки на шатуне – размер AC; направляющей эксцентриситет ползуна 3 - e; соотношение размеров АВ и ОА $AB = \alpha \cdot OA$ (28.1)(параметр α задан как диапазон); соотношение размеров b и AC $b = AC + 0.1 \,\mathrm{m};$ (28.2)требуемый угол качания кулисы 5 – ү.

Необходимо подобрать размер шатуна *АВ* и ординату *а* центра шар-

нира *D*, обеспечивая получение угла ψ с точностью $\pm 2^{\circ}$.

Рисунок 28.2

Решение

Размер AB находим из соотношения (28.1), а ординату b центра шарнира D – по формуле (28.2).

Для подбора подходящего значения размера a можно использовать компьютерную среду САМАС; при таком способе решения абсциссе a задают ряд значений, для каждого из них определяют величину угла качания ψ и таким образом подбирают подходящую величину a;

Можно также воспользоваться графическим методом: для этого из бумаги вырезают два угловых шаблона с внутренними углами (ψ+2°) и (ψ-2°) и каждый из этих шаблонов поочередно пытаются поместить вершиной угла в такую точку D с ординатой b (рис. 28.2), чтобы траектория точки C (предварительно построенная) поместилась внутри указанного угла и касалась его сторон. Таким образом, будут найдены два предельных положения точки D и соответственно два предельных значения искомого расстояния – a_{max} и a_{min} ; в качестве окончательного значения абсциссы a можно принять любое, удовлетворяющее неравенству и $a_{\text{max}} \ge a \ge a_{\text{min}}$.

Угловые координаты кривошипа *OA* в моменты начала – $\phi_{\text{нрх}}$ и окончания – $\phi_{\text{крх}}$ рабочего хода кулисы, а также фактическое значение ψ этого хода достаточно просто и точно можно определить в среде CAMAC.

Заданы:

 $BD = \beta \cdot AB$

координаты *a* и *b* центра неподвижного шарнира *C*; соотношение размеров *OC* и *OA* $OA = OC/\alpha$;

соотношение размеров *BD* и *AB*

(29.2)

(29.1)

(коэффициент α и β заданы как диапазоны);

эксцентриситет направляющей ползуна 5 – е;

условие подбора длин звеньев *AB* и *BC* – угол $\gamma = \angle ABC$ при работе механизма должен изменяться в заданных пределах $[\gamma_{\min}...\gamma_{\max}]$, при этом должно соблюдаться соотношение $AB \leq BC$;

длина шатуна *DE* должна быть подобрана так, чтобы угол его давления на ползун 5 (угол наклона шатуна к направляющей) не превышал заданной величины α_{max} .

Решение

Определим размер ОС

$$OC = \sqrt{a^2 + b^2} \tag{29.3}$$

и по формуле (29.1) – длину кривошипа ОА.

Предельные значения расстояния
$$AC$$

 $AC_{\max} = OC \pm OA$. (29.4)

Очевидно, что предельные значения размера AC и угла $\gamma = \angle ABC$ связаны уравнениями

$$AC_{\max}^{2} = AB^{2} + BC^{2} - 2 AB \cdot BC \cos \gamma_{\max};$$

$$AC_{\min}^{2} = AB^{2} + BC^{2} - 2 AB \cdot BC \cos \gamma_{\min}.$$
(29.5)

Для их решения введем обозначения:

$$P = \frac{AC_{\max}^2 \cos \gamma_{\min} - AC_{\min}^2 \cos \gamma_{\max}}{\cos \gamma_{\min} - \cos \gamma_{\max}};$$
(29.6)

$$Q = \frac{AC_{\max}^2 - AC_{\min}^2}{\cos\gamma_{\min} - \cos\gamma_{\max}};$$
(29.7)

тогда длины звеньев

$$BC = 0.5(\sqrt{P+Q} + \sqrt{P-Q}); \}$$

$$AB = 0.5(\sqrt{P+Q} - \sqrt{P-Q}). \}$$
(29.8)

Очевидно, что искомое решение существует только при $P \ge Q$, или, как это можно показать, при

$$\lambda = \frac{AC_{\max}}{AC_{\min}} \le \frac{\sin(0.5\gamma_{\max})}{\sin(0.5\gamma_{\min})}.$$
(29.9)

Несоблюдение неравенства (29.9) означает, что исходные данные выбраны неудачно и требуют корректировки, которая может быть произведена тремя способами:

можно расширить пределы допустимых углов [$\gamma_{min}...\gamma_{max}$] за счет только нижней границы, выбрав ее из неравенства

$$\gamma_{\min} \le 2 \arcsin\left(\frac{\sin(0.5\gamma_{\max})}{\lambda}\right),$$
 (29.9)

или за счет только верхней границы -

$$\gamma_{\max} \ge 2 \arcsin(\lambda \sin(0.5\gamma_{\min}));$$
 (29.10)

можно также сохранить неизменным среднее значение

$$\gamma_m = (\gamma_{\min} + \gamma_{\max})/2, \qquad (29.11)$$

и назначить новые верхнюю и нижнюю границы:

$$\gamma_{\max}_{\min} = \gamma_m \pm \Delta, \qquad (29.12)$$

где вспомогательный угол Δ может иметь любое значение, удовлетворяющее неравенству

$$\Delta \ge \Delta_{\min} = 2 \arctan\left(\frac{\lambda - 1}{\lambda + 1} \operatorname{tg} \frac{\gamma_m}{2}\right).$$
(29.13)

Последний способ вынужденного расширения диапазона углов $[\gamma_{min}...\gamma_{max}]$ более предпочтителен.

Для подбора размера DE необходимо определить величину наибольшего по абсолютной величине удаления $y_{D_{max}}$ центра шарнира Dот горизонтальной направляющей ползуна 5 (это можно сделать, используя компьютерную среду САМАС, или графически - вычертив в подходящем масштабе траекторию точки D и замерив расстояние ее наиболее удаленной точки от направляющей). Тогда в качестве окончательного значения длины шатуна DE можно взять любое, удовлетворяющее неравенству

$$DE \ge \frac{\left| y_{D_{\max}} \right|}{\sin \alpha_{\max}}.$$
(29.18)

Рабочий ход механизма начинается при положении кривошипа *OA*, определяемом углом $\phi_{\text{нрх}}$ (ползун 5 при этом занимает крайнее левое положение) и заканчивается при $\phi_{\text{крх}}$ – (ползун находится в крайнем правом положении); значения этих углов и величину хода H_5 рабочего звена можно найти только приближенно, но при использовании компьютерной среды CAMAC – с любой желаемой точностью.

меров AC и OA $AC = \beta \cdot OA$ Заданы:

длина кривошипа *ОА*;

соотношение длин

звеньев АВ и ОА

 $AB = \alpha \cdot OA \tag{30.1}$

(параметр α задан как диапазон);

параметры, определяющие положение добавочной точки C на шатуне - угол $\angle BAC$ и соотношение раз-

(30.2)

(параметр β задан как диапазон);

координаты а и b центра шарнира E;

условие подбора длин звеньев *CD* и *DE* - угол $\gamma = \angle CDE$ при работе механизма должен изменяться в заданных пределах $[\gamma_{\min}...\gamma_{\max}]$.

