Государственное автономное образовательное учреждение высшего профессионального образования города Москвы «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ ИНДУСТРИИ ТУРИЗМА

ИМЕНИ Ю.А.СЕНКЕВИЧА (ГАОУ ВПО МГИИТ имени Ю.А. Сенкевича)

Кронштадтский б-р, д. 43А, Москва, Россия, 125499, тел.: (495) 454-92-92, 454-74-58; факс: (495)454-31-66

E-mail:box@mgiit.ru, http://www.mgiit.ru

КАФЕДРА ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И МАТЕМАТИКИ

«МАТЕМАТИКА»

Методические указания и контрольные задания для студентов заочной формы обучения

по специальности 101100.62 «Гостиничное дело»

Задачи курса

- 1. Дать студентам сведения о современных математических методах, использующихся в математическом моделировании экономических процессов.
- 2. Ознакомить студентов с понятиями и основными фактами аналитической геометрии, математического анализа, линейной алгебры, линейного программирования, теории вероятностей и математической статистики.
- 3. Продемонстрировать эффективность применения изучаемых математических методов в туристической индустрии.
- 4. привить навыки самостоятельного изучения литературы по данной дисциплине и ее приложениям.

Отсюда вытекает необходимость изучения: элементов линейной алгебры, элементов аналитической геометрии, элементов дифференциального и интегрального исчисления, способов отбора и использования статистических данных на основе теории вероятностей.

Изложение и изучение данного курса опирается на базовые знания студентов, полученные ими в предшествующее время в школьном курсе математики. Из этого курса следует выделить свойства степеней и дробей, логарифмические и показательные функции, тригонометрию, геометрию, начала анализа. Студент должен знать основные понятия, свойства, формулы из этих разделов школьной математики и уметь использовать их при решении задач.

Изучение математики направлено на развитие логического и алгоритмического мышления студентов, освоение ими приемов решения математически формализованных задач, выработку умения самостоятельно проводить анализ прикладных задач и расширять в случае необходимости свои математические знания.

Требования к результатам освоения дисциплины

В результате изучения дисциплины студент должен:

знать: фундаментальные разделы математики, необходимые для логического осмысления и обработки информации в профессиональной деятельности;

уметь: применять математические методы при решении практических задач в туристской деятельности;

владеть: математическими знаниями и методами, математическим аппаратом, необходимым для профессиональной деятельности в индустрии туризма;

В процессе изучения курса студенты выполняют одну контрольную работу, содержащую восемь задач, и сдают экзамен по утверждённым в установленном порядке билетам.

Задания для контрольной работы

Каждый студент должен решить 8 задач своего варианта. Номер варианта совпадает с последней цифрой учебного номера (шифра) студента. Например, для варианта №6 следует решить задачи №№ 6, 16, 26, 36, 46, 56, 66, 76; для варианта №0 следует решить задачи №№ 10, 20, 30, 40, 50, 60, 70, 80.

1–10. Даны вершины треугольника *АВС*.

Найти: 1) длину стороны AB; 2) уравнения сторон AB и AC и их угловые коэффициенты; 3) угол A в радианах; 4) уравнение высоты CD и ее длину; 5) уравнение окружности, для которой высота CD есть диаметр; 6) систему линейных неравенств, определяющих треугольник ABC.

- **1.** A(-5; 0), B(7; 9), C(5; -5).
- **2.** A(-7; 2), B(5; 11), C(3; -3).
- **3.** A(-5; -3), B(7; 6), C(5; -8).
- **4.** A (-6; -2), B (6; 7), C (4; -7).
- **5.** *A* (-8; -4), *B* (4; 5), *C* (2; -9).
- **6.** A (0; -1), B (12; 8), C (10; -6).
- **7.** A (-6; 1), B (6; 10), C (4; -4).
- **8.** *A* (-2; -4), *B* (10; 5), *C* (8; -9).
- **9.** *A* (-3; 0), *B* (9; 9), *C* (7; -5).
- **10.** *A* (-9; -2), *B* (3; 7), *C* (1; -7).

11–20. Решить данную систему уравнений с помощью формул Крамера. Сделать проверку полученного решения.

11.
$$\begin{cases} 5x + 8y - z = -9, \\ x + 2y + 3z = 1, \\ 2x - 3y + 2z = 5. \end{cases}$$

12.
$$\begin{cases} x + 2y + z = 4, \\ 3x - 5y + 3z = 1 \\ 2x + 7y - z = 8. \end{cases}$$

13.
$$\begin{cases} 3x + 2y + z = 5, \\ 2x + 3y + z = 1, \\ 2x + y + 3z = 11. \end{cases}$$

14.
$$\begin{cases} x + 2y + 4z = 31, \\ 5x + y + 2z = 29, \\ 3x - y + z = 10. \end{cases}$$

15.
$$\begin{cases} x - 3y + 2z = 3, \\ 2x + 5y - 3z = -4 \\ 5x + 6y - 2z = 0. \end{cases}$$

16.
$$\begin{cases} 2x - y - z = 4, \\ 3x + 4y - 2z = 11, \\ 3x - 2y + 4z = 11 \end{cases}$$

17.
$$\begin{cases} x + y + 2z = -1, \\ 2x - y + 2z = -4, \\ 4x + y + 4z = -2. \end{cases}$$

18.
$$\begin{cases} 3x - y = 5, \\ -2x + y + z = 0, \\ 2x - y + 4z = 15 \end{cases}$$

19.
$$\begin{cases} 3x - y + z = 4, \\ 2x - 5y - 3z = -17 \\ x + y - z = 0. \end{cases}$$

20.
$$\begin{cases} x + y + z = 2, \\ 2x - y - 6z = -1, \\ 3x - 2y = 8. \end{cases}$$

21–30. Систему уравнений записать в матричной форме и решить ее с помощью обратной матрицы. Сделать проверку полученного решения.

21.
$$\begin{cases} x + y - 3z = 0, \\ 3x + 2y + 2z = -1, \\ x - y + 5z = -2. \end{cases}$$

22.
$$\begin{cases} 2x + 3y + z = 1, \\ x + y - 4z = 0, \\ 4x + 5y - 3z = 1. \end{cases}$$

23.
$$\begin{cases} 3x - 2y - z = -5, \\ x + 3y + 2z = 2, \\ 5x - 2y + 4z = -7. \end{cases}$$

25.
$$\begin{cases} 2x + 4y - 3z = 2, \\ x + y + 2z = 0, \\ 3x - 2y + z = -5. \end{cases}$$

27.
$$\begin{cases} 3x - y + 4z = 2, \\ x + 2y + 3z = 7, \\ 5x + 3y + 2z = 8. \end{cases}$$

29.
$$\begin{cases} 4x - y + 3z = 1, \\ 3x + 2y + 4z = 8, \\ 2x - 2y + 4z = 0. \end{cases}$$

24.
$$\begin{cases} x - 4y + 2 = -5, \\ 4x + y - 3z = -3, \\ 2x + 3y + 4z = 1. \end{cases}$$

26.
$$\begin{cases} x + 2y - 3z = 1, \\ 2x - 3y - z = -7, \\ 4x + y - 2z = 0. \end{cases}$$

28.
$$\begin{cases} 3x - 3y + 2z = -4, \\ 2x + y - 3z = -1, \\ x - 2y + 5z = 1. \end{cases}$$

30.
$$\begin{cases} 2x - y + 3z = 1, \\ x - 2y - 5z = -9, \\ 4x + 3y - 2z = 4. \end{cases}$$

31-40. Исследовать функцию y = f(x) и построить ее график. Найти наибольшее и наименьшее значения функции y = f(x) на отрезке [a, b].

