1.Основные понятия

- 1. Получить дигидроксид свинца (амфотерный) и доказать его кислотно-основные свойства. Уравнения реакций написать в молекулярной и в сокращенной ионной форме.
- 2. Подобрать коэффициенты в следующих окислительно-восстановительных реакциях методом электронно-ионного баланса:

$$K_2CrO_4 + NaNO_2 + HCl \rightarrow CrCl_3 + NaNO_3 + KCl + H_2O.$$

 $Fe(OH)_2 + KClO + H_2O \rightarrow Fe(OH)_3 + KCl$

3. Получить из гидроксида кальция и серной кислоты основную соль, назвать ее. Перевести ее в нормальную соль. Уравнения реакций написать в молекулярной и в сокращенной ионной форме.

2.Количественные расчеты

- 1. Какой объем 5H раствора гидроксида натрия NaOH можно приготовить из 1000 г его 40%-ного раствора?
- 2. Какой объем 0,03H раствора ортофосфорной кислоты H_3PO_4 необходимо прибавить к 250 г 5%-ного раствора гидроксида калия для образования кислой соли гидрофосфата калия?

3. Термодинамика

1. Какое количество теплоты выделится при сгорании 2,6 г ацетилена (C_2H_2). Энтальпии образования ацетилена и продуктов сгорания равны:

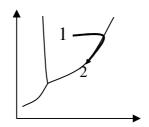
_	C_2H_2	CO_2	$H_2O(жидк.)$
ΔH^{o}_{f} кДж/моль	+226.8	-393,5	-285,8

2. Определить направление самопроизвольного протекания химической реакции в стандартных условиях. (Энтальпии образования (ΔH^o_f) и энтропии (S^o) веществ известны):

	$CO(\Gamma)$ +	FeO(кр) =	$= CO_2(\Gamma) +$	Fe(кр)
$\Delta { m H}^{ m o}_{ m f}$ кДж/моль	-110.53	-264.85	-393.51	0
S° Дж/моль*К	197.55	60.75	213.66	27.15

3. Нарисовать в общем виде график изменения энтальпии вещества при повышении температуры вещества.

4.Кинетика


- 1. Как изменится скорость реакции $2A+B \rightarrow A_2B$, если при постоянной температуре увеличить концентрацию вещества A в 5 раз, а B в 10 раз. Кинетический порядок реакции по веществу B равен 0, по A-1.
- 2. Реакция протекает по уравнению 2A + B = C. Концентрации веществ в начальный момент времени равны $[A]_0 = 1.6$ моль/л, $[B]_0 = 0.8$ моль/л, константа скорости реакции равна $0.9 \, \text{л}^2$ моль 2 с $^{-1}$. Вычислите скорость реакции в начальный момент, а также в момент, когда концентрация вещества A уменьшится до 1.4 моль/л.
 - 3. Время полупревращения. Зависимость от концентрации.

5.Равновесие

1. Какая из перечисленных солей подвергается гидролизу: MgCl₂, Na₂SO₄, NaClO, KNO₃? Рассчитать pH раствора, если концентрация этой соли равна 0.2 моль/л, а константа диссоциации кислоты равна $K_a = 2.82 \cdot 10^{-8}$.

Химия Вариант 15

- 2. Рассчитать pH раствора щавелевой кислоты $(H_2C_2O_2)$ концентрации 23.2 г/л, константа диссоциации кислоты равна $K_{a1} = 6.46 \cdot 10^{-2}$.
- 3. В результате протекания реакции $2NO_2 \Leftrightarrow 2NO + O_2$ при определенной температуре и давлении система пришла в состояние химического равновесия. Как изменятся равновесные концентрации реагентов, если увеличить давление системе.
- 4. Рассчитать растворимость дигидроксида магния $(Mg(OH)_2)$ в г/л, $\Pi P = 6.8 \cdot 10^{-12}$. Как изменится концентрация ионов магния в растворе, если в растворе имеется избыток щелочи (NaOH) концентрация 0.1 моль/л (α =1)?
- 5. Описать переход $1 \rightarrow 2$

6.Электрохимия

- 1. Какие процессы протекают при электрохимической коррозии никелированного медного изделия в в воде (pH≈7) при нарушении покрытия?
- 2. Какие коррозионные процессы протекают при работе изделия из железа во влажной атмосфере при его неравномерной аэрации?
- 3. Составить гальванический элемент, в котором никель является катодом. Вычислить ЭДС в стандартных условиях и при уменьшении концентрации ионов никеля у катода до 0.1моль/л. (Объемы электролитов у анода и катода равны).
- 4. Составить гальванический элемент с серебряным катодом. Написать уравнения реакций, протекающих на электродах при работе этого элемента. Вычислить ЭДС, если концентрация ионов металла у катода равна 0,1 моль/л, а у анода 0,001 моль/л.
- 5. При электролизе водного раствора сульфата калия (K_2SO_4) с инертными электродами на катоде выделилось 2 г вещества. Какое это вещество? Какой продукт, и в каком количестве выделился на аноде?
- 6. При электролизе водного раствора соли MeCl₃ в течение 160.83 минут при токе равном 10 А. с инертным анодом на катоде выделилось 69.67 г металла. Определить металл, вычислив его атомную массу. Какой продукт, и в каком количестве выделится на аноде?

	Осн.	Терм.	Кин.	Равн.	Кол.Х	BMC	Эл.х	Корр	Атом	Хим.	Хим.
	понятия									св.	AH.
ДЗ	1 2	3	4	5	-	-	6	6	?	7	-
										H ₂ Te	
										Li ₂	
Лаб.	1	-	2	-	-	-	3	4	-	-	?
Конс.	-	+	+	+	+	+	-	-	+	+	+
Тест	-	-	-	-	+	+	-	-	+		-
Тема											