МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ»

ИНСТИТУТ ПРОМЫШЛЕННЫХ ТЕХНОЛОГИЙ И ИНЖИНИРИНГА Кафедра «Электроэнергетика»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к курсовой работе по дисциплине **ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ**

на тему:

ИССЛЕДОВАНИЕ ЧАСТОТНЫХ ХАРАКТЕРИСТИК ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ

для студентов очной формы обучения направления 140400.62 «Электроэнергетика и электротехника» профиль 1 «Электроснабжение», профиль 2 «Электропривод и автоматика»

редакция 0.9 RC

СИДОРОВ Сергей Владимирович

ВВЕДЕНИЕ

Курсовая работа предназначена для закрепления студентами базового материала курса теории электрических цепей.

Цель работы:

- 1. Сформировать основные сведения об электрических фильтрах, их назначении, классификации и применении в электроэнергетике.
- 2. Выяснить физические явления, положенные в основу действия электрических фильтров.
- 3. Изучить расчёт параметров схем фильтров типов k и m по заданным частотам среза ω_c и величине нагрузки $R_{_{\!\it H}}$.
- 4. Научиться строить и анализировать характеристики фильтров.
- 5. Исследовать влияние параметров нагрузки на фильтрующие свойства фильтров.

1. КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Электрические фильтры — это электромагнитные устройства, включаемые между источником энергии и нагрузкой, предназначенные для ограничения гармонического состава тока и напряжения.

Диапазон частот, пропускаемых фильтром без затухания, называется полосой прозрачности (полосой пропускания), а диапазон частот, пропускаемых с затуханием, – полосой затухания. Частота, разграничивающая полосы прозрачности и затухания, называется частотой среза ω_c .

По расположению полосы прозрачности различают электрические фильтры:

- нижних частот, полоса прозрачности которых лежит в диапазоне частот от 0 до ω_c ;
- верхних частот, полоса прозрачности которых лежит в диапазоне частот от ω_c до ∞ ;
- полосовые, полоса прозрачности которых лежит в диапазоне частот от ω_{c1} до ω_{c2} ;
- заграждающие, содержащие две полосы прозрачности: от 0 до ω_{c1} и от ω_{c2} до ∞ .

Изменение напряжения и тока при прохождении через электрический фильтр описывается двумя коэффициентами:

1. Коэффициентом затухания a, показывающем насколько изменяется действующее (или амплитудное) значение:

$$a_u = \ln\left(\frac{U_1}{U_2}\right), \quad a_i = \ln\left(\frac{I_1}{I_2}\right),$$
 (1.1)

где U_1, I_1 – действующие значения напряжения и тока на входе фильтра;

 ${\cal U}_2, {\cal I}_2$ — действующие значения напряжения и тока выходе фильтра.

Коэффициент затухания измеряется в неперах [Нп] или децибелах [дБ], причём $1\,\mathrm{H\pi} = 20/\ln{(10)} \approx 8,686\,\mathrm{дБ}$, т.е. в децибелах:

$$a_u = 20\lg\left(\frac{U_1}{U_2}\right), \quad a_i = 20\lg\left(\frac{I_1}{I_2}\right) \tag{1.2}$$

2. Коэффициентом фазы b, показывающем насколько изменяется фаза:

$$b_{ij} = \psi_{ij1} - \psi_{ij2}, \quad b_{ij} = \psi_{ij1} - \psi_{ij2}, \tag{1.3}$$

где ψ_{u1}, ψ_{i1} – начальные фазы напряжения и тока на входе фильтра;

 ψ_{u2}, ψ_{i2} – начальные фазы напряжения и тока выходе фильтра.

Коэффициент фазы измеряется в радианах.

Зависимости от частоты входного напряжения коэффициентов затухания и фазы называются соответственно амплитудно-частотной $a(\omega)$ и фазочастотной $b(\omega)$ характеристиками:

Электрические фильтры собирают на базе T- или Π -схем, общий вид которых приведён на рис. 1.1.

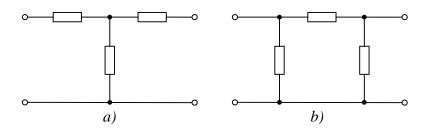


Рис. 1.1. Общий вид a) Т-схемы замещения b) П-схемы замещения фильтра

На рис. 1 элементы с нечётными индексами называются продольными, а с чётными — поперечными. Ели произведение сопротивлений продольного и поперечного элементов вещественная положительная не зависящая от частоты ω величина, то схема является фильтром типа k.