31.
$$y = 2x^3 - 9x^2 + 12x - 5$$
, $a = -1$, $b = 3$

32.
$$y = x^3 - 6x^2 + 9x + 1$$
, $a = -1$, $b = 2$

33.
$$y = x^3 - 3x^2 - 9x + 10$$
, $a = 2$, $b = 3$

34.
$$y = x^3 + 3x^2 - 9x - 10$$
, $a = -1$, $b = 2$

35.
$$y = x^3 + 6x^2 + 9x + 2$$
, $a = 0$, $b = 4$

36.
$$y = 2x^3 - 3x^2 - 12x + 5$$
, $a = -2$, $b = 3$

37.
$$y = 2x^3 + 3x^2 - 12x - 8$$
, $a = -3$, $b = 0$

38.
$$y = 2x^3 + 9x^2 + 12x + 7$$
, $a = -3$, $b = 1$

39.
$$y = 2x^3 - 15x^2 + 36x - 32$$
, $a = 1$, $b = 4$

40.
$$y = 2x^3 - 3x^2 - 36x + 20$$
, $a = -1$, $b = 4$

41–50. Найти с помощью определенного интеграла площадь плоской фигуры, расположенной в первой четверти и ограниченной заданными параболой, прямой и осью Ox.

41.
$$y = 2x^2$$
, $y = -2x + 4$.

42.
$$y = x^2$$
, $y = -x + 2$.

43.
$$y = 3x^2$$
, $y = -x + 4$.

44.
$$y = \frac{1}{4}x^2$$
, $y = -x + 3$.

45.
$$y = \frac{1}{2}x^2$$
, $y = -3x + 8$.

46.
$$y = \frac{1}{3}x^2$$
, $y = -3x + 12$.

47.
$$y = 4x^2$$
, $y = -2x + 2$.

48.
$$y = \frac{1}{4}x^2$$
, $y = -\frac{1}{2}x + 2$.

49.
$$y = 4x^2$$
, $y = -2x + 6$.

50.
$$y = x^2$$
, $y = -x + 3$.

51–60. В ящике содержится n одинаковых, тщательно перемешанных шаров, причем k из них — красные, l — синие и m — белые. Наудачу вынимается один шар. Найти вероятность того, что вынутый шар а) синий, б) белый, в) цветной.

51.
$$n = 8$$
, $k = 3$, $l = 3$, $m = 2$.

52.
$$n = 9$$
, $k = 4$, $l = 1$, $m = 4$.

53.
$$n = 10, k = 3, l = 5, m = 2.$$

54.
$$n = 11, k = 5, l = 3, m = 3.$$

55.
$$n = 12, k = 4, l = 6, m = 2.$$

56.
$$n = 8$$
, $k = 1$, $l = 5$, $m = 2$.

57.
$$n = 9$$
, $k = 3$, $l = 4$, $m = 2$.

58.
$$n = 10, k = 2, l = 7, m = 1.$$

59.
$$n = 11, k = 2, l = 4, m = 5.$$

60.
$$n = 12, k = 3, l = 5, m = 4.$$

61–70. Найти математическое ожидание, дисперсию и среднее квадратическое отклонение дискретной случайной величины X, заданной законом распределения.

61.

x_i	1	3	5	7	
p_i	0,2	0,1	0,4	0,3	

62.

x_i	2	4	6	8	
p_i	0,5	0,1	0,3	0,1	

63.

x_i	2	3	5	7
p_i	0,1	0,2	0,3	0,4

64.

x_i	1	2	3	4
p_i	0,6	0,1	0,1	0,2

65.

x_i	10	12	15	20	
p_i	0,3	0,2	0,1	0,4	

66.

x_i	5	10	15	20	
p_i	0,1	0,3	0,1	0,5	

67.

x_i	10	15	20	25
p_i	0,1	0,2	0,4	0,3

68.

X_i	i	2	4	6	8	
p_i	i	0,2	0,1	0,4	0,3	

69.

x_i	2	4	5	6
p_i	0,6	0,2	0,1	0,1

70.

x_i	3	4	6	7	
p_i	0,3	0,2	0,4	0,1	

71–80. Известны математическое ожидание a и среднеквадратическое отклонение σ нормально распределенной случайной величины X. Написать плотность вероятности и найти вероятность попадания этой величины в заданный интервал (α ; β).

71.
$$a = 11$$
, $\sigma = 5$, $\alpha = 5$, $\beta = 10$.

72.
$$a = 10$$
, $\sigma = 4$, $\alpha = 6$, $\beta = 11$.

73.
$$a = 9$$
, $\sigma = 1$, $\alpha = 7$, $\beta = 12$.

74.
$$a = 8$$
, $\sigma = 2$, $\alpha = 4$, $\beta = 10$.

75.
$$a = 7$$
, $\sigma = 3$, $\alpha = 4$, $\beta = 12$.

76.
$$a = 6$$
, $\sigma = 5$, $\alpha = 4$, $\beta = 8$.

77.
$$a = 5$$
, $\sigma = 2$, $\alpha = 2$, $\beta = 7$.

78.
$$a = 4$$
, $\sigma = 3$, $\alpha = 1$, $\beta = 9$.

79.
$$a = 3$$
, $\sigma = 2$, $\alpha = 3$, $\beta = 8$.

80.
$$a = 2$$
, $\sigma = 1$, $\alpha = 1$, $\beta = 4$.

Примечание: для контрольной работы следует взять тетрадь в клеточку; представлять рукописный вариант; условия задач переписывать; на титульном листе необходимо указать (можно в напечатанном виде) следующее: МГИИТ, контрольная работа по математике студента ФИО

заочного обучения (4,5 года), курс, группа, шифр (по зачётной книжке), номер варианта. Проверил: ФИО преподавателя.

Методические указания к решению задач

<u>Примеры решения и оформления заданий</u> приведены в учебно-методических пособиях [8], [9].

Элементы линейной алгебры, аналитической геометрии и линейного программирования.

По теме «Аналитическая геометрия» рассмотрим решение типовой задачи. Задача 1.Даны вершины треугольника ABC: A(-4;8), B(5;-4), C(10;6). Найти:

- 1) длину стороны АВ;
- 2) уравнения сторон АВ и АС и их угловые коэффициенты;
- 3) угол А в радианах;
- 4) уравнение высоты CD и ее длину;
- 5) уравнение окружности, для которой высота CD есть диаметр;
- 6) систему линейных неравенств, определяющих треугольник АВС.

Решение.

1. Найдем длину стороны АВ.

Расстояние d между точками $M_1(x_1; y_1)$ и $M_2(x_2; y_2)$ определяется по формуле:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
 (1)

Подставив в эту формулу координаты точек А и В, имеем:

$$AB = \sqrt{[5 - (-4)]^2 + (-4 - 8)^2} = \sqrt{81 + 144} = 15.$$

2. Уравнение прямой, проходящей через точки $M_1(x_1; y_1)$ и $M_2(x_2; y_2)$, имеет вид:

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} \tag{2}$$

Подставив в (2) координаты точек А и В, получим уравнение прямой АВ:

$$\frac{x - (-4)}{5 - (-4)} = \frac{y - 8}{-4 - 8}; \quad \frac{x + 4}{9} = \frac{y - 8}{-12}; \quad \frac{x + 4}{3} = \frac{y - 8}{-4};$$
$$3y - 24 = -4x - 16, \quad 4x + 3y - 8 = 0 \quad \text{(AB)}$$

Для нахождения углового коэффициента κ_{AB} прямой AB, разрешим полученное уравнение относительно y: $y = -\frac{4}{3}x + \frac{8}{3}$.

