ЧАСТЬ І

Стационарный, случайный процесс имеет одномерную функцию плотности вероятности мгновенных значений, график и параметры которой указаны в табл. 1.

- 1. Определить среднее значение процесса, а также мощность переменной и постоянной составляющих процесса.
- 2. Построить график периодической реализации квазидетерминированного случайного процесса с данной функцией плотности вероятности.

№ вар.			Парамет	Таблица 1 График ФПВ			
	a	b	С	ď,	е	f	ω (x)
1 2 3 4 5 6	-1,0 -2,0 -4,0 -3,0 -5,0 -6,0	2,0 3,0 5,0 4.0 6,0 1,0	-0,5 -1,0 -2.0 -1,5 -2,5 -3,0	0,5 1,0 2.0 1,5 2,5 0.5	0,2 0,3 0,01 0,4 0,8 0,3	0,2 0.2 0.09 0,25 0,09 0,14	$e\delta(x-c) \qquad f\delta(x-d)$
7 8 9 10 11 12	-5,0 -4,0 -3,0 -6,0 -7.0 -8,0	6,0 7.0 5,0 8.0 9,0 10.0	9,0 10.0 8,0 12,0 11,0 15,0	-1,0 -1,5 -2,0 -2.5 -4,0 -3,0	0,15 0.3 0,3 0.4 0,5 0,6		$a = b = c \times x$
13 14 15 16 17 18	-5.0 -10,0 -8,0 -5,0 -20,0 -6,0	-3,0 -6,0 -6,0 -1,0 -15,0 -1.0	1,0 14,0 2,0 7,0 25,0 7,0	0.5 10,0 -1,0 15,0 10,0 3,0	0,2 0,3 0,4 0,8 0,5 0,1		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
19 20 21 22 23 24	-9,0 -8,0 -10,0 -11,0 -15,0 -12,0	5,0 3,0 4,0 7,0 8,0 6.0	-6,0 -5,0 -7,0 -9.0 -10.0 -8,0	1,0 2,0 1,5 4.0 3.0 2.5	0,1 0.3 0,2 0,5 0,6 0,4		e6(x-d)
25 26 27 28 29 30	-7.0 -25,0 -2,0 -14,0 -1,0 -7,0	6,0 20,0 8,0 10,0 5,0 5,0	1,0 15,0 6,0 6,0 3,0 1,0	-5.0 -8,0 2,0 -10,0 -0,5 -5,0	0,1 0,5 0,1 0,3 0,2 0,8		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

- 1. Изобразить структурную схему системы электросвязи и пояснить назначение её отдельных элементов.
- 2. По заданной функции корреляции исходного сообщения:
 - а) рассчитать интервал корреляции, спектр плотности мощности и начальную энергетическую ширину спектра сообщения;
- б) построить в масштабе графики функции корреляции и спектра плотности мощности; отметить на них найденные в п.а) параметры.

			Таблица №2				
	ИС: AI	$\Pi: L=8$	— Функция корреляции				
№	P_A , B^2	α , c^{-1}	2006 www P (-)				
п.п.			сообщения $B_A(au)$				
I	1,0	13					
2	1,5	14	01-1				
3	2,0	15	$B(t) = P_A e^{-\beta \tau }$				
4	2,5	16					
5	3,0	17	$\beta = \alpha \cdot 10^3$				
6	3,5	18					
7	1,2	29					
8	1,7	30	1 85				
9	2,2	31	$B(\tau) = P_A(1 + \beta \tau)e^{-\beta \tau }$				
10	2,7	32	$\beta = \alpha \cdot 10^3$				
п	3,2	33	$\rho = \alpha \cdot 10$				
12	3,7	34					
13	1,4	17					
14	1.9	18	$-\beta^2 \cdot \tau^2$				
15	2,4	19	$B(\tau) = P_A e^{\frac{-\beta^2 \cdot \tau^2}{2}}$				
16	2,9	20					
17	3.4	21					
18	3,9	22	$\beta = \alpha \cdot 10^3$				
19	4,0	5					
20	4,2	6	$B(\tau) = P_A \cdot e^{-\beta \tau } \cos \omega_a \cdot \tau$				
21	4,4	7					
22	4,6	8	$\beta = \alpha \cdot 10^3$				
23	4,8	9	- 0 /				
24	5.0	10	$\beta = \alpha \cdot 10^3$ $\omega_a = \frac{\pi \cdot \beta}{3}$				
25	3.8	13					
26	3.3	14.	$B(\tau) = P_A \cdot (1 + \beta \tau) \cdot e^{-\beta \tau } \cdot \cos \omega_a \cdot \tau$ $\beta = \alpha \cdot 10^3$ $\omega_a = \frac{\pi \cdot \beta}{6}$				
27	2,8	15	$\beta = \alpha \cdot 10^3$				
28	2,3	16	ρ-α 10				
29	1,8	17	$\omega_a = \frac{\pi \cdot \beta}{6}$				
30	1.3	18	. / 0				

