Инженерная и компьютерная графика |
Конспект лекций |
назад | содержание | вперёд |
Лекция 1.7 - АКСОНОМЕТРИЧЕСКИЕ ПРОЕКЦИИ
1.7.1 - ОБЩИЕ ПОЛОЖЕНИЯ
Аксонометрические изображения широко применяются благодаря хорошей наглядности и простоте построений.
Слово «аксонометрия» в переводе с греческого означает измерение по осям. Аксонометрический метод может сочетаться и с параллельным, и с центральным проецированием при условии, что предмет проецируется вместе с координатной системой.
Сущность метода параллельного аксонометрического проецирования заключается в том, что предмет относят к некоторой системе координат и затем проецируют параллельными лучами на плоскость вместе с координатной системой.
На рисунке 1.7.1 показана точка А, отнесенная к системе прямоугольных координат xyz. Вектор S определяет направление проецирования на плоскость проекций П*.
Аксонометрическую проекцию А1* горизонтальной проекции точки А принято называть вторичной проекцией.
Искажение отрезков осей координат при их проецировании на П' характеризуется так называемым коэффициентом искажения.
Коэффициентом искажения называется отношение длины проекции отрезка оси на картине к его истинной длине.
Так по оси x* коэффициент искажения составляет u=0*x*/0x, а по оси y* и z* соответственно υ=0*y*/0y и ω=0*z*/0z.
В зависимости от отношения коэффициентов искажения аксонометрические проекции могут быть:
Изометрическими, если коэффициенты искажения по всем трем осям равны между собой; в этом случае u=υ=ω;
Рисунок 1.7.1 – Сущность метода аксонометрического проецирования
Диметрическими, если коэффициенты искажения по двум любым осям равны между собой, а по третьей – отличается от первых двух;
Триметрическими, если все три коэффициента искажения по осям различны.
Аксонометрические проекции различаются также и по тому углу φ, который образуется проецирующим лучом с плоскостью проекций. Если φ≠ 90o, то аксонометрическая проекция называется косоугольной, а если φ= 90o – прямоугольной.
1.7.2 - ОСНОВНАЯ ТЕОРЕМА АКСОНОМЕТРИИ (ТЕОРЕМА ПОЛЬКЕ)
Рассмотрев общие сведения об аксонометрических проекциях, можно сделать следующие выводы:
- аксонометрические чертежи обратимы;
- аксонометрическая и вторичная проекции точки вполне определяют её положение в пространстве.
Аксонометрические проекции обратимы, если известна аксонометрия трех главных направлений измерений фигуры и коэффициенты искажения по этим направлениям.
Аксонометрические проекции фигуры являются её проекциями на плоскости произвольного положения при произвольно выбранном направлении проецирования.
Очевидно, возможно и обратное. На плоскости можно выбрать произвольное положение осей с произвольными аксонометрическими масштабами.
В пространстве всегда возможно такое положение натуральной системы прямоугольных координат и такой размер натурального масштаба по осям, параллельной проекцией которых является данная аксонометрическая система.
Немецкий ученый Карл Польке (1810-1876) сформулировал основную теорему аксонометрии: три отрезка прямых произвольной длины, лежащих в одной плоскости и выходящих из одной точки под произвольными углами друг к другу, представляют параллельную проекцию трех равных отрезков, отложенных на координатных осях от начала.
Согласно этой теореме, любые три прямые в плоскости, исходящие из одной точки и не совпадающие между собой, можно принять за аксонометрические оси. Любые отрезки произвольной длинны на этих прямых, отложенные от точки их пересечения, можно принять за аксонометрические масштабы. Эта система аксонометрических осей и масштабов является параллельной проекцией некоторой прямоугольной системы координатных осей и натуральных масштабов.
В практике построения аксонометрических изображений обычно применяют лишь некоторые определенные комбинации направлений аксонометрических осей и аксонометрических масштабов: прямоугольная изометрия и диметрия, косоугольная фронтальная диметрия, кабинетная проекция и др.
1.7.3 - СТАНДАРТНЫЕ АКСОНОМЕТРИЧЕСКИЕ ПРОЕКЦИИ
Согласно ГОСТ 2.317-69, из прямоугольных аксонометрических проекций рекомендуется применять прямоугольные изометрию и диметрию.
Рисунок 1.7.3.1 – Расположение осей в изометрии
Между коэффициентами искажения и углом φ, образованным направлением проецирования и картинной плоскостью, существует следующая зависимость:
u2+υ2+ω2=2+ctq2φ,
если φ=90o, то u2+υ2+ω2=2,
В изометрии u=υ=ω и, следовательно, 3u2=2, откуда u=Ö2/3 ≈ 0,82.
Таким образом, в прямоугольной изометрии размеры предмета по всем трем измерениям сокращаются на 18 %. ГОСТ рекомендует изометрическую проекцию строить без сокращения по осям координат (рисунок 1.7.3.1), что соответствует увеличению изображения против оригинала в 1,22 раза.