Отсюда $\kappa_{AB} = -\frac{4}{3}$.

Подставив в формулу (2) координаты точек А и С, найдем уравнение прямой АС:

$$\frac{x - (-4)}{10 - (-4)} = \frac{y - 8}{6 - 8}. \quad \frac{x + 4}{14} = \frac{y - 8}{-2}, \quad \frac{x + 4}{7} = \frac{y - 8}{-1},$$
$$x + 7y - 52 = 0 \quad (AC).$$

Отсюда $\kappa_{AC} = -\frac{1}{7}$.

(5)

3. Угол α между двумя прямыми, угловые коэффициенты которых равны κ_1 и κ_2 , определяется по формуле:

$$tg\,\alpha = \frac{\kappa_2 - \kappa_1}{1 + \kappa_1 \kappa_2} \tag{3}$$

Угол A, образованный прямыми AB и AC, найдем по формуле (3), подставив в нее $\kappa_1 = \kappa_{AB} = -\frac{4}{3}$, $\kappa_1 = \kappa_{AC} = -\frac{1}{7}$.

$$tgA = \frac{-\frac{1}{7} - (-\frac{4}{3})}{1 + (-\frac{1}{7}) \cdot (-\frac{4}{3})} = \frac{\frac{4}{3} - \frac{1}{7}}{1 + \frac{4}{21}} = \frac{\frac{25}{21}}{\frac{25}{21}} = 1,$$

$$\angle A = arctg1 = 45^{\circ} \approx 0,79 \, pa\partial.$$

4. Так как высота CD перпендикулярна стороне AB, то угловые коэффициенты этих прямых обратны по величине и противоположны по знаку, т.е.

$$\kappa_{\text{CD}} = -\frac{1}{\kappa_{AB}} = -\frac{1}{-\frac{4}{3}} = \frac{3}{4}.$$

Уравнение прямой, проходящей через данную точку $M_1(x_1; y_1)$ в заданном направлении, имеет вид:

$$y - y_1 = \kappa(x - x_1). \tag{4}$$

Подставив в (4) координаты точки C(10;6) и $\kappa_{CD} = \frac{3}{4}$, получим уравнение высоты CD:

$$y-6=\frac{3}{4}(x-10), \quad 4y-24=3x-30, \quad 3x-4y-6=0 \text{ (CD)}.$$

Для нахождения длины CD определим координаты точки D, решив систему уравнений (AB) и (CD):

$$\begin{cases} 4x + 3y - 8 = 0 \\ 3x - 4y - 6 = 0 \end{cases}$$
, откуда $x = 2$, $y = 0$, то есть D (2; 0)

Подставив в формулу (1) координаты точек С и D, находим:

$$CD = \sqrt{(10-2)^2 + (6-0)^2} = \sqrt{64+36} = 10.$$

5. Уравнение окружности радиуса R с центром в точка E(a; b) имеет вид:

$$(x-a)^2 + (y-e)^2 = R^2$$
 (6)

Так как CD является диаметром искомой окружности, то ее центр E есть середина отрезка CD. Воспользуемся формулами деления отрезка пополам, получим:

$$x_E = \frac{x_c + x_D}{2} = \frac{10 + 2}{2} = 6, \quad y_E = \frac{y_c + y_D}{2} = \frac{6 + 0}{2} = 3.$$

Следовательно, E(6; 3) и $R = \frac{CD}{2} = 5$. Используя формулу (6), получаем уравнение искомой окружности:

$$(x-6)^2 + (y-3)^2 = 25$$

6. Множество точек треугольника ABC есть пересечение трех полуплоскостей, первая из которых ограничена прямой AB и содержит точку C, вторая ограничена прямой BC и содержит точку A, а третья ограничена прямой AC и содержит точку B.

Для получения неравенства, определяющего полуплоскость, ограниченную прямой AB и содержащую точку C, подставим в уравнение прямой AB координаты точки C:

$$4 \cdot 10 + 3 \cdot 6 - 8 = 50 > 0$$

Поэтому искомое неравенство имеет вид: $4x+3y-8 \ge 0$.

Для составления неравенства, определяющего полуплоскость, ограниченную прямой BC и содержащую точку A, найдем уравнение прямой BC, подставив в формулу (2) координаты точек B и C:

$$\frac{x-5}{10-5} = \frac{y-(-4)}{6-(-4)}, \qquad \frac{x-5}{5} = \frac{y+4}{10}, \qquad \frac{x-5}{1} = \frac{y+4}{2},$$
$$2x-y-14=0 \text{ (BC)}.$$

Подставив в последнее уравнение координаты точки А, имеем:

2(-4)-8-14=-30 < 0. Искомое неравенство будет $2x-y-14 \le 0$. Подобным образом составим неравенство, определяющее полуплоскость, ограниченную прямой AC и содержащую точку B: 5+7(-4)-52=-75 < 0. Третье искомое неравенство будет $x+7y-52 \le 0$. Итак, множество точек треугольника ABC определяется системой неравенств:

$$\begin{cases} 4x + 3y - 8 \ge 0, \\ 2x - y - 14 \le 0, \\ x + 7y - 52 \le 0. \end{cases}$$

На рис. 1 в декартовой прямоугольной системе координат хОу изображен треугольник ABC, высота CD, окружность с центром в точке E и диаметром CD

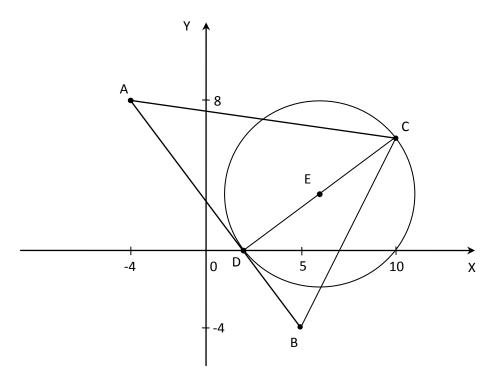


Рис. 1

Решение системы линейных уравнений по формулам Крамера

Рассмотрим систему уравнений:

$$\begin{cases}
a_{11}x + a_{12}y + a_{13}z = e_1 \\
a_{21}x + a_{22}y + a_{23}z = e_2 \\
a_{31}x + a_{32}y + a_{33}z = e_3
\end{cases}$$
(1)

где x,y,z — неизвестные; коэффициенты $a_{11}, a_{12},..., a_{33}$ и свободные члены $a_{11}, a_{22},..., a_{33}$ и свободные $a_{12}, a_{22},..., a_{33}, a_{22},..., a_{33}$

Введем обозначения:

$$\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}; \quad \Delta_x = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{2} & a_{22} & a_{23} \\ a_{3} & a_{32} & a_{33} \end{vmatrix}; \quad \Delta_y = \begin{vmatrix} a_{11} & a_{1} & a_{13} \\ a_{21} & a_{2} & a_{23} \\ a_{31} & a_{3} & a_{33} \end{vmatrix}; \quad \Delta_z = \begin{vmatrix} a_{11} & a_{12} & a_{1} \\ a_{21} & a_{22} & a_{2} \\ a_{31} & a_{32} & a_{3} \end{vmatrix};$$

Определитель Δ , составленный из коэффициентов при неизвестных системы (1), называется определителем данной системы.

Определители Δ_x , Δ_y , Δ_z получаются из определителя Δ при помощи замены соответственно его первого, второго и третьего столбца — столбцом свободных членов данной системы.