Часть III

Задан восьмеричный (M=8) источник с независимыми, но неравновероятными символами (ансамбль задан в нижеприведенной таблице).

Вариант	Α	В	С	D	Е	F	•	•
1	0,2	0,17	0,16	0,15	0,12		G	. H
2	0,07	0,03	0,2	0,17		0,1	0,07	0,03
3	0,12	0,1	0,07	0,03	0,16 0,2	0,15	0,12	0,1
4	0,16	0,15	0.12	0,03	0,07	0,17	0,16	0,15
5	0,03	0,07	0,12	0,12	0,07	0,03	0,2	0,17
6	0,1	0,12	0,15	0,12	0,13	0,16	0,17	0,2
7	0,15	0,16	0,17	0,10	0,17		0,03	0,07
8	0,17	0,2	0,03	0,07	0,03	0,07	0,1	0,12
9	0,2	0,1	0,17	0,16	0,07	0,12	0,15	0,16
		-, .	0,17	0,10	0,07	0,15	0,03	0,12
10	0,22	0,2	0,18	0,15	0,1	0.00	0.05	0.00
11	0,05	0,02	0,22	0,2	0,18	0,08 0,15	0,05	0,02
12	0,1	0,08	0,05	0,02	0,10	0,13	0,1	0,08
13	0,18	0,15	0,1	0,08	0,05	0,02	0,18 0,22	0,15
14	0,02	0,05	0,08	0,1	0,15	0,02	0,22	0,2 0,22
15	0,08	0,1	0,15	0,18	0,2	0,10	0,02	0,22
16	0,15	0,18	0,2	0,22	0,02	0,05	0,02	0,05
17	0,2	0,22	0,02	0,05	0,08	0,03	0,08	0,1 0,18
			,		0,00	0, 1	0,13	0,10
18	0,3	0,2	0,16	0,14	0,1	0,07	0,02	0.01
19	0,02	0,01	0,3	0,2	0,16	0,14	0,02	0,01 0,07
20	0,1	0,07	0,02	0,01	0,3	0,2	0,16	0,07
21	0,16	0,14	0,1	0,07	0,02	0,01	0,10	0,14
22	0,01	0,02	0,07	0,1	0,14	0,16	0,2	0,2
23	0,07	0,1	0,14	0,16	0,2	0,3	0,01	0.02
24	0,14	0,16	0,2	0,3	0,01	0,02	0,07	0,02
25	0,2	0,3	0,01	0,02	0,07	0,1	0,14	0,16

- 1. Определить энтропию источника;
- 2. Рассчитать коэффициент избыточности источника;
- 3. Перекодировать символы источника по алгоритму Хаффмана двоичным кодом (m=2);
- 4. Определить среднюю длину кодовой комбинации кода Хаффмана;
- 5. Найти коэффициент избыточности кодовой последовательности на выходе статистического кодера и проверить построенный код на оптимальность.