Практическая работа №11

Циклы while и do

1. Задание

Составить программу, которая:

- 1) вычисляет и распечатывает приближенное значение суммы, указанной в пункте «а» варианта задания, для произвольного значения x, которое должно вводиться с клавиатуры. Суммирование прекращается, если абсолютная величина очередного элемента суммы становится меньше 10^{-7} ;
- 2) вычисляет и распечатывает наименьший номер элемента последовательности, заданной рекуррентной формулой в пункте «б» варианта задания, для которого выполняется указанное в задании условие.

2. Требования к выполнению задания

При выполнении задания необходимо придерживаться следующих основных требований:

- 1) решение задач должно выполняться с использованием операторов присваивания, описания, циклов **while** и **do**, а также функций ввода и вывода;
- 2) при решении задачи, указанной в пункте «а», требуется использовать оператор цикла **while**, значения параметра x следует вводить с клавиатуры;
- 3) при организации цикла в пункте «б» следует вывести рекуррентную формулу, связывающую два последовательных элемента суммы, вывод формулы включается в текст отчета;
 - 4) задача из пункта «в» решается с использованием оператор цикла do;
- 5) для проверки программы следует подготовить таблицу трассировки для каждого цикла;
 - 6) обязательно наличие исходного текста программы, записанного в файле;
 - 7) все операторы цикла должны оформляться с помощью отступов.

3. Примечания

Циклом называется управляющая конструкции языка программирования, предназначенная для организации многократного выполнения некоторого множества операторов. Множество операторов, которые должны многократно выполняться в цикле, принято называть телом цикла.

3.1 Оператор цикла while

Общая форма оператора цикла while имеет следующий вид:

<цикл while>: while (<условие>) [<оператор>];

Оператор, представляющий собой тело цикла, может быть пустым оператором, единственным оператором или составным оператором.

Условие (управляющее выражение) может быть любым допустимым выражением. Если значение выражения не равно нулю, то считается, что **условие** принимает значение ИСТИНА. В противном случае предполагается, что условие имеет значение ЛОЖЬ.

При выполнении цикла while:

- вычисляется значение управляющего выражения;
- если значение выражения не равно нулю, то выполняется оператор, представляющий собой тело цикла, если он существует;
- в противном случае выполнение цикла **while** прекращается и продолжается выполнение программы, начиная с оператора, следующего за **while**;
- если начальное значение управляющего выражения равно ЛОЖЬ (0), то тело цикла не выполняется ни разу.

Если в качестве тела цикла используется составной оператор, то оператор цикла необходимо оформлять следующим образом:

Ключевое слово **while**, условие и открывающая фигурная скобка составного оператора располагаются в отдельной строке. Операторы тела цикла сдвигаются вправо на 2-3 позиции, а закрывающая скобка также располагается в отдельной строке, находясь в позиции, с которой начинается **while**.

```
Пример. Вычислить сумму целых чисел от 1 до 100.

int main() {
    double x, s;
    x=0;
    s=0;
    while (x<100){
        x=x+1;
        s=s+x;
    }
    printf("s= %f\n", s);
}
Тело цикла while может быть пустым. Например, цикл

while ( getchar() != 'A');
```

выполняется до тех пор, пока пользователь не введет символ 'А'.

3.2 Оператор цикла do

Общая форма оператора цикла do имеет следующий вид:

```
<oneparop do>: do [<oneparop>]; while (<ycловие>);
```

Оператор, представляющий собой тело цикла, может быть пустым оператором, единственным оператором или составным оператором. Если оператор опускается, то символ «;» необходимо сохранить.

Условие (управляющее выражение) может быть любым допустимым выражением. Если значение выражения не равно нулю, то считается, что **условие** принимает значение ИСТИНА. В противном случае предполагается, что условие имеет значение ЛОЖЬ.

При выполнении цикла **do**:

- выполняется оператор, представляющий собой тело цикла, если он существует;
- вычисляется значение управляющего выражения;
- если значение выражения не равно нулю, то снова выполняется тело цикла;
- в противном случае выполнение цикла **do** прекращается и продолжается выполнение программы, начиная с оператора, следующего за конструкцией **while** (<условие>);
- тело цикла всегда выполняется, по крайней мере, один раз.

Если в качестве тела цикла используется составной оператор, то оператор цикла необходимо оформлять следующим образом:

Ключевое слово **do** и открывающая фигурная скобка составного оператора располагаются в отдельной строке. Операторы тела цикла сдвигаются вправо на 2-3 позиции, а закрывающая скобка и **while** (<ycловие>) располагается в отдельных строках без сдвига.