Если $\Delta \neq 0$, то система (1) имеет единственное решение; оно определяется формулами:

$$x = \frac{\Delta_x}{\Lambda};$$
 $y = \frac{\Delta_y}{\Lambda};$ $z = \frac{\Delta_z}{\Lambda};$ (2)

Формулы (2) называются формулами Крамера.

Если определитель системы $\Delta=0$, а хотя бы один из определителей Δ_x , Δ_y , Δ_z отличен от нуля, то система (1) не имеет решений.

В случае, когда $\Delta = 0$ и одновременно $\Delta_x = 0$, $\Delta_y = 0$, $\Delta_z = 0$, система (1) также может не иметь решений; но если система в этом случае имеет хотя бы одно решение, то она имеет бесконечно много решений.

Задача 2. Используя формулы Крамера, решить систему:

$$\begin{cases} x - 2y + z = 4 \\ 2x + y + 3z = 5 \\ 3x + 4y + z = -2 \end{cases}$$

Вычислим сначала главный определитель системы Δ , воспользовавшись следующим правилом вычисления определителей третьего порядка:

$$\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}.$$

Имеем

$$\Delta = \begin{vmatrix} 1 & -2 & 1 \\ 2 & 1 & 3 \\ 3 & 4 & 1 \end{vmatrix} = 1(1-12) + 2(2-9) + 1 \cdot (8-3) = -20$$

Так как $\Delta \neq 0$, делаем вывод о том, что система имеет единственное решение. Найдём его. Вычислим вспомогательные определители Δ_x , Δ_y , Δ_z .

$$\Delta_{x} = \begin{vmatrix} 4 & -2 & 1 \\ 5 & 1 & 3 \\ -2 & 4 & 1 \end{vmatrix} = 4(1-12) - (-2)(5+6) + 1(20+2) = 0;$$

$$\Delta_{y} = \begin{vmatrix} 1 & 4 & 1 \\ 2 & 5 & 3 \\ 3 & -2 & 1 \end{vmatrix} = 1(5+6) - 4(2-9) + 1(-4-15) = 20;$$

$$\Delta_z = \begin{vmatrix} 1 & -2 & 4 \\ 2 & 1 & 5 \\ 3 & 4 & -2 \end{vmatrix} = 1(-2-20) - (-2)(-4-15) + 4(8-3) = -40.$$

Далее, воспользовавшись формулами Крамера, окончательно получим

$$x = \frac{\Delta_x}{\Delta} = \frac{0}{-20} = 0;$$
 $y = \frac{\Delta_y}{\Delta} = \frac{20}{-20} = -1;$ $z = \frac{\Delta_z}{\Delta} = \frac{-40}{20} = 2.$

Осуществим проверку правильности полученного решения, подставив его в каждое уравнение заданной системы:

$$\begin{cases} 0 - 2 \cdot (-1) + 2 = 4, \\ 2 \cdot 0 + (-1) + 3 \cdot 2 = 5, \\ 3 \cdot 0 + 4 \cdot (-1) + 2 = -2. \end{cases}$$

Все три равенства верные, поэтому делаем вывод о правильности полученного решения.

Ответ: x = 0; y = -1; z = 2.

Матричный метод решения системы линейных уравнений.

Рассмотрим систему линейных уравнений

$$\begin{cases} a_{11}x + a_{12}y + a_{13}z = e_1 \\ a_{21}x + a_{22}y + a_{23}z = e_2 \\ a_{31}x + a_{32}y + a_{33}z = e_3 \end{cases}$$
 (1)

Обозначим через A — матрицу коэффициентов при неизвестных; X — матрицу — столбец неизвестных x, y, z; B — матрицу — столбец свободных членов \mathfrak{s}_1 , \mathfrak{s}_2 , \mathfrak{s}_3 :

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}; \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}; \quad B = \begin{pmatrix} e_1 \\ e_2 \\ e_3 \end{pmatrix}$$

С учетом этих обозначений данная система уравнений (1) принимает следующую матричную форму:

$$A \cdot X = B \tag{2}$$

Если матрица A — невырожденная (ее определитель Δ отличен от нуля), то она имеет обратную матрицу A^{-1} . Умножив обе части уравнения (2) на A^{-1} , получим:

$$A^{-1} \cdot A \cdot X = A^{-1} \cdot B$$
.

но $A^{-1} \cdot A = E$ (E -единичная матрица), а $E \cdot X = X$, поэтому

$$X = A^{-1} \cdot B \tag{3}$$

Равенство (3) называется матричной записью решения системы линейных уравнений (1). Для нахождения решения системы уравнений необходимо вычислить обратную матрицу A^{-1} .

Пусть имеем невырожденную матрицу

$$A = \begin{pmatrix} a_{11} \ a_{12} \ a_{13} \\ a_{21} \ a_{22} \ a_{23} \\ a_{31} \ a_{32} \ a_{33} \end{pmatrix}, \text{ ee определитель } \Delta = \begin{vmatrix} a_{11} \ a_{12} \ a_{13} \\ a_{21} \ a_{22} \ a_{23} \\ a_{31} \ a_{32} \ a_{33} \end{vmatrix} \neq 0.$$

Тогда

$$A^{-1} = \frac{1}{\Delta} \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} \frac{A_{11}}{\Delta} & \frac{A_{21}}{\Delta} & \frac{A_{31}}{\Delta} \\ \frac{A_{12}}{\Delta} & \frac{A_{22}}{\Delta} & \frac{A_{32}}{\Delta} \\ \frac{A_{13}}{\Delta} & \frac{A_{23}}{\Delta} & \frac{A_{33}}{\Delta} \end{pmatrix}$$
(4)

где Aij (i=1, 2, 3; j=1, 2, 3) — алгебраическое дополнение элемента a_{ij} в определителе матрицы A, которое является произведением $(-1)^{i+j}$ на минор (определитель второго порядка), полученный вычеркиванием i-ой строки и j-го столбца в определителе матрицы A.

Задача 3. Данную систему уравнений записать в матричной форме и решить ее с помощью обратной матрицы.

$$\begin{cases} x - 2y + z = 1 \\ 2x + 3y - z = 8 \\ x - y + 2z = -1 \end{cases}$$

Обозначим матрицы

$$A = \begin{pmatrix} 1 & -2 & 1 \\ 2 & 3 & -1 \\ 1 & -1 & 2 \end{pmatrix}; \qquad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}; \qquad B = \begin{pmatrix} 1 \\ 8 \\ -1 \end{pmatrix}.$$

Тогда матричная форма записи данной системы будет

$$A \cdot X = B$$
,

или

$$\begin{pmatrix} 1 & -2 & 1 \\ 2 & 3 & -1 \\ 1 & -1 & 2 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 8 \\ -1 \end{pmatrix}$$

Найдем обратную матрицу A^{-1} для матрицы A. Для этого:

1) Вычислим определитель матрицы A.

$$\Delta = \begin{vmatrix} 1 & -2 & 1 \\ 2 & 3 & -1 \\ 1 & -1 & 2 \end{vmatrix} = 1 \cdot \begin{vmatrix} 3 & -1 \\ -1 & 2 \end{vmatrix} - (-2) \cdot \begin{vmatrix} 2 & -1 \\ 1 & 2 \end{vmatrix} + 1 \cdot \begin{vmatrix} 2 & 3 \\ 1 & -1 \end{vmatrix} = 1 \cdot (6-1) + 2(4+1) + 1(-2-3) = 1 \cdot (6-1) + 2(4-1) + 2$$

$$=5+10-5=10$$

Получили $\Delta = 10 \neq 0$. Следовательно матрица A имеет обратную матрицу

2) Найдем алгебраические дополнения для каждого элемента определителя Δ матрицы A.