Фильтр имеет два характеристических сопротивления Z_{c1} и Z_{c2} :

- $Z_{c1}-$ входное сопротивление со стороны зажимов nm, если к зажимам pq подключена нагрузка, равная Z_{c2} ;
- Z_{c2} входное сопротивление со стороны зажимов pq, если к зажимам nm подключена нагрузка, равная Z_{c1} .

В случае если $Z_{c1} = Z_{c2} = Z_c$ схема фильтра называется симметричной (рис. 1).

Сопротивление нагрузки $Z_{_{\!\it H}}$, присоединяемой к выходным зажимах pq должно быть согласовано с характеристическим сопротивлением $Z_{_{\it C2}}$, т.е. $Z_{_{\it H}}=Z_{_{\it C2}}$, входное сопротивление фильтра при этом должно быть равно $Z_{_{\it C1}}$. Такое включение фильтра называют согласованным. В фильтрах типа k характеристические сопротивления существенно зависят от частоты в полосе прозрачности, что вызывает необходимость изменять сопротивление нагрузки от частоты, что нежелательно.

2. РАСЧЁТНОЕ ЗАДАНИЕ

В соответствии с номером варианта для электрического фильтра, параметры которого приведены в табл. 4.1 необходимо:

- 1. Рассчитать величины индуктивности L и ёмкости C заданной схемы фильтра типа k.
- 2. Вывести функцию и построить график зависимости характеристического сопротивления Z_c фильтра от угловой частоты ω .
- 3. Вывести функции коэффициента затухания a (в неперах или децибелах) и коэффициента фазы b по току и по напряжению для фильтра, работающего на согласованную нагрузку, построить его амплитудно-частотную и фазочастотную характеристики.
- 4. Вывести функции коэффициента затухания a (в неперах или децибелах) и коэффициента фазы b по току и по напряжению для фильтра, работающего на номинальную нагрузку $R_{_{\!\mathit{H}}}$, построить его амплитудно-частотную и фазочастотную характеристики.
- 5. Используя метод наложения рассчитать напряжение на выходе фильтра, работающего в согласованном режиме, если на вход подано напряжение, аппроксимированное функцией:

$$u_1(t) = 24 \cdot \left(\sin(\omega t) + \frac{1}{3}\sin(3\omega t) + \frac{1}{5}\sin(5\omega t) + \frac{1}{7}\sin(7\omega t)\right),\tag{2.1}$$

где $\omega = \omega_c / 2$ для фильтра нижних частот;

 $\omega = \omega_c / 6$ для фильтра верхних частот.

В одной системе координат для функций входного и выходного напряжений фильтра построить 1) линейчатые спектры и 2) осциллограммы.

- 6. Заключить схему k-фильтра между двумя \lceil и \rceil -полузвеньями m-фильтра, рассчитать величины и начертить схему соединений индуктивностей и ёмкостей полузвеньев при каскадном согласованном включении.
- 7. Для полученной в пункте 6 схемы фильтра выполнить пункты 2-5 данного расчётного задания.

Амплитудно-частотные и фазочастотные характеристики необходимо строить в диапазоне угловых частот от 0 до $2,5\omega_c$.