Рисунок 1.7.3.2 – Расположение осей в диметрии
При построении прямоугольной диметрической проекции сокращение длин по оси y' (рисунок 1.7.3.2) принимают вдвое больше, чем по двум другим, т.е. полагают, что
u=ω, а υ=0,5u.
Тогда 2u2+(0,5u)2=2, откуда u2=8/9 и u≈0,94, а υ=0,47.
В практических построениях от таких дробных коэффициентов обычно отказываются, вводя масштаб увеличения, определяемый соотношением 1/0,94=1,06, и тогда коэффициенты искажения по осям x' и z' равны единице, а по оси y' вдвое меньше υ=0,5.
Из косоугольных аксонометрических проекций ГОСТом предусмотрено применение фронтальной и горизонтальной изометрии и фронтальной диметрии (последнюю ещё называют кабинетной проекцией).
1.7.4 - ОКРУЖНОСТЬ В АКСОНОМЕТРИИ
При параллельном проецировании окружности на какую-нибудь плоскость П* получаем ее изображение в общем случае в виде эллипса (рисунок 1.7.4.1).
Как бы ни была расположена плоскость окружности, сначала целесообразно построить параллелограмм A*B*C*D* – параллельную проекцию квадрата ABCD, описанного около данной окружности, а затем с помощью восьми точек и восьми касательных вписать в него эллипс.
Точки 1, 3, 5 и 7 – середины сторон параллелограмма. Точки 2, 4, 6 и 8 расположены на диагоналях так, что каждая из них делит полудиагональ в соотношении 3:7.
Действительно, на основании свойств параллельного проецирования можно записать, что А2/1О=A*2*/2*O*, Но А1/1О=(r√2-r)/r≈3/7.
Из восьми касательных к эллипсу первые четыре – это стороны параллелограмма, а остальные t2, t4, t6 и t8– прямые, параллельные его диагоналям. Так касательная t2* к эллипсу параллельна диагонали C*D*, Объясняется это тем, что t2* и C*D* являются проекциями двух параллельных прямых t2 и CD.
Рисунок 1.7.4.1 – Проецирование окружности на плоскость
Графические построения, предшествующие вычерчиванию самого эллипса, целесообразно выполнять в следующей последовательности (рисунок 1.7.4.2):
Рисунок 1.7.4.2 – Построение эллипса
1. Построить аксонометрическую проекцию квадрата - параллелограмм A*B*C*D* и провести диагонали A*C* и B*D*;
2. Отметить середины сторон параллелограмма – точки 1*, 3*, 5* и 7*;
3. На отрезке 3*B*, как на гипотенузе, построить прямоугольный равнобедренный треугольник 3*KB*;
4. Из точки 3* радиусом 3*K описать полуокружность, которая пересечет A*B* в точках L и M; эти точки делят отрезок 3*A* и равный ему отрезок 3*B* в отношении 3:7;
5. Через точки L и М провести прямые параллельные боковым сторонам параллелограмма, и отметить точки 2*, 4*, 6* и 8* расположенные на диагоналях;
6. Построить касательные к эллипсу в найденных точках. Касательных t2 и t6 параллельны BD, а касательных t4 и t8 параллельны AC.
7. Получив восемь точек и столько же касательных, можно с достаточной точностью вычертить эллипс.
ГОСТ 2.317-69 определяет положение окружностей, лежащих в плоскостях, параллельных плоскостям проекций для прямоугольной изометрической проекции (рисунок 1.7.4.3) и для прямоугольной диметрии (рисунок 1.7.4.4).
Рисунок 1.7.4.3 – Изометрические проекции окружностей, расположенных в плоскостях параллельных плоскостям проекций
Рисунок 1.7.4.4 – Диметрические проекции окружностей, расположенных в плоскостях параллельных плоскостям проекций
Если изометрическую проекцию выполняют без искажения по осям x, y, z, то большая ось эллипсов 1,2, 3 равна 1,22, а малая ось -0.71 диаметра окружности.
Если изометрическую проекцию выполняют с искажением по осям x, y, z, то большая ось эллипсов 1, 2, 3 равна диаметру окружности, а малая - 0.58 диаметра окружности.
Если диметрическую проекцию выполняют без искажения по осям x и z то большая ось эллипсов 1, 2, 3 равна 1,06 диаметра окружности, а малая ось эллипса 1 - 0.95, эллипсов 2 и 3 - 0.35 диаметра окружности.
Если диметрическую проекцию выполняют с искажения по осям x и z, то большая ось эллипсов 1, 2, 3 равна диаметру окружности, а малая ось эллипса 1 - 0.9, эллипсов 2 и 3 - 0,33 диаметра окружности.
1-эллипс (большая ось расположена под углом 900 к оси y); 2-эллипс (большая ось расположена под углом 900 к оси z); 3-эллипс (большая ось расположена под углом 900 к оси x).
назад | содержание | вперёд