3)

$$A_{11} = (-1)^{1+1} \cdot \begin{vmatrix} 3 & -1 \\ -1 & 2 \end{vmatrix} = 5, \qquad A_{12} = (-1)^{1+2} \cdot \begin{vmatrix} 2 & -1 \\ 1 & 2 \end{vmatrix} = -5,$$

$$A_{13} = (-1)^{1+3} \cdot \begin{vmatrix} 2 & 3 \\ 1 & -1 \end{vmatrix} = -5,$$

$$A_{21} = (-1)^{2+1} \cdot \begin{vmatrix} -2 & 1 \\ -1 & 2 \end{vmatrix} = 3, \qquad A_{22} = (-1)^{2+2} \cdot \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = 1,$$

$$A_{23} = (-1)^{2+3} \cdot \begin{vmatrix} 1 & -2 \\ 1 & -1 \end{vmatrix} = -1,$$

$$A_{31} = (-1)^{3+1} \cdot \begin{vmatrix} -2 & 1 \\ 3 & -1 \end{vmatrix} = -1, \quad A_{32} = (-1)^{3+2} \cdot \begin{vmatrix} 1 & 1 \\ 2 & -1 \end{vmatrix} = 3,$$

$$A_{33} = (-1)^{3+3} \cdot \begin{vmatrix} 1 & -2 \\ 2 & 3 \end{vmatrix} = 7.$$

4) Обратная матрица A^{-1} будет иметь вид:

$$A^{-1} = \frac{1}{10} \begin{pmatrix} 5 & 3 & -1 \\ -5 & 1 & 3 \\ -5 & -1 & 7 \end{pmatrix} = \begin{pmatrix} \frac{5}{10} & \frac{3}{10} & \frac{-1}{10} \\ \frac{-5}{10} & \frac{1}{10} & \frac{3}{10} \\ \frac{-5}{10} & \frac{-1}{10} & \frac{7}{10} \end{pmatrix}$$

5) Проверим правильность полученной обратной матрицы (произведение обратной матрицы A^{-1} на матрицу A должно быть равно единичной матрице E).

$$A^{-1} \cdot A = \frac{1}{10} \begin{pmatrix} 5 & 3 & -1 \\ -5 & 1 & 3 \\ -5 & -1 & 7 \end{pmatrix} \cdot \begin{pmatrix} 1 & -2 & 1 \\ 2 & 3 & -1 \\ 1 & -1 & 2 \end{pmatrix} = \frac{1}{10} \begin{pmatrix} 5 \cdot 1 + 3 \cdot 2 + (-1) \cdot 1 \\ -5 \cdot 1 + 1 \cdot 2 + 3 \cdot 1 \\ -5 \cdot 1 + (-1) \cdot 2 + 7 \cdot 1 \end{pmatrix}$$

$$5 \cdot (-2) + 3 \cdot 3 + (-1) \cdot (-1)$$

$$-5 \cdot (-2) + 1 \cdot 3 + 3 \cdot (-1)$$

$$-5 \cdot (-2) + (-1) \cdot 3 + 7 \cdot (-1)$$

$$5 \cdot 1 + 3 \cdot (-1) + (-1) \cdot 2$$

$$-5 \cdot 1 + 1 \cdot (-1) + 3 \cdot 2$$

$$-5 \cdot 1 + (-1) \cdot (-1) + 7 \cdot 2$$

$$= \frac{1}{10} \begin{pmatrix} 10 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 10 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Получили единичную матрицу. Значит обратная матрица найдена верно.

Находим решение данной системы уравнений в матричной форме

$$X = A^{-1} \cdot B$$

$$= \frac{1}{10} \begin{pmatrix} 5 & 3 & -1 \\ -5 & 1 & 3 \\ -5 & -1 & 7 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 8 \\ -1 \end{pmatrix} = \frac{1}{10} \begin{pmatrix} 5 \cdot 1 + 3 \cdot 8 + (-1) \cdot (-1) \\ -5 \cdot 1 + 1 \cdot 8 + 3 \cdot (-1) \\ -5 \cdot 1 + (-1) \cdot 8 + 7 \cdot (-1) \end{pmatrix} = \frac{1}{10} \begin{pmatrix} 30 \\ 0 \\ -20 \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \\ -2 \end{pmatrix}$$

Получили
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \\ -2 \end{pmatrix}$$
, следовательно $x = 3$; $y = 0$; $z = -2$.

Проверим правильность полученного решения, подставив его в каждое уравнение заданной системы:

$$\begin{cases} 3 - 2 \cdot 0 + (-2) = 1 \\ 2 \cdot 3 + 3 \cdot 0 - (-2) = 8 \\ 3 - 0 + 2 \cdot (-2) = -1 \end{cases}$$

Все три равенства верные, поэтому делаем вывод о правильности полученного решения.

Otbet:
$$x = 3$$
, $y = 0$, $z = -2$

Элементы теории вероятностей

Случайное событие, называемое также *событием*, — это такое явление, которое может либо произойти, либо не произойти в результате испытания.

Классическое определение вероятности. Если множество всех элементарных исходов конечно и все исходы равновозможны, то вероятность события A определяется как

$$P(A) = \frac{m}{n}$$
,

где m — число исходов, благоприятных для A, n — общее число всех возможных элементарных исходов.

Событие, вероятность которого равна 1, называется достоверным, событие, вероятность которого равна нулю, — невозможным. Вероятность события A и противоположного ему события \overline{A} связаны соотношением

$$P(A)+P(\overline{A})=1$$
.

События называются несовместными, если одновременное их осуществление невозможно, в частности, A и \overline{A} несовместны.

Для любых событий A и B

$$P(A+B) = P(A) + P(B) - P(AB),$$

для трех событий

$$P(A+B+C) = P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC).$$

Условная вероятность P(A|B) события A, т.е. вероятность события A, которую находят в предположении, что событие B уже наступило, определяется формулой

$$P(A|B) = \frac{P(AB)}{P(B)}.$$

События A и B называются независимыми, если P(A|B) = P(A).

Задача 1. В ящике содержится 7 одинаковых, тщательно перемешанных шаров, причем 4 из них — красные, 2 — синие и 1 — белый. Наудачу вынимается один шар. Найдем вероятность того, что вынутый шар а) синий, б) белый, в) цветной.

Решение

Появление синего шара будем рассматривать в качестве события A, появление белого шара — в качестве события B и появление цветного шара — в качестве события C.

Возможны следующие 7 равновозможных исходов испытания (извлечения шара из ящика): B_1 — появился белый шар, B_2 , B_3 , B_4 , B_5 — появился красный шар, B_6 , B_7 — появился синий шар, т.е.

$$n = [B_1, B_2, B_3, B_4, B_5, B_6, B_7].$$

Событию A благоприятствуют исходы B_6 и B_7 (два исхода), событию B благоприятствует один исход B_1 , а событию C – исходы B_2 , B_3 , B_4 , B_5 , B_6 , B_7 , (шесть исходов). Находим

$$P(A) = \frac{2}{7}, P(B) = \frac{1}{7}, P(C) = \frac{6}{7}.$$

Задача 2. Бросается игральная кость. Определить:

- а) вероятность появления верхней грани с цифрой 4;
- б) вероятность того, что выпадет нечетное число очков

Решение

a) Пусть событие A — появление верхней грани с цифрой 4. Кость имеет шесть граней, и при бросании может стать верхней любая из шести граней. Следовательно, число возможных элементарных исходов опыта n=6. Из шести граней только одна соответствует цифре 4, поэтому число благоприятных исходов опыта m=1. Следовательно, получим:

$$P(A) = \frac{m}{n} = \frac{1}{6}$$
.