Решение

Размеры АВ и АС находим из соотношений (30.1) и (30.2).

Рисунок 30.2

Для подбора приемлемых значений длин звеньев CD и DE необходимо вначале найти наибольшее CE_{max} и наименьшее CE_{min} значения расстояния *CE* (рис. 30.2). Это можно сделать либо графически, измерив соответствующие отрезки на вычерченном в масштабе плане положений механизма, либо проведя необходимый анализ кинематической схемы в компьютерной среде CAMAC.

Очевидно, что для подбора длин *CD* и *DE*, удовлетворяющих условиям синтеза, можно использовать уравнения, которые следуют из рассмотрения ΔCDE (рис. 30.2)

$$CD^{2} + DE^{2} - 2 \cdot CD \cdot DE \cdot \cos \gamma_{\max} = CE_{\max}^{2};$$

$$CD^{2} + DE^{2} - 2 \cdot CD \cdot DE \cdot \cos \gamma_{\min} = CE_{\min}^{2};$$
(30.3)

для их решения найдем вспомогательные величины

$$P = \frac{CE_{\max}^2 \cos \gamma_{\min} - CE_{\min}^2 \cos \gamma_{\max}}{\cos \gamma_{\min} - \cos \gamma_{\max}};$$
 (30.4)

$$Q = \frac{CE_{\max}^2 - CE_{\min}^2}{\cos\gamma_{\min} - \cos\gamma_{\max}};$$
(30.5)

тогда

$$CD = 0.5(\sqrt{P+Q} + \sqrt{P-Q});$$

$$DE = 0.5(\sqrt{P+Q} - \sqrt{P-Q}),$$
(30.6)

ИЛИ

$$CD = 0.5(\sqrt{P+Q} - \sqrt{P-Q});$$

$$DE = 0.5(\sqrt{P+Q} + \sqrt{P-Q}).$$
(30.7)

Очевидно, что решения (30.6) и (30.7) существует только при $P \ge Q$, или, что то же самое, при

$$\lambda = \frac{CE_{\max}}{CE_{\min}} \le \frac{\sin(0.5\gamma_{\max})}{\sin(0.5\gamma_{\min})}.$$
(30.8)

Несоблюдение условия (30.8) означает, что исходные данные выбраны неудачно и требуют корректировки, которая может быть произведена тремя различными способами:

можно расширить пределы допустимых углов [$\gamma_{min}...\gamma_{max}$] за счет только нижней границы, выбрав ее из неравенства

$$\gamma_{\min} \le 2 \arcsin\left(\frac{1}{\lambda}\sin\left(\frac{\gamma_{\max}}{2}\right)\right),$$
 (30.9)

или за счет только верхней границы -

$$\gamma_{\max} \ge 2 \arcsin\left(\lambda \sin\left(\frac{\gamma_{\min}}{2}\right)\right);$$
(30.10)

можно также сохранить неизменным среднее значение угла ү –

$$\gamma_m = \frac{\gamma_{\min} + \gamma_{\max}}{2}, \qquad (30.11)$$

и назначить новые верхнюю и нижнюю границы:

$$\gamma_{\max_{\min}} = \gamma_m \pm \Delta, \qquad (30.12)$$

где вспомогательный угол Δ теоретически может быть любым, удовлетворяющим неравенству

$$\Delta \ge 2 \operatorname{arctg}\left(\frac{\lambda - 1}{\lambda + 1} \operatorname{tg} \frac{\gamma_m}{2}\right). \tag{30.13}$$

Угловые координаты кривошипа *OA* в моменты начала – $\phi_{\mu px}$ и окончания – $\phi_{\kappa px}$ рабочего хода коромысла 5, а также фактическое значение ψ этого хода достаточно просто и точно можно определить в среде САМАС.

OB, OA и BC $OB - OA = \alpha BC$ Заданы:

Н – величина хода ползуна 5;

е – эксцентриситет направляющей ползуна 5;

K_v – коэффициент изменения средней скорости хода ползуна 5

$$K_{v} = \varphi_{p} / \varphi_{x} , \qquad (31.1)$$

где ϕ_p и ϕ_x – углы поворота кривошипа *ОА* за время рабочего и холостого ходов ползуна 5 соответственно;

соотношение длин звеньев

(31.2)

(параметр α задан как диапазон).

Требуется рассчитать и выбрать размеры OA, OB, BC и CD; длину шатуна CD подобрать так, чтобы угол его давления на ползун 5 не превышал заданной максимально допустимой величины α_{max} .

Рисунок 31.2
Расчетная схема для нахождения длин звеньев механизма приведена на рис. 31.2. показаны крайние положения рабочего звена (ползуна 5) и соответствующие им положения шарниров *A*, *C* и *D*.

Поскольку $\phi_{p} + \phi_{x} = 360^{\circ}$, то согласно (31.1)

$$\varphi_{\rm x} = \frac{360^{\circ}}{1+K_{\rm v}}; \qquad \qquad \varphi_{\rm p} = K_{\rm v} \cdot \varphi_{\rm x}. \qquad (31.3)$$

Поскольку $\cos(0.5\varphi_x) = OA/OB$, то

$$BC = \frac{H}{2\cos\left(\frac{\varphi_x}{2}\right)}; \quad OB = \frac{\alpha \cdot BC}{1 - \cos\left(\frac{\varphi_x}{2}\right)}; \quad OA = OB \cdot \cos\left(\frac{\varphi_x}{2}\right). \quad (31.4)$$

Размер *OB* допускает округление в пределах, определяемых диапазоном α.

Наибольшее удаление центра шарнира C от направляющей ползуна 5 составляет (BC-e); но тогда из ограничения угла давления шатуна 4 на ползун 5 следует, что длина шатуна CD должна удовлетворять неравенству

$$CD \ge \frac{BC - e}{\sin \alpha_{\max}}.$$
(31.5)

В качестве окончательного значения длины *CD* пригодно любое, получаемое округлением правой части неравенства (31.5) в большую сторону до ближайшего предпочтительного числа.

Фактические параметры механизма, обеспечиваемые подобранными длинами звеньев:

$$\varphi_{\rm x} = 2 \, \arccos\left(\frac{OA}{OB}\right); \quad K_{\nu} = \frac{360^{\circ} - \varphi_{\rm x}}{\varphi_{\rm x}}; \quad H = 2\frac{BC \cdot OA}{OB}. \quad (31.6)$$

Найденные по (31.8) значения K_v и H не должны отличаться от заданных более чем на 2%.

Угловые координаты кривошипа *ОА* в момент начала – и окончания рабочего хода ползуна 5

$$\phi_{\text{Hpx}} = \frac{\phi_{\text{x}}}{2} - 90; \qquad \phi_{\text{kpx}} = 270^{\circ} - \frac{\phi_{\text{x}}}{2}.$$
(31.7)

Заданы:

параметры а и b, определяющие взаимное расположение центров шарниров О и В;

соотношения размеров ОВ, OA, BC и BE

$$OA = \frac{OB}{\alpha}$$
; (32.1)

$$BC = \beta \cdot (AB)_{\max}; \qquad (32.2)$$

$$BE = \delta \cdot BC \tag{32.3}$$

Рисунок 32.1

(параметры α, β и δ заданы в ви-

де диапазонов).