3. СТРУКТУРА КУРСОВОЙ РАБОТЫ

- 1. Титульный лист установленного образца.
- 2. Реферат (1 балл): список ключевых слов, аннотация работы, перечень принятых в тексте сокращений (obem 1 cmp.).
- 3. Содержание.
- 4. Введение (2 балла): общее направление работы, её основные цели ($oбъём 1 \ cmp$.).
- 5. Основная часть (*объём* 20-30 стр.).
 - 5.1. Общие сведения об электрических фильтрах, пояснение основных принципов их работы, классификации фильтров, частотные характеристики фильтров, общие методы оценки качества фильтров (15 баллов).
 - 5.2. Разработка схемы фильтра типа k.
 - выполненные пункты 1-5 расчётного задания, с приведением необходимых схем, обоснованием и описанием метода их расчёта (16 баллов);
 - сравнительный анализ работы фильтра типа k на согласованную и номинальную нагрузку на основании рассчитанных частотных характеристик и линейчатых спектров (8 баллов);
 - обоснование необходимости каскадного включения с фильтром типа k полузвеньев m-фильтра как способа качественного улучшения избирательных (фильтрующих) свойств (8 баллов).
 - 5.3. Разработка схемы фильтра типа m.
 - выполненные пункты 6-7 расчётного задания, с приведением необходимых схем, обоснованием и описанием метода их расчёта (25 баллов);
 - сравнительный анализ работы фильтра типа m на согласованную и номинальную нагрузку на основании рассчитанных частотных характеристик и линейчатых спектров (8 баллов).
 - 5.4. Применение фильтров различных видов в электроэнергетике (10 баллов) ($объём 2 \ cmp$.).
- 6. Заключение, обобщающее основные преимущества и недостатки электрических фильтров типов k и m (5 баллов) ($obb\@illow=m$).
- 7. Список литературы (1 балл): 4-6 наименований, на которые даны ссылки в тесте курсовой работы; допускается включать в список литературы учебники, учебные пособия и статьи профильных печатных журналов.
- 8. Приложение (1 балл): графическая часть курсовой работы, содержащая основные рисунки с подрисуночными надписями.

Максимальный объём пояснительной записки к курсовой работе 40 страниц, включая приложение.

4. ИСХОДНЫЕ ДАННЫЕ К РАБОТЕ

Исходные данные к курсовой работе приведены в табл. 4.1.

Тип фильтра: НЧ – нижних частот, ВЧ – верхних частот. Вид схемы замещения k-фильтра — T- или Π -образная (рис. 1.1).

 $R_{\rm H}$ – величина номинального сопротивления нагрузки.

 $\omega_{\rm c}$ – частота среза.

Таблица 4.1 Исходные данные к курсовой работе

гр. 1	тип	схема	$R_{_{\scriptscriptstyle{H}}}$,	ω_c ,
	фильтра		Ом	рад/с
1	НЧ	T	100	400
2	НЧ	Т	100	500
3	НЧ	T	100	625
4	НЧ	T	100	800
5	НЧ	Т	100	1000
6	НЧ	Т	100	1250
7	НЧ	T	160	500
8	НЧ	Т	160	625
9	НЧ	П	100	400
10	НЧ	П	100	500
11	НЧ	П	100	625
12	НЧ	П	100	1000
13	НЧ	П	100	1250
14	НЧ	П	160	625
15	НЧ	П	160	1250
16	ВЧ	Т	100	400
17	ВЧ	Т	100	500
18	ВЧ	Т	100	625
19	ВЧ	Т	100	1000
20	ВЧ	Т	100	1250
21	ВЧ	T	160	625
22	ВЧ	T	160	1250
23	ВЧ	Т	200	500
24	ВЧ	П	100	500
25	ВЧ	П	100	625
26	ВЧ	П	100	1000
27	ВЧ	П	100	1250
28	ВЧ	П	160	625
29	ВЧ	П	200	500
30	ВЧ	П	200	625

гр. 2	ТИП	схема	$R_{_{\scriptscriptstyle{H}}}$,	ω_{c} ,
	фильтра		Ом	рад/с
1	НЧ	T	160	1250
2	НЧ	T	200	400
3	НЧ	T	200	500
4	НЧ	T	200	625
5	НЧ	T	200	1000
6	НЧ	T	200	1250
7	НЧ	T	250	400
8	НЧ	T	250	500
9	НЧ	П	200	500
10	НЧ	П	200	625
11	НЧ	П	200	1000
12	НЧ	П	200	1250
13	НЧ	П	250	800
14	НЧ	П	250	1000
15	НЧ	П	400	1250
16	ВЧ	T	200	625
17	ВЧ	T	200	1000
18	ВЧ	T	200	1250
19	ВЧ	T	250	500
20	ВЧ	T	250	1000
21	ВЧ	T	320	625
22	ВЧ	T	400	500
23	ВЧ	T	400	625
24	ВЧ	П	200	1250
25	ВЧ	П	250	400
26	ВЧ	П	250	500
27	ВЧ	П	250	1000
28	ВЧ	П	400	625
29	ВЧ	П	400	1250
30	ВЧ	П	500	1000