б) Пусть событие B — выпадение на верхней грани нечетного числа очков. Число возможных элементарных исходов опыта n = 6. Только три цифры являются нечетными: 1, 3 и 5, следовательно m = 3. Таким образом, получим:

$$P(B) = \frac{m}{n} = \frac{3}{6} = \frac{1}{2}$$
.

Ответ: а) вероятность появления верхней грани с цифрой 4 равна $\frac{1}{6}$;

 δ) вероятность того, что выпадет нечетное число очков, равна $\frac{1}{2}$.

Задача 3. Отдел технического контроля обнаружил 5 бракованных книг в партии из случайно отобранных 100 книг. Найти относительную частоту появления бракованных книг.

Решение

Относительная частота события A (появления бракованных книг) равна отношению числа испытаний, в которых появилось событие A, к общему числу испытаний:

$$W(A) = \frac{5}{100} = 0.05.$$

Omsem: относительная частота появления бракованных книг равна 0.05.

Задача 4. В урне 2 белых, 3 красных и 5 синих одинаковых по размеру шаров. Какова вероятность, что шар, наугад вынутый из урны (без возращения), будет красным или синим?

Решение

Пусть событие A — извлечение из урны красного шара; событие B — извлечение из урны синего шара. Тогда событие A+B — извлечение из урны красного или синего шара. События A и B — несовместны, поэтому P(A+B)=P(A)+P(B). Имеем:

$$P(A) = \frac{3}{10} = 0.3, \quad P(B) = \frac{5}{10} = 0.5.$$

Тогда P(A+B) = 0.3 + 0.5 = 0.8.

Ответ: вероятность, что шар, наугад вынутый из урны (без возращения), будет красным или синим, равна 0,8.

Схема независимых испытаний (схема Бернулли). Проводится n независимых испытаний, в каждом из которых может произойти один из двух исходов: успех или неуспех. Вероятность успеха в каждом из этих испытаний постоянна и равна p. Вероятность неуспеха в одном испытании равна q = 1 - p.

Вероятность того, что в n испытаниях будет ровно m успехов, дается формулой Бернулли:

$$P_n(m) = C_n^m p^m q^{n-m},$$

где C_n^m – число сочетаний из n по m.

Пусть задано множество, состоящее из n элементов. Каждое его неупорядоченное подмножество, содержащее k элементов, называется сочетанием из n элементов по k элементов.

Число всех сочетаний из n элементов по k элементов обозначается C_n^K («С (це) из n по k). Для числа сочетаний справедлива формула:

$$C_n^K = \frac{n!}{(n-k)! \cdot k!}$$

В указанной формуле произведение всех натуральных чисел от 1 до n обозначается n! («n (эн) факториал), т.е. $n!=1\cdot 2\cdot 3\cdot ...\cdot n$.

Задача 5. Два равносильных шахматиста играют в шахматы. Что вероятнее: выиграть две партии из четырех или три партии из шести (ничьи во внимание не принимаются)?

Решение

Играют равносильные шахматисты, поэтому вероятность выигрыша $p = \frac{1}{2}$; следовательно, вероятность проигрыша $q = \frac{1}{2}$. Так как во всех партиях вероятность выигрыша постоянна и безразлично, в какой последовательности будут выигрываться партии, то применима формула Бернулли.

Найдем вероятность того, что две партии из четырех будут выиграны:

$$P_4(2) = C_4^2 \cdot p^2 \cdot q^2 = \frac{4 \cdot 3}{1 \cdot 2} \cdot \left(\frac{1}{2}\right)^2 \cdot \left(\frac{1}{2}\right)^2 = \frac{6}{16}.$$

Найдем вероятность того, что три партии из шести:

$$P_6(3) = C_6^3 \cdot p^3 \cdot q^3 = \frac{6 \cdot 5 \cdot 4}{1 \cdot 2 \cdot 3} \cdot \left(\frac{1}{2}\right)^3 \cdot \left(\frac{1}{2}\right)^3 = \frac{5}{16}.$$

Так как $P_4(2) > P_6(3)$, то вероятнее выиграть две партии из четырех, чем три из шести.

Ответ: вероятнее выиграть две партии из четырех, чем три из шести.

Задача 6. В семье пять детей. Найти вероятность того, что среди этих детей: а) два мальчика; б) не более двух мальчиков; в) не менее двух и не более трех мальчиков. Вероятность рождения мальчика принять равной 0,51.

Решение

По условию вероятность рождения мальчика p = 0.51, тогда вероятность противоположного события (вероятность рождения девочки) q = 1 - p = 1 - 0.51. Для нахождения искомых вероятностей применим формулу Бернулли:

а) вероятность того, что среди пяти детей два мальчика, равна:

$$P_5(2) = C_5^2 \cdot p^2 \cdot q^{5-2} = \frac{5!}{2!(5-2)!} \cdot 0.51^2 \cdot 0.49^3 = 0.31;$$

б) вероятность того, что среди этих детей не более двух мальчиков (в семье нет мальчиков или в семье один мальчик или в семье два мальчика) , равна:

$$P(A) = P_5(0) + P_5(1) + P_5(2) = C_5^0 \cdot p^0 \cdot q^5 + C_5^1 \cdot p^1 \cdot q^4 + C_5^2 \cdot p^2 \cdot q^3 = 0,028 + 0,15 + 0,31 = 0,488;$$

в) вероятность того, что среди пятерых детей не менее одного и не более трех мальчиков (в семье один мальчик или в семье два мальчика или в семье три мальчика), равна:

$$P(A) = P_5(1) + P_5(2) + P_5(3) = C_5^1 \cdot p^1 \cdot q^{5-1} + C_5^2 \cdot p^2 \cdot q^{5-2} + C_5^3 \cdot p^3 \cdot q^{5-3} = 0.15 + 0.31 + 0.31 = 0.71.$$

Ответ: вероятность того, что среди этих детей: а) два мальчика равна $0,31\,$ б) не более двух мальчиков равна 0,488; в) не менее двух и не более трех мальчиков равна 0,71.

Случайные величины

Случайной величиной называется величина, которая в результате испытания принимает одной возможное числовое значение. Случайные величины (с.в.) обозначаются заглавными латинскими буквами.

Дискретная случайная величина имеет конечное или счетное множество значений. Закон распределения дискретное с.в. X – это перечень ее возможных значений и соответствующих вероятностей. Закон распределения дискретной с.в. X записывается в виде ряда распределения:

Значения (х)	x_1	x_2	 X_n	
Вероятности (р)	p_1	p_2	 p_n	 (1)

Здесь
$$p_i > 0$$
, $\sum_i p_i = 1$.

Непрерывная с.в. принимает любые значения некоторого (возможно, бесконечного) интервала.

Функция распределения с.в. X – это функция, определенная равенством:

$$F(x) = P(X < x).$$

Свойства функции распределения:

- 1) $0 \le F(x) \le 1$;
- 2) F(x) неубывающая функция;
- 3) $F(-\infty) = 0$, $F(+\infty) = 1$;
- 4) если все возможные значения случайной величины X принадлежат интервалу (a,b), то

$$F(x) = 0$$
 при $x \le a$,

$$F(x)=1$$
 при $x \ge b$;

5)
$$P(a \le X \le b) = F(b) - F(a)$$
.

Числовые характеристики случайной величины. Математическое ожидание дискретной с.в. определяется формулой:

$$MX = \sum_{n} x_{n} p_{n}$$

где \sum – знак суммирования.

Математическое ожидание обозначается также буквой μ , возможно с индексом, например $\mu_x = MX$.