Необходимо подобрать размеры звеньев OA, BC, BE, CD и DE; при подборе длин CD = DE обеспечить, чтобы средняя за время цикла величина угла передачи $\angle CDE$ была равна заданной $\gamma_m \pm 1^\circ$.

Решение

Размер ОВ найдем из очевидного соотношения

$$OB = \sqrt{a^2 + b^2} , \qquad (32.4)$$

тогда длину кривошипа ОА определим из (32.1).

Поскольку $AB_{max} = OB + OA$, то для нахождения размера BCвоспользуемся (32.2), или

 $BC = (OB + OA)\beta$, (32.5)

а затем найдем ВЕ из (32.3).

Для подбора длин CD и DE, удовлетворяющих условиям синтеза механизма, нужно в подходящем масштабе построить крайние положения ВС' и ВС" кулисы 3 (рис. 32.2) и измерить наибольшее $CE_{\rm max}$ и наименьшее $CE_{\rm min}$ расстояния между центрами шарниров Cи Е. Возможно и аналитическое определение этих размеров:

вспомогательные углы

$$\mu = \operatorname{arctg}\left(\frac{b}{a}\right); \qquad \zeta = \operatorname{arcsin}\left(\frac{OA}{OB}\right); \qquad (32.6)$$

предельные значения размера СЕ

$$CE_{\max}_{\min} = \sqrt{BC^2 + BE^2 - 2 \cdot BC \cdot BE \cos(\mu \pm \zeta)}.$$
 (32.7)

Тогда искомые размеры СД и DE можно найти решением системы

$$\begin{cases} CD^{2} + DE^{2} - 2 \cdot CD \cdot DE \cdot \cos \gamma_{\max} = CE_{\max}^{2}; \\ CD^{2} + DE^{2} - 2 \cdot CD \cdot DE \cdot \cos \gamma_{\min} = CE_{\min}^{2}. \end{cases}$$

$$O \delta O \delta Ha 4 M M$$

$$\lambda = CE_{\max} / CE_{\min}. \qquad (32.9)$$

Если считать, что предельные значения угла передачи γ_{max} и γ_{min} отличаются от среднего значения γ_m на одну и ту же величину Δ т.е. $\gamma_{max} = \gamma_m \pm \Delta$, и при этом CD = DE, то решение системы (32.8)

может быть найдено в виде

$$\Delta = 2 \arctan\left(\frac{\lambda - 1}{\lambda + 1} \operatorname{tg} \frac{\gamma_m}{2}\right); \qquad (32.10)$$

$$CD = DE = 0.5 \sqrt{\frac{CE_{\text{max}}^2 - CE_{\text{max}}^2}{\sin \gamma_m \sin \Delta}}.$$
(32.11)

Округление рассчитанных значений *CD* и *DE* могут потребовать проверки фактической величины γ_m :

$$\gamma_{\max} = \arccos \frac{CD^2 + DE^2 - CE_{\max}^2}{2 \cdot CD \cdot DE}; \qquad (32.12)$$

$$\gamma_{\min} = \arccos \frac{CD^2 + DE^2 - CE_{\min}^2}{2 \cdot CD \cdot DE}; \qquad (32.13)$$

$$\gamma_m = \frac{\gamma_{\min} + \gamma_{\max}}{2}.$$
(32.14)

Отличие найденной величины γ_m от заданной не должно превышать одного градуса.

Угловые координаты кривошипа *ОА* в момент начала $\phi_{\text{нрх}}$ и окончания $\phi_{\text{крх}}$ рабочего хода коромысла 5 можно найти по формулам

$$\phi_{\rm Hpx} = 270^{\circ} + \mu - \zeta; \qquad (32.15)$$

$$\varphi_{\rm KDX} = 90^{\circ} + \mu + \zeta. \tag{32.16}$$

Величину рабочего хода ψ коромысла 5 можно найти по разности его угловых координат в среде САМАС.

Заданы:

длина кривошипа *OA*; координата центра шарнира *D* - размер *AD*;

параметр *e*, определяющий положение направляющей ползуна 3;

соотношение размеров звеньев *АВ* и *ОА*

 $AB = \alpha \cdot OA; \qquad (33.1)$

(параметр α задан в виде диапазона);

требуемый угол качания кулисы - ψ;

угол φ^p₅, определяющий положение кулисы (значение угла φ₅) в начале ее рабочего хода.

Необходимо подобрать размер шатуна *АВ* и координаты *а* и *b* центра *E* качания кулисы.

Решение

Размер *АВ* находим из соотношения (33.1).

Для подбора подходящих значений размеров *а* и *b* можно использовать:

- компьютерную среду САМАС; в этом случае координатам *a* и *b* задают ряд пар значений, для каждой из них определяют величину угла

качания Ψ , угла φ_5^p и таким образом подбирают подходящую пару значений (*a*, *b*);

- графический метод; в этом случае строят траекторию точки *D* и касательную к ней *ET*, расположенную под углом $\varphi_5 = \varphi_5^p + 2^\circ$ к оси абсцисс; из бумаги вырезают два угловых шаблона с внутренними

углами ($\psi + 2^{\circ}$) и ($\psi - 2^{\circ}$) (рис. 33.2) и вершину угла каждого шаблона помещают в такую точку *E* прямой *ET*, чтобы траектория точки *D* находилась между сторонами этого угла, касаясь их; тем самым получают на прямой *ET* два предельно допустимых положения центра шарнира *E*; описанные построения повторяют при угле $\varphi_5 = \varphi_5^p - 2^{\circ}$ для прямой *ET* и получают еще два предельно допустимых положения точки *D*, которые в совокупности с ранее построенными аналогичными точками ограничат четырехугольную область, внутри которой можно выбрать любую точку, координаты которой *a* и *b* следует принять за окончательные.

Отметим, что существует множество приемлемых решений.

Углы $\phi_{\mu px}$ и $\phi_{\kappa px}$, определяющие положения кривошипа *OA* в моменты начала и окончания рабочего хода кулисы, а также фактическое значение ψ этого хода наиболее просто и в то же время достаточно точно можно определить в среде САМАС.

Рисунок 34.1

Заданы:

длина кривошипа *ОА*;

параметр е, определяющий положение направляющей ползуна 3;

размер *BC*, определяющий расстояние между центрами шарниров на ползуне 3;

$$AB = \beta \cdot OA \tag{34.1}$$

соотношение, задающее абсциссу *а* центра *D* качания кулисного камня 5

$$a = \gamma \cdot AB \tag{34.2}$$

(параметры β и γ заданы в виде диапазонов);

требуемый угол качания кулисы - ψ .

Необходимо подобрать размеры шатуна *AB* и координаты *a* и *b* центра качания звена 5 (точки *D*).

Решение

Из соотношения (34.1) находим размер AB, из (34.2) – значение параметра a. Для подбора подходящего значения ординаты b можно использовать расчетную схему (рис. 34.2), на которой показаны два

положения механизма, соответствующих крайним положениям звена 5.