Перечислим свойства математического ожидания.

- 1. Математическое ожидание константы равно этой константе: MC=C.
- 2. Если C константа, то M(CX) = CMX.
- 3. Математическое ожидание суммы случайных величин равно сумме математических ожиданий.
- 4. Если с.в. $X_1, X_2, ..., X_n$, независимы, то математическое ожидание их произведения равно произведению математических ожиданий.

Дисперсия дискретной с.в. X, имеющей закон распределения (1) и математическое ожидание μ , определяется формулой:

$$DX = \sum (x_n - \mu)^2 p_n.$$

Дисперсия обозначается также σ^2 , возможно, с индексом. Можно также доказать, что

$$\sigma^2 = DX = \sum_n x_n^2 p_n - \mu^2.$$

Последняя формула иногда бывает удобней для вычислений.

Перечислим свойства дисперсии.

- 1. Дисперсия постоянной величины равна нулю.
- 2. Если C константа, то $D(CX) = C^2DX$.
- 3. Дисперсия суммы (разности) независимых случайных величин равна сумме дисперсий слагаемых:

$$D(X_1 \pm X_2 \pm \pm X_n) = DX_1 + DX_2 + ... + DX_n$$
.

Средним квадратическим отклонением случайной величины X называется величина $\sigma = \sqrt{DX}$.

Задача 7. Дано распределение дискретной случайной величины X:

$x_{\rm i}$	0	1	2	3	4
$p_{ m i}$	0,1	0,2	0,1	0,3	0,3

Найти функцию распределения F(x).

Решение

Если
$$x < 0$$
, то $F(x) = 0$;

если
$$0 \le x < 1$$
, то $F(x) = P(X = 0) = 0.1$;

если
$$1 \le x < 2$$
, то $F(x) = P(X = 0) + P(X = 1) = 0,1 + 0,2 = 0,3$;

если
$$2 \le x < 3$$
, то $F(x) = P(X = 0) + P(X = 1) + P(X = 2) = 0,1 + 0,2 + 0,1 = 0,4$; если $3 \le x < 4$, то $F(x) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = 0,1 + 0,2 + 0,1 + 0,3 = 0,7$; если $x > 4$, то $F(x) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) = 0,1 + 0,2 + 0,1 + 0,3 + 0,3 = 1$.

Итак, искомая функция распределения имеет вид:

$$F(x) = \begin{cases} 0 & \text{при } x < 0, \\ 0.1 & \text{при } 0 \le x < 1, \\ 0.3 & \text{при } 1 \le x < 2, \\ 0.4 & \text{при } 2 \le x < 3, \\ 0.7 & \text{при } 3 \le x < 4, \\ 1 & \text{при } x > 4. \end{cases}$$

График полученной функции представлен на рис. 1.

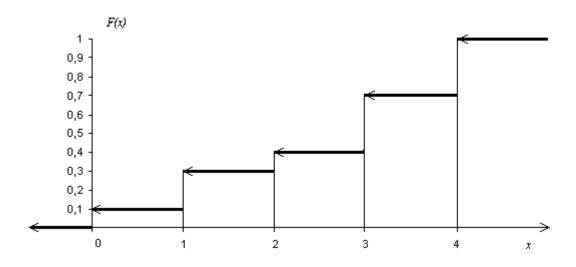


Рис. 1.

Задача 8. Найти математическое ожидание, дисперсию и среднее квадратическое отклонение дискретной случайной величины X, заданной следующим законом распределения:

x_{i}	-2	0	1	2	
$p_{ m i}$	0,5	0,1	0,2	0,2	

Решение

Вычислим математическое ожидание дискретной случайной величины X:

$$MX = \sum_{i=1}^{n} x_i p_i = -2 \cdot 0.5 + 0 \cdot 0.1 + 1 \cdot 0.2 + 2 \cdot 0.2 = -0.4.$$

Далее вычислим дисперсию дискретной случайной величины X:

$$DX = \sum_{i=1}^{n} x_i^2 p_i - [M(x)]^2 = (-2)^2 \cdot 0.5 + 0^2 \cdot 0.1 + 1^2 \cdot 0.2 + 2^2 \cdot 0.2 - (-0.4)^2 = 2.84,$$

а также среднее квадратическое отклонение:

$$\sigma(X) = \sqrt{D(X)} = \sqrt{2,84} \approx 1,65.$$

Ombem: MX = -0.4; DX = 2.84; $\sigma X = 1.65$.

Нормальное распределение. Если плотность распределения непрерывной случайности величины X равна

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}},$$

то говорят, что с.в. X имеет нормальное распределение; $MX = \varphi, DX = \sigma^2$. Если X имеет нормальное распределение с математическим ожиданием μ и средним квадратическим отклонением σ , то вероятности, связанные с X, вычисляются по формулам

$$P(\alpha \le X < \beta) = \Phi\left(\frac{\beta - \mu}{\sigma}\right) - \Phi\left(\frac{\alpha - \mu}{\sigma}\right),$$

$$P(\alpha \le X) = 0,5 - \Phi\left(\frac{\alpha - \mu}{\sigma}\right),$$

$$P(X < \beta) = 0,5 + \Phi\left(\frac{\beta - \mu}{\sigma}\right),$$

где $\Phi(x)$ — функция Лапласа; значения функции Лапласа приведены в таблице *Приложения* 1.

Задача Математическое ожидание квадратическое среднее случайной отклонение нормально распределенной величины 10 И 2. Написать соответственно равны плотность распределения вероятностей и найти вероятность того, что X примет значение из интервала (12; 14).

Решение

В нашем случае a = 10, $\sigma = 2$, так как случайная величина распределена по нормальному закону, то ее плотность находим следующим образом:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-a)^2}{2\sigma^2}} = \frac{1}{2\sqrt{2\pi}}e^{\frac{-(x-10)^2}{8}}.$$

Вероятность того, что распределенная по нормальному закону случайная величина X примет значение из интервала (12;14), находится следующим образом:

$$P(12 < X < 14) = \Phi\left(\frac{14 - 10}{2}\right) - \Phi\left(\frac{12 - 10}{2}\right) = \Phi(2) - \Phi(1) = 0,4772 - 0,3413 = 0,1359.$$

Ombem: P(12 < X < 14) = 0,1359.

Таблица значений функции
$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \cdot \int_{0}^{x} e^{z^{2}/2} dz$$

	Сотые доли									
х	0	1	2	3	4	5	6	7	8	9
0,0	0,0000	0040	0080	0120	0160	0199	0239	0279	0319	0359
0,1	0398	0438	0478	0517	0557	0596	0636	0675	0714	0753
0,2	0793	0832	0871	0910	0948	0987	1026	1064	1103	1141
0,3	1179	1217	1255	1293	1331	1368	1406	1443	1480	1517
0,4	1554	1591	1628	1664	1700	1736	1772	1808	1844	1879
0,5	1915	1950	1985	2019	2054	2088	2123	2157	2190	2224
0,6	2257	2291	2324	2357	2389	2422	2454	2486	2517	2549
0,7	2580	2611	2642	2673	2704	2734	2764	2794	2823	2852
0,8	2881	2910	2939	2967	2995	3023	3051	3078	3106	3133
0,9	3159	3186	3212	3238	3264	3289	3315	3340	3365	3389
1,0	3413	3438	3461	3485	3508	3531	3554	3577	3599	3621
1,1	3643	3665	3686	3708	3729	3749	3770	3790	3810	3830
1,2	3849	3869	3888	3907	3925	3944	3962	3980	3997	4015
1,3	4032	4049	4066	4082	4099	4115	4131	4147	4162	4177
1,4	4192	4207	4222	4236	4251	4265	4279	4292	4306	4319
1,5	4332	4345	4357	4370	4382	4394	4406	4418	4429	4441
1,6	4452	4463	4474	4484	4495	4505	4515	4525	4535	4545
1,7	4554	4564	4573	4582	4591	4599	4608	4616	4625	4633
1,8	4641	4649	4656	4664	4671	4678	4686	4693	4699	4706
1,9	4713	4719	4726	4732	4738	4744	4750	4756	4761	4767
2,0	4772	4778	4783	4788	4793	4798	4803	4808	4812	4817
2,1	4821	4826	4830	4834	4838	4842	4846	4850	4854	4857
2,2	4861	4864	4868	4871	4875	4878	4881	4884	4887	4890
2,3	4893	4896	4898	4901	4904	4906	4909	4911	4913	4916
2,4	4918	4920	4922	4925	4927	4929	4931	4932	4934	4936
2,5	4938	4940	4941	4943	4945	4946	4948	4949	4951	4952