Поскольку A'B' = A''B'' = AB, OA' = OA'' = OA и B'C' = B''C'' = BC, то из этой схемы можно найти параметры f_{max} и f_{min} для указанных положений механизма:

$$f_{\text{max}} = \sqrt{(AB + OA)^2 - e^2} + BC - a;$$
 (34.3)

$$f_{\min} = \sqrt{(AB - OA)^2 - e^2} + BC - a;$$
 (34.4)

Рисунок 34.2

тогда для определения неизвестного параметра *b* можно записать уравнение

$$tg \psi = \frac{\frac{f_{\text{max}}}{b-e} - \frac{f_{\text{min}}}{b-e}}{1 + \frac{f_{\text{max}}}{b-e} \cdot \frac{f_{\text{min}}}{b-e}};$$
(34.5)

отсюда

$$b = e + \frac{(f_{\max} - f_{\min}) + \sqrt{(f_{\max} - f_{\min})^2 - 4f_{\max}f_{\min} tg^2 \psi}}{2tg\psi}.$$
 (34.6)

Можно также для подбора подходящей величины b использовать компьютерную среду САМАС; в этом случае параметру b задают ряд значений, для каждого из которых определяют величину угла качания ψ и таким образом находят подходящий размер b.

Угловые координаты кривошипа в моменты начала $\phi_{_{Hpx}}$ и окончания $\phi_{_{kpx}}$ рабочего хода звена 5 можно найти аналитически с помощью формул

$$\phi_{\text{Hpx}} = 180^{\circ} - \arcsin\left(\frac{e}{AB + OA}\right); \quad \phi_{\text{Hpx}} = -\arcsin\left(\frac{e}{AB - OA}\right). \quad (34.7)$$

Фактический угол ψ качания звена 5, который может отличаться от заданного из-за округления величины *b*, можно найти по формуле, вытекающей из уравнения (34.5)

$$\Psi = \operatorname{arctg} \frac{(b-e)(f_{\max} - f_{\min})}{(b-e)^2 + f_{\max} f_{\min}};$$
(34.8)

Отличие найденной величины ψ от заданной не должно превышать 2°.

Заданы (рис. 35.1):

длина кривошипа *ОА*;

параметр *e*, определяющий положение направляющей ползуна 3;

параметры, определяющие положение центра шарнира C на шатуне AB - угол $\angle ABC$ и размер BC;

соотношение размеров звеньев *a*, *AB* и *OA*

$$AB = \alpha \cdot OA; \qquad (35.1)$$

$$a = \alpha \cdot AB \tag{35.2}$$

(параметры α и β заданы в виде диапазонов);

требуемый угол качания кулисы 5 - ψ .

Необходимо подобрать размер шатуна AB и величину ординаты b центра шарнира D так, чтобы обеспечить получение требуемого угла ψ с заданной точностью.

Решение

Размеры *АВ* и *а* находим из соотношений (35.1) и (35.2).

Для подбора подходящего значения размера *b* можно использовать:

- компьютерную среду САМАС; в этом случае ординате b задают ряд значений, для каждого из которых определяют величину угла качания ψ и таким образом подбирают подходящее значение b;

- графический метод: для этого из бумаги вырезают два угловых шаблона с внутренними углами (ψ+2°) и (ψ-

 2°) и каждый из этих шаблонов поочередно пытаются поместить вершиной угла в такую точку D с абсциссой a (рис. 35.2), чтобы предварительно построенная траектория точки C поместилась внутри

указанного угла и касалась его сторон. Таким образом, будут найдены два предельных положения точки D и соответственно два предельных значения искомого расстояния – b_{max} и b_{min} ; в качестве окончательного значения ординаты b можно принять любое, удовлетворяющее неравенству и $b_{\text{max}} \ge b \ge b_{\text{min}}$.

Угловые координаты кривошипа *OA* в моменты начала – $\phi_{\mu px}$ и окончания – $\phi_{\kappa px}$ рабочего хода кулисы, а также фактическое значение ψ этого хода достаточно просто и точно можно определить в среде CAMAC.

Заданы:

координаты центра шарнира C - размеры a и b;

соотношение размеров *OC* и *OA*

$$OA = OC/\alpha; \qquad (36.1)$$

соотношение размеров *BD* и *BC*

$$CD = \beta \cdot BC \tag{36.2}$$

(параметры α и β заданы в виде диапазонов);

параметры, определяющие по-

ложение центра шарнира E на звене 3 – расстояние DE и угол $\angle BDE$.

Условие подбора длин звеньев AB и BC – угол $\angle ABC$ должен иметь наименьшие возможные отклонения от 90° при $AB \leq BC$;

угол ψ качания кулисы 5.

Требуется подобрать размеры *AB*, *BC*, *CD* и положение центра шарнира *F*; абсцисса *c* точки *F* должна обеспечить вертикальность звена 5 в начале его рабочего хода, а ордината d – величину угла качания ψ (рис. 36.2).

Решение

Вначале находим расстояние

 $OC = \sqrt{a^2 + b^2}$ (36.3) и затем из диапазона, определяемого соотношением (36.1), выбираем подходящий размер *OA*.

Рассматривая на схеме механизма (рис. 36.1) изменяемую фигуру - ΔABC , видим, что угол $\gamma = \angle ABC$ принимает предельное значение γ_{max} при $AC = AC_{\text{max}} = OC + OA$ и соответственно γ_{min} - при $AC = AC_{\text{min}} = OC - OA$.

Полагая $\gamma_{\max}_{\min} = 90^{\circ} \pm \delta$ (угол δ пока неизвестен) для подбора

длин *АВ* и *BC*, удовлетворяющих условиям синтеза, составим уравнения

$$AB^{2} + BC^{2} + 2 \cdot AB \cdot BC \cdot \sin \delta = AC_{\max}^{2};$$

$$AB^{2} + BC^{2} - 2 \cdot AB \cdot BC \cdot \sin \delta = AC_{\min}^{2}.$$
(36.4)

Нетрудно показать, что система (36.4) не имеет решений при

$$\delta < \delta_{\min} = \arcsin \frac{AC_{\max}^2 - AC_{\min}^2}{AC_{\max}^2 + AC_{\min}^2}.$$
(36.5)

Отличие угла $\gamma = \angle ABC$ от 90° составляет наименьшую возможную величину $\delta = \delta_{\min}$ при

$$AB = BC = 0.5\sqrt{AC_{\max}^2 + AC_{\min}^2},$$
 (36.6)

что можно считать искомым решением задачи подбора длин звеньев *АВ* и *BC*.

Для нахождения пары приемлемых значений координат *c* и *d* центра шарнира *F* необходимо построить крайние положения звена *BC* (рис. 36.2) и соответствующие положения $E' \, u \, E''$ точки *E* (при построении нужно принять во внимание соотношения – OB' = AB + OA; OB'' = AB - OA). Тогда для подбора приемлемого положения точки *F* можно применить такой прием: через точку *E'* проводим вертикальную прямую, а через точку *E''* проводим такую прямую, чтобы она пересекла первую под углом ψ . Точка пересечения построенных прямых и будет искомой точкой *F* – ее координаты *c* и *d* измеряются на чертеже и после возможного округления используются в дальнейшем в качестве окончательных значений.

Для подбора координат c и d точки F можно также использовать компьютерную среду CAMAC; находят средствами этой среды наибольшее значение абсциссы точки E и принимают $c = x_{E_{\text{max}}}$. Далее параметру d задают ряд значений и для каждого из них устанавливают соответствующий угол качания кулисы ψ , пока не подберут подходящей величины d.

Угол $\phi_{\mu px}$, определяющий положение кривошипа *OA* в момент начала рабочего хода кулисы 5, можно найти аналитически (рис. 36.2):

$$\angle COB' = \arccos \frac{(AB + OA)^2 + OC^2 - BC^2}{2(AB + OA)OC}; \qquad (36.7)$$

$$\mu = \operatorname{arctg} \frac{b}{a}; \tag{36.8}$$

$$\varphi_{\rm Hpx} = \angle COB' - \mu. \tag{36.9}$$

Угол $\phi_{\kappa px}$ для положения кривошипа *OA* в момент окончания рабочего хода можно найти по аналогичным формулам:

$$\angle COB'' = \arccos \frac{(AB - OA)^2 + OC^2 - BC^2}{2(AB - OA)OC}; \qquad (36.10)$$

$$\varphi_{\rm Hpx} = 180^{\circ} + \angle COB'' - \mu. \tag{36.11}$$

Фактический угол качания ψ кулисы 5 можно найти аналитически, но в силу сложности и громоздкости расчетных формул проще воспользоваться средствами САМАС.

Рисунок 37.1

Заданы:

длина кривошипа ОА;

параметр *e*, определяющий положение направляющей ползуна 3;

размер *BC*, определяющий расстояние между центрами шарниров на ползуне 3;

соотношение размеров звеньев *АВ* и *ОА*

$$AB = \alpha \cdot OA; \qquad (37.1)$$

соотношение, задающее абсциссу *а* центра *D* качания кулисного камня 5

$$a = \beta \cdot OA \tag{37.2}$$

(параметры α и β заданы в виде диапазонов);

условие подбора ординаты b центра качания D – получение максимально возможного угла качания Ψ .

Необходимо подобрать размеры шатуна *AB* и координат *a* и *b* центра качания кулисы (точки *D*).

Рисунок 37.2

Из соотношения (37.1) находим размер *АВ*, из (37.2) – значение параметра *а*.

Для подбора подходящего значения абсциссы *b* можно использовать расчетную схему (рис. 37.2), на которой показаны два крайних положения механизма, .cooтветствующих крайним положениям звена 5. Поскольку OA' = OA'' = OA, A'B' = A''B'' = AB и B'C' = B''C'' = BC, то из этой схемы можно найти для указанных положений параметры f_{max} и f_{min} :

$$f_{\max} = \sqrt{(AB + OA)^2 - e^2} + BC - a, \qquad (37.3)$$

$$f_{\min} = \sqrt{(AB - OA)^2 - e^2 + BC - a}; \qquad (37.4)$$

тогда для вычисления угла ψ можно записать формулу

$$tg \psi = \frac{\frac{f_{\text{max}}}{b+e} - \frac{f_{\text{min}}}{b+e}}{1 + \frac{f_{\text{max}}}{b+e} \cdot \frac{f_{\text{min}}}{b+e}},$$
(37.5)

ИЛИ

$$\Psi = \arctan\frac{(b+e)(f_{\max} - f_{\min})}{(b+e)^2 + f_{\max}f_{\min}};$$
(37.6)

функция $\psi = \psi(b)$, определяемая равенством (37.6), имеет максимум при $\frac{d\psi}{d\psi} = 0$ или как показывает анализ этой произволной при

при
$$\frac{db}{db} = 0$$
, или, как показывает анализ этой производной, при $b = \sqrt{f_{\text{max}} f_{\text{min}}} - e$. (37.7)

Найденное значение размера *b* является искомым решением задачи синтеза; допускается округление размера.

Углы $\phi_{\text{нрх}}$ и $\phi_{\text{крх}}$, определяющие положения кривошипа *ОА* в моменты начала и окончания рабочего хода звена 5 можно найти аналитически:

$$\varphi_{\rm Hpx} = \operatorname{arctg}\left(\frac{e}{AB + OA}\right),\tag{37.8}$$

при отрицательном -

$$\varphi_{\rm Hpx} = 180^{\circ} + \arctan\left(\frac{e}{AB - OA}\right). \tag{37.9}$$

Для нахождения фактического значения угла ψ можно использовать (37.6), подставляя в нее округленное значение ординаты *b*.

 $OC = \alpha \cdot OA;$

Заданы:

длина кривошипа *ОА*;

параметры, определяющие положение центра шарнира D на шатуне – угол λ и размер BD;

соотношение размеров ОС и ОА

(38.1)

соотношение размеров СЕ и ОС

 $CE = \beta \cdot OC \tag{38.2}$

(параметры α и β заданы в виде диапазонов).

Необходимо подобрать размеры звеньев *OC*, *AB=BC*, *CE* и при этом обеспечить, чтобы средняя за время цикла величина угла передачи $\angle ABC$ была равна $\gamma_m \pm 1^\circ$.

Решение

Размеры ОС и СЕ находим из соотношений (38.1) и (38.2).

Для нахождения приемлемых размеров *AB* и *BC* рассмотрим на схеме механизма изменяемую фигуру – ΔABC ; очевидно, что угол $\gamma = \angle ABC$ принимает предельные значения

$$\gamma_{\max}_{\min} = \gamma_m \pm \Delta \tag{38.3}$$

(угол Δ пока неизвестен) при

$$AC_{\max}_{\min} = OC \pm OA; \qquad (38.4)$$

тогда на основании теоремы косинусов можно для этого треугольника записать соотношения

$$AB^{2} + BC^{2} + 2 \cdot AB \cdot BC \cdot \cos(\gamma_{m} + \Delta) = AC_{\max}^{2};$$

$$AB^{2} + BC^{2} - 2 \cdot AB \cdot BC \cdot \cos(\gamma_{m} - \Delta) = AC_{\min}^{2}.$$
(38.5)

Обозначим

$$\lambda = AC_{\max} / AC_{\min}; \qquad (38.6)$$

при AB = BC решение (38.5) можно найти в виде

$$\Delta = 2 \operatorname{arctg}\left(\frac{\lambda - 1}{\lambda + 1} \operatorname{tg}\frac{\gamma_m}{2}\right); \tag{38.7}$$

$$AB = BC = 0.5 \sqrt{\frac{AC_{\text{max}}^2 - AC_{\text{max}}^2}{\sin \gamma_m \sin \Delta}}.$$
 (38.8)

Округление рассчитанных значений *АВ* и *BC* могут потребовать проверки фактической величины γ_m :

$$\gamma_{\max} = \arccos \frac{AB^2 + BC^2 - AC_{\max}^2}{2 \cdot AB \cdot BC}; \qquad (38.9)$$

$$\gamma_{\min} = \arccos \frac{AB^2 + BC^2 - AC_{\min}^2}{2 \cdot AB \cdot BC}; \qquad (38.10)$$

$$\gamma_m = \frac{\gamma_{\min} + \gamma_{\max}}{2}.$$
(38.11)

Угловые координаты кривошипа *OA* в момент начала $\phi_{\text{нрх}}$ и окончания $\phi_{\text{крх}}$ рабочего хода кулисы 5, а также величину ее хода ψ можно найти только приближенно – либо графически, либо средствами компьютерной среды САМАС.