2,6	4953	4955	4956	4957	4959	4960	4961	4962	4963	4964
2,7	4965	4966	4967	4968	4969	4970	4071	4972	4973	4974
2,8	4974	4975	4976	4977	4977	4978	4979	4979	4980	4981
2,9	4981	4982	4982	4983	4984	4984	4985	4985	4986	4986
3,0	4987	4987	4987	4988	4988	4989	4989	4989	4990	4990
3,1	4990	4991	4991	4991	4992	4992	4992	4992	4993	4993
3,2	4993	4993	4994	4994	4994	4994	4994	4995	4995	4995
3,3	4995	4995	4995	4996	4996	4996	4996	4996	4996	4997
3,4	4997	4997	4997	4997	4997	4997	4997	4997	4997	4998
3,5	4998	4998	4998	4998	4998	4998	4998	4998	4998	4998
3,6	4998	4998	4999	4999	4999	4999	4999	4999	4999	4999
3,7	4999	4999	4999	4999	4999	4999	4999	4999	4999	4999

Критерии для оценки контрольной работы:

- 1. Наличие разумных пояснений к выполняемым пунктам задания
- 2. Указание используемых формул
- 3. Соблюдение рекомендованного алгоритма решения задания
- 4. Точность вычислений
- 5. Решение всех указанных задач.

Перечень вопросов для подготовки к экзамену

Часть 1. Линейная алгебра и аналитическая геометрия

- 1. Декартовы координаты на плоскости. Координаты двух точек, симметричных относительно а) оси Ox, б) оси Oy, в) начала координат
- 2. Расстояние между двумя точками
- 3. Деление отрезка в данном отношении. Координаты середины отрезка
- 4. Определение линии на плоскости
- 5. Прямая линия на плоскости. Уравнение прямой с угловым коэффициентом
- 6. Общее уравнение прямой
- 7. Угол между прямыми

- 8. Условия параллельности и перпендикулярности прямых
- 9. Уравнение прямой, проходящей через заданную точку в заданном направлении
- 10. Уравнение прямой, проходящей через две заданные точки
- 11. Уравнение окружности
- 12. Определители второго порядка
- 13. Определители третьего порядка и их свойства. Миноры и алгебраические дополнения
- 14. Методы вычисления определителей третьего порядка
- 15. Решение систем линейных уравнений по формулам Крамера
- 16. Матрицы. Основные определения. Сложение и умножение матриц
- 17. Обратная матрица и ее вычисление
- 18. Решение системы линейных уравнений с помощью обратной матрицы
- 19. Векторы. Действия над ними. Скалярное произведение векторов.
- 20. Условия параллельности и перпендикулярности двух векторов.
- 21. Общее уравнение плоскости и его исследование.
- 22. Уравнение плоскости, проходящей через три данные точки.
- 23. Условия параллельности и перпендикулярности плоскостей.
- 24. Расстояние от точки до плоскости.
- 25. Прямая линия в пространстве. Канонические уравнения прямой.

Часть 2. Математический анализ. Элементы теории вероятностей.

- 1. Основные элементарные функции их свойства и графики.
- 2. Определение производной функции в точке. Таблица производных.
- 3. Правила дифференцирования.
- 4. Производная сложной функции.
- 5. Промежутки возрастания и убывания функции. Максимум и минимум функции.
 - 6. Наибольшее и наименьшее значения функции на отрезке.
 - 7. Первообразная. Неопределенный интеграл.
 - 8. Свойства неопределённого интеграла.
 - 9. Таблица неопределённых интегралов.
 - 10. Определение и свойства определенного интеграла.
 - 11. Геометрический смысл определенного интеграла.

- 12. Формула Ньютона-Лейбница.
- 13. Вычисление площадей плоских фигур с помощью определенного интеграла.
 - 14. Ряды. Необходимый признак сходимости числовых рядов.
 - 15. Дифференциальные уравнения первого порядка.
 - 16. Классическое и статистическое определения вероятности события.
 - 17. Теоремы сложения вероятностей.
 - 18. Теоремы умножения вероятностей.
 - 19. Формула Бернулли.
 - 20. Дискретные случайные величины. Закон распределения.
- 21. Математическое ожидание и дисперсия дискретной случайной величины.
- 22. Предмет и задачи математической статистики. Генеральная и выборочная совокупность.
 - 23. Вариационный ряд. Статистическое распределение выборки.
 - 24. Полигон частот. Гистограмма частот.
 - 25. Точечные и интервальные оценки параметров распределения.

Формат и содержание экзамена, критерии оценки.

Экзамен проводится в установленное расписанием время по утвержденным билетам. Билет содержит два теоретических вопроса и одно практическое задание. Практическое задание оформляется в письменном всеми необходимыми комментариями виде со алгоритму решения. На теоретические вопросы студент отвечает устно. Для получения оценки «Отлично» необходимо правильно решить практическое задание, знать основные положения теоретических вопросов и уметь объяснить любую, предложенную преподавателем, задачу из контрольной работы студента. Для получения оценки «Хорошо» необходимо знать основные положения теоретических вопросов и уметь объяснить любую, предложенную преподавателем, задачу из контрольной работы студента. Для получения оценки «Удовлетворительно» необходимо уметь объяснить любую, предложенную преподавателем, задачу из контрольной работы

Перечень рекомендуемой литературы

Основная литература:

- 1. Солодовников А.С., Бабайцев В.А., Браилов А.В., Шандра И.Г. Математика в экономике (в двух частях) М.: Финансы и статистика, 2005.
- 2. Шипачев В.С. Основы высшей математики. М.: Высшая школа, 2006.
- 3. Краснов М.А. и др. Вся высшая математика (в шести томах). М.: Эдиториал УРСС, 2000.
- 4. Кремер Н.Ш. и др. Высшая математика для экономистов. М.: ЮНИТИ, 2002.
- 5. Гмурман В.Е. Теория вероятностей и математическая статистика. М.: Высшая школа, 2006.

Дополнительная литература:

- 6. Кремер Н.Ш. и др. Практикум по высшей математике для экономистов. М.: ЮНИТИ, 2002.
- 7. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. М: Высшая школа, 2006.
- 8. Коровина Л.А. Математика (Элементы аналитической геометрии, линейной алгебры и линейного программирования): Методическое пособие по изучению курса и выполнению расчетных работ для студентов, обучающихся по специальности «Туризм». М.: МАТГР, 2007.
- 9. Коровина Л.А. Математика (дифференциальное и интегральное исчисления). Учебно-методическое пособие по изучению курса и выполнению расчётных работ. М.: МГИИТ, 2010.