Заданы:

координаты *a* и *b* центра шарнира *B*; параметры, определяющие положение добавочной точки *C* на кулисе 3 – размер *BC* и угол $\angle ABC = \lambda$;

соотношения для размеров *OB*, *OA*, *e* и *BC*

$$OA = \alpha \cdot OB;$$
 (39.1)

$$e = \beta \cdot BC \tag{39.2}$$

(параметры α и β заданы в виде диапазонов);

длину шатуна *CD* назначить так, чтобы угол его давления на ползун 5 не превышал заданной максимально

допустимой величины α_{max} .

Необходимо подобрать размеры ОА, е и СД.

Рисунок 39.2

Решение

Найдем размер ОВ

$$OB = \sqrt{a^2 + b^2}, \qquad (39.3)$$

а затем – *OA* из соотношения (39.1) и *е* – из (39.2); тогда для выбора длины *CD* можно воспользоваться неравенством

$$CD \ge \frac{e - a + BC}{\sin \alpha_{\max}}.$$
 (39.4)

На рис. 39.2 показано положение механизма в момент начала рабочего хода звена 5. Угол $\phi_{\rm нpx}$, соответствующий этому положению, найдем с помощью формул

$$\mu = \arcsin\left(\frac{e-a}{CD-BC}\right); \tag{39.5}$$

$$\varphi_{\text{Hpx}} = 270^{\circ} + \lambda - \mu - \arcsin\left(\frac{b\sin(\lambda - \mu) - a\cos(\lambda - \mu)}{OA}\right). \quad (39.6)$$

Для положения, определяющего окончание рабочего хода механизма, угол $\phi_{\mbox{\tiny нpx}}$ можно найти по аналогичным формулам:

$$\mu = \arcsin\left(\frac{e-a}{CD+BC}\right); \tag{39.7}$$

$$\varphi_{\rm kpx} = 90^{\circ} + \lambda - \mu + \arcsin\left(\frac{b\sin(\lambda - \mu) - a\cos(\lambda - \mu)}{OA}\right).$$
(39.8)

Величина рабочего хода звена 5

$$H_5 = \sqrt{(CD + BC)^2 - (e - a)^2} - \sqrt{(CD - BC)^2 - (e - a)^2}.$$
 (39.9)

Рисунок 40.1

Найдем размер ОВ

Заданы:

координаты а и b центра шарнира B;

параметры, определяющие положение добавочной точки *C* на кулисе 3 – размер *BC* и угол $\angle ABC = \lambda$;

соотношение для размеров *OB* и *OA*
$$OA = \alpha \cdot OB$$
; (40.1)

(параметр α задан как диапазон);

длину шатуна *CD* назначить так, чтобы угол его давления на ползун 5 не превышал заданной максимально допустимой величины α_{max} .

Необходимо подобрать размеры ОА и СД.

Решение

$$OB = \sqrt{a^2 + b^2} \tag{40.2}$$

и затем – ОА из соотношения (40.1).

Для подбора длины *CD* воспользуемся неравенством

 $CD \ge BC/\sin\alpha_{\max};$ (40.3)

в качестве окончательного пригодно любое значение *CD*, удовлетворяющее неравенству (40.3).

На рис. 40.2 показано положение механизма в момент начала рабочего хода ползуна 5. Угол $\phi_{\text{нрх}}$, определяющий соответствующее положение кривошипа, можно найти аналитически:

Рисунок 40.2

текущее значение расстояния *h* центра *O* вращения кривошипа *OA* до линии кулисы *AB*

$$h = b\sin\lambda - a\cos\lambda; \tag{40.4}$$

текущее значение угла
$$\angle OAB = \gamma$$

$$\gamma = \arcsin(h/OA); \tag{40.5}$$

искомый угол

$$\varphi_{\rm Hpx} = 90^{\circ} + \lambda - \gamma. \tag{40.6}$$

Угол $\phi_{\text{крх}}$, определяющий положения кривошипа *OA* в момент окончания рабочего хода ползуна 5 также можно определить аналитически; текущие значения расстояния *h* и угла γ находим по тем же формулам (40.4) и (40.5), а угол $\phi_{\text{крх}}$ – по формуле

$$\varphi_{\rm kpx} = \lambda + \gamma - 90^{\circ}. \tag{40.7}$$

(40.8)

Величина рабочего хода ползуна 5 H = 2 BC.

Заданы:

координаты центра шарнира C – размеры a и b;

смещение направляющей ползуна 5 – е;

соотношение размеров ОС и ОА

$$OA = OC/\alpha; \tag{41.1}$$

соотношение размеров АД и АВ

 $AD = \beta \cdot AB; \tag{41.2}$

(параметры α и β заданы в виде диапазонов);

условие подбора длин звеньев *AB* и *BC* – среднее за цикл значение угла $\angle ABC$ должно быть равно γ_m при соблюдении равенства AB = BC:

длина шатуна *DE* должна быть подобрана так, чтобы угол его давления на ползун 5 (угол наклона шатуна к направляющей) не превышал заданной величины α_{max} .

Необходимо подобрать размеры OA, AB, BC, AD, DE.

Решение

Вначале находим размер

$$OC = \sqrt{a^2 + b^2} \tag{41.3}$$

и затем выбираем подходящее значение *OA* из диапазона, определяемого соотношением (41.1).

Рассматривая на схеме механизма изменяемую фигуру – ΔABC , видим, что угол $\angle ABC = \gamma$ принимает предельное значение γ_{max} при $AC = AC_{max} = OC + OA$ и значение γ_{min} – при $AC = AC_{min} =$ = OC - OA. Очевидно, что для подбора длин *AB* и *BC*, удовлетворяющих условиям синтеза, можно использовать уравнения:

$$\begin{cases} AB^{2} + BC^{2} - 2 \cdot AB \cdot BC \cdot \cos \gamma_{\max} = AC_{\max}^{2}; \\ AB^{2} + BC^{2} - 2 \cdot AB \cdot BC \cdot \cos \gamma_{\min} = AC_{\min}^{2}. \end{cases}$$
(41.4)
Обозначим
$$\lambda = \frac{AC_{\max}}{AC_{\min}}.$$
(41.5)

Считая, что углы γ_{max} и γ_{min} отличаются от среднего значения γ_m на одну и ту же (пока неизвестную) величину Δ , т.е. $\gamma_{max} = \gamma_m \pm \Delta$, и при этом AB = BC, то решение системы (41.4) может быть найдено в виде

$$\Delta = 2 \operatorname{arctg}\left(\frac{\lambda - 1}{\lambda + 1} \operatorname{tg}\frac{\gamma_m}{2}\right); \tag{41.6}$$

$$AB = BC = 0.5 \sqrt{\frac{AC_{\max}^2 - AC_{\max}^2}{\sin \gamma_m \sin \Delta}}.$$
 (41.7)

Округление размеров *AB* и *BC* вызывает необходимость проверки фактического значения γ_m :

$$\gamma_{\max} = \arccos \frac{AB^2 + BC^2 - AC_{\max}^2}{2 \cdot AB \cdot BC}; \qquad (41.8)$$

$$\gamma_{\min} = \arccos \frac{AB^2 + BC^2 - AC_{\min}^2}{2 \cdot AB \cdot BC}; \qquad (41.9)$$

$$\gamma_m = \frac{\gamma_{\min} + \gamma_{\max}}{2}. \tag{41.10}$$

Отличие найденной величины γ_m от заданной не должно превышать одного градуса.

По выполнении этих расчетов находим из (41.2) подходящее значение *AD*.

Для подбора размера DE необходимо определить величину наибольшего по абсолютной величине удаления $h_{D_{\text{max}}}$ центра шарнира Dот горизонтальной направляющей ползуна 5; это можно сделать либо графически, вычертив в подходящем масштабе траекторию точки D и замерив ее наибольшее удаление от направляющей, либо используя компьютерную среду САМАС. В качестве окончательного значения длины шатуна можно взять любое, удовлетворяющее неравенству

$$DE \ge \frac{h_{D_{\max}}}{\sin \alpha_{\max}}.$$
(41.11)

Угловые координаты кривошипа OA в моменты начала $\phi_{\text{нрх}}$ и окончания $\phi_{\text{крх}}$ рабочего хода ползуна 5, а также величину H_5 этого хода можно найти либо графически, либо с помощью компьютерной среды САМАС.

$$\theta = \alpha \cdot AB$$

(параметр α задан в виде диапазона);

условие подбора длины кривошипа ОА и межосевого расстояния *ОС*: угол передачи $\gamma = \angle ABC$ при работе механизма должен изменяться в заданных пределах $[\gamma_{\min}...\gamma_{\max}];$

(42.1)

длина шатуна DE должна быть подобрана так, чтобы угол его давления на ползун 5 (угол наклона шатуна к направляющей) не превышал величины α_{max}.

Необходимо подобрать размеры OA, OC, AD, DE.

Решение

Размер AD найдем из соотношения (42.1).

Рассматривая геометрию изменяемой фигуры – ΔABC , можно заметить следующее:

$$AC_{\max} = \sqrt{AB^{2} + BC^{2} - 2AB \cdot BC \cos \gamma_{\max}};$$

$$AC_{\min} = \sqrt{AB^{2} + BC^{2} - 2AB \cdot BC \cos \gamma_{\min}}.$$
(42.2)

Поскольку $AC_{max} = OC \pm OA$, то результаты расчета по форму-

лам (42.2) можно использовать для выбора размеров ОА и ОС:

$$OC = (AC_{\max} + AC_{\min})/2;$$

$$OA = (AC_{\max} - AC_{\min})/2.$$
(42.3)

Если результаты расчетов по формулам (42.3) округлялись, то фактические значения предельных величин углов передачи следует проверить по формулам

$$\gamma_{\text{max}} = \arccos \frac{AB^2 + BC^2 - (OC + OA)^2}{2AB \cdot BC};$$

$$\gamma_{\text{min}} = \arccos \frac{AB^2 + BC^2 - (OC - OA)^2}{2AB \cdot BC}.$$
(42.4)

Найденные здесь значения должны находиться в пределах заданного диапазона этих углов.

Для подбора размера DE необходимо определить величину наибольшего по абсолютной величине удаления $h_{D_{\text{max}}}$ центра шарнира Dот горизонтальной направляющей ползуна 5; это можно сделать либо графически, вычертив в подходящем масштабе траекторию точки D и замерив ее наибольшее удаление от направляющей, либо используя компьютерную среду САМАС. В качестве окончательного значения длины шатуна можно взять любое, удовлетворяющее неравенству

$$DE \ge \frac{h_{D_{\text{max}}}}{\sin \alpha_{\text{max}}}.$$
(42.4)

Угловые координаты кривошипа *OA* в моменты начала $\varphi_{\rm hpx}$ и окончания $\varphi_{\rm kpx}$ рабочего хода ползуна 5, а также величину H_5 этого хода можно найти либо графически, либо с помощью компьютерной среды САМАС.

Заданы:

координаты центра шарнира С – размеры *а* и *b*;

соотношение размеров
$$OC$$
 и OA
 $OA = OC/\alpha$; (43.1)

(параметр α задан в виде диапазона);

параметры, определяющие положение центра шарнира D на звене 2 – угол ∠*BAD* и соотношение размеров AD и OA

$$AD = \beta \cdot OA; \qquad (43.2)$$

условия подбора длин звеньев АВ и ВС: среднее за цикл значение угла передачи $\angle ABC = \gamma$ должно быть равно

 γ_m при соблюдении равенства AB = BC :

угол ψ качания кулисы 5.

Требуется подобрать размеры OA, AB, BC, AD и положение центра шарнира E (расстояние OE).

Решение

Вначале находим расстояние

 $OC = \sqrt{a^2 + b^2}$ (43.3)и затем выбираем подходящий размер ОА из диапазона, определяемого соотношением (43.1).

Рассматривая на схеме механизма (рис. 43.1) изменяемую фигуру ΔABC , видим, что $\gamma = \angle ABC$ принимает угол предельное значение γ_{max} при $AC = AC_{\text{max}} = OC + OA$ и другое предельное значение γ_{min} – при $AC = AC_{\min} = OC - OA$.

Очевидно, что для подбора

99

длин *АВ* и *BC*, удовлетворяющих условиям синтеза, можно использовать уравнения:

$$AB^{2} + BC^{2} - 2 \cdot AB \cdot BC \cdot \cos \gamma_{\max} = AC_{\max}^{2};$$

$$AB^{2} + BC^{2} - 2 \cdot AB \cdot BC \cdot \cos \gamma_{\min} = AC_{\min}^{2},$$
(43.4)

где углы $\gamma_{\max} = \gamma_m \pm \Delta$ (угол Δ пока неизвестен).

Обозначим

$$\lambda = \frac{AC_{\text{max}}}{AC_{\text{min}}},$$
(43.5)

тогда решение системы (43.4), при AB = BC, найдем в виде

$$\Delta = 2 \operatorname{arctg}\left(\frac{\lambda - 1}{\lambda + 1} \operatorname{tg}\frac{\gamma_m}{2}\right); \tag{43.6}$$

$$AB = BC = 0.5 \sqrt{\frac{AC_{\text{max}}^2 - AC_{\text{max}}^2}{\sin \gamma_m \sin \Delta}}.$$
 (43.7)

Округление рассчитанных значений *AB* и *BC* могут потребовать проверки фактической величины γ_m :

$$\gamma_{\max} = \arccos \frac{AB^2 + BC^2 - AC_{\max}^2}{2 \cdot AB \cdot BC}; \qquad (43.8)$$

$$\gamma_{\min} = \arccos \frac{AB^2 + BC^2 - AC_{\min}^2}{2 \cdot AB \cdot BC}; \qquad (43.9)$$

$$\gamma_m = \frac{\gamma_{\min} + \gamma_{\max}}{2}.$$
(43.10)

Найденная по (43.10) величина γ_m не должна отличаться от заданной более чем на 1°

Для подбора подходящего значения размера OE можно использовать компьютерную среду CAMAC; в этом случае параметру OEзадают ряд значений, для каждого из них определяют величину угла качания Ψ и таким образом подбирают подходящую величину OE;

Можно также воспользоваться графическим методом: для этого из бумаги вырезают два угловых шаблона с внутренними углами (ψ +2°) и (ψ -2°) и каждый из этих шаблонов поочередно пытаются поместить вершиной угла в такую точку *E* (рис. 43.2), чтобы траекто-

рия точки *D* (предварительно построенная) поместилась внутри указанного угла и касалась его сторон. Таким образом, будут найдены два предельных положения точки *E* и соответственно два предельных значения искомого расстояния – OE_{max} и OE_{min} ; в качестве окончательного значения размера *OE* можно принять любое, удовлетворяющее неравенству $OE_{max} \ge OE \ge OE_{min}$.

Угловые координаты кривошипа *OA* в моменты начала – $\phi_{\text{нрх}}$ и окончания – $\phi_{\text{крх}}$ рабочего хода кулисы, а также фактическое значение ψ этого хода наиболее просто и в то же время достаточно точно можно определить в компьютерной среде САМАС.

Заданы (рис. 44.1 и 44.2):

Н – величина хода штока 5;

K_v – коэффициент изменения средней скорости хода штока:

$$K_{v} = \varphi_{\rm p} / \varphi_{\rm x}, \qquad (44.1)$$

где $\phi_p \, u \, \phi_x - y$ глы поворота кривошипа 1 за время рабочего и холостого ходов штока 5 соответственно;

соотношение размеров звеньев
$$OB + OA = \beta \cdot b$$
 (44.2)

(коэффициент β задан в виде диапазона).

Требуется подобрать размеры ОА, ОВ и b.

Решение

На рис. 44.2 показана расчетная схема для определения требуемых размеров.

Кривошип *OA* за время рабочего хода ползуна 5 поворачивается на угол ϕ_p , а за время холостого хода - на угол ϕ_x ; тогда из соотношений

$$K_{v} = \frac{\Phi_{p}}{\Phi_{x}}, \qquad \Phi_{p} + \Phi_{x} = 360^{\circ} \qquad 44.3$$

найдем эти углы:

$$\phi_{\rm x} = \frac{360^{\circ}}{1 + K_v}; \quad \phi_{\rm p} = K_v \; \phi_{\rm x}.$$
(44.4)

Т.к. C'C'' = H, то из $\Delta BC'C''$ найдем ординату направляющей штока 5

$$b = 0.5 H \operatorname{tg}\left(\frac{\Phi_{\mathrm{x}}}{2}\right). \tag{44.5}$$

Поскольку из $\Delta OA'B$ следует соотношение

$$\frac{OA}{OB} = \cos\left(\frac{\Phi_x}{2}\right),\tag{44.6}$$

то из (44.2) и (44.6) найдем межосевое расстояние *OB* и длину кривошипа *OA*

$$\begin{cases}
OB = \frac{\beta \cdot b}{1 + \cos\left(\frac{\varphi_x}{2}\right)}; \\
OA = OB \cdot \cos\left(\frac{\varphi_x}{2}\right).
\end{cases}$$
(44.7)

Размер *ОВ* допускает округление в пределах, определяемых диапазоном β.

Принятые значения размеров желательно проверить на соответствие заданным условиям синтеза: коэффициент изменения средней скорости хода K_v и фактическая величина H хода штока 5, определяемые из формул

$$\varphi_{\rm x} = 2 \arccos\left(\frac{OA}{OB}\right); \quad K_{\nu} = \frac{360^{\circ} - \varphi_{\rm x}}{\varphi_{\rm x}}; \quad H = \frac{2 b}{\operatorname{tg}\left(\frac{\varphi_{\rm x}}{2}\right)}.$$
(44.8)

не должны отличаться от заданных более, чем на 2%.

Угловые координаты кривошипа *ОА* в момент начала – $\phi_{_{HPX}}$ и окончания – $\phi_{_{KDX}}$ рабочего хода ползуна

$$\phi_{\text{Hpx}} = 270^{\circ} + \frac{\phi_x}{2}; \qquad \phi_{\text{Kpx}} = 270^{\circ} - \frac{\phi_x}{2}.$$
(44.9)

В формулы (44.9) следует подставлять ϕ_x из (44.8).

Список литературы

1. Тория механизмов и машин: учебн. пособие для вузов /К.В. Фролов, С.А. Попов, А.К. Мусатов и др.; Под редакцией К.В. Фролова. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2004. – 664 с.

2. Тимофеев Г.А. Теория механизмов и машин: курс лекций / Г.А. Тимофеев. – М.: Высшее образование, 2009. – 352с.

3. Белоконев И.М. теория механизмов и машин. Конспект лекций: учебн. пособие для вузов / И.М. Белоконев, С.А. Балан, К.И. Белоконев. – 2-е изд. исп. и доп. – М.: Дрофа, 2004. – 172 с.

4. Теория механизмов и машин: учебн. Пособие / Б.И. Гурьев, Л.С. Кутушева, Л.Л. Русак, А.Я. Садыкова, Р.Ш. Хабибуллина. – Уфа: УГАТУ, 2008. – 114с.

5. Анализ и синтез зубчатых, рычажных и кулачковых механизмов: Методические указания к курсовому проектированию по дисциплине «Теория механизмов и машин» (пример выполнения курсовой работы) / Уфимск. гос. авиац. технич. ун-т; Сост.: Б.И. Гурьев, Л.С. Кутушева, Л.Л. Русак. – Уфа, 2009. – 68с.

6. Теория механизмов и машин: Методические указания и контрольные задания для студентов очно-заочной и заочной формы обучения технических специальностей / Уфимск. гос. авиац. техн. ун-т; Сост.: Б.И.Гурьев, О.Ф.Васильева, Л.Л.Русак, А.Я.Садыкова, Р.Ш.Хабибуллина. – Уфа, 2004. - 92 с. Составители: ГУРЬЕВ Борис Иванович, КУТУШЕВА Людмила Сергеевна, РУСАК Людмила Леонидовна

ПОДБОР ГЕОМЕТРИЧЕСКИХ ПАРАМЕТРОВ ЗВЕНЬЕВ ПРИ ПРОЕКТИРОВАНИИ РЫЧАЖНЫХ МЕХАНИЗМОВ

Методические указания по выполнению курсовой работы по дисциплине «Теория механизмов и машин»

Подписано к печати . Формат 60×84 1/16. Бумага офсетная. Печать плоская. Гарнитура Times New Roman Усл. печ. л. Уч.-изд. л. Тираж экз. Заказ № ГОУ ВПО Уфимский государственнй авиационный технический университет Центр оперативной полиграфии УГАТУ 450000, Уфа-центр, ул. К. Маркса, 12