Пример. Методом последовательных приближений вычислить значение корня уравнения $x=\cos(x)$, используя рекуррентную формулу $x_{n+1}=\cos(x_n)$ с начальным приближением $x_0=1$. Вычисления прекратить при выполнении условия $|x_{n+1}-x_n|<10^{-4}$.

```
int main() {
    double x0,x1;
    x1=1;
    do {
        x0=x1;
        x1=cos(x0); }
    while (abs(x0-x1)>=1e-4);
    printf("x= %f\n",x1);
    system ("pause");
}
```

4. Операторы break и continue

Иногда бывает удобно выйти из цикла не по результату проверки, осуществляемой в начале или в конце цикла, а каким-то другим способом. Такую возможность для циклов for, while и do-while, а также для переключателя switch предоставляет оператор break, который вызывает немедленный выход из самого внутреннего из объемлющих его циклов или переключателей.

Оператор **continue** вынуждает ближайший объемлющий его цикл начать следующий шаг итерации. Для **while** и **do-while** это означает немедленный переход к проверке условия, а для **for** – к приращению шага. Оператор **continue** можно применять только к циклам, но не к оператору выбора **switch**.

5. Пример выполнения задания

Задача «а»

Вычислить сумму
$$s = \sum_{i=1}^{\infty} \frac{(-1)^i x^{2i+1}}{2i(2i+1)!}$$
, для $x=2$ значение суммы $s=-0.8647$.

Для вычисления очередного элемента суммы выведем рекуррентную формулу, связывающую два элемента с последовательными номерами a_i и a_{i-1} . Запишем общую форму для i-го элемента

$$a_i = \frac{(-1)^i x^{2i+1}}{2i(2i+1)!}.$$

Аналогично для i-1-го элемента

$$a_{i-1} = \frac{(-1)^{i-1} x^{2(i-1)+1}}{2(i-1)(2(i-1)+1)!} = \frac{(-1)^{i-1} x^{2i-1}}{2(i-1)(2i-1)!},$$

т.е. общая форма элемента a_{i-1} получается путем подстановки значения i-1 вместо i формулу для a_i . Вычислим отношение

$$\frac{a_i}{a_{i-1}} = \frac{(-1)^i x^{2i+1}}{2i(2i+1)!} \frac{2(i-1)(2i-1)!}{(-1)^{i-1} x^{2i-1}} = -\frac{x^2(i-1)}{i(2i+1)2i} = -\frac{x^2(i-1)}{2i^2(2i+1)}.$$

При вычислении отношения учитывалось, что факториалы чисел определяются следующим образом: $i!=i(i-1)(i-2)\dots 2\cdot 1$, a $(2i)!=(2i)(2i-1)(2i-2)\dots 2\cdot 1$, $(2i+1)!=(2i+1)(2i)(2i-1)(2i-2)\dots 2\cdot 1$ и $(2i-1)!=(2i-1)(2i-2)\dots 2\cdot 1$.

Таким образом, получим, что следующий элемент суммы можно вычислить по известному значению предыдущего элемента с помощью формулы:

$$a_i = -a_{i-1} \frac{x^2(i-1)}{2i^2(2i+1)}.$$

В качестве начального значения, необходимого для вычисления по рекуррентной формуле, возьмем a_1 , выражение для которого легко получить, подставив 1 вместо i в общую форму i-го элемента:

$$a_1 = -\frac{x^3}{12}$$
.

Для проверки правильности вывода формулы вычислим a_2 по рекуррентной формуле.

$$a_2 = -a_1 \frac{x^2(2-1)}{2 \cdot 2^2(2 \cdot 2 + 1)} = -\frac{x^3}{12} \frac{x^2}{40} = \frac{x^5}{480}.$$

И на основе общей формы $a_2 = \frac{(-1)^2 x^{2\cdot 2+1}}{2\cdot 2(2\cdot 2+1)!} = \frac{x^5}{4\cdot 5!} = \frac{x^5}{480}$.

Тесты

Таблица трассировки для x=2

```
-0,666667
                -0,666667
1
2
      0.066667
                -0,600000
3
     -0,004233
                -0,604233
      0,000176
                -0,604056
5
     -0,000005
                -0,604062
6
      0.000000
                -0,604061
      0,000000
                -0,604061
```

```
#include "stdafx.h"
#include <iostream>
int main() {
   double s,a,x;
   int i;
   printf("Input x=");
   scanf("%lf",&x);
   s=0;
   a=-x*x*x/12;
   i=1;
   while (abs(a)>1e-7) {
     s=s+a;
     i=i+1;
     a=-a*x*x*(i-1)/(2.0*i*i*(2*i+1));
   printf("Sum= %f\n",s);
   system ("pause");
}
```

Задача «б»

Определить наименьший номер элемента последовательности, заданной рекуррентной формулой:

$$A_{n+1} = A_n + A_{n-1}$$
, $A_0 = 1$, $A_1 = 1$,

для которого выполняется условие $A_n > 100$. Значение номера n=11.

Тесты

Таблица трассировки

n		a2	a1	a0
	2	2,0000000	1,0000000	1,0000000
	3	3,0000000	2,0000000	1,0000000
	4	5,0000000	3,0000000	2,0000000
	5	8,0000000	5,0000000	3,0000000
	6	13,0000000	8,0000000	5,0000000
	7	21,0000000	13,0000000	8,0000000
	8	34,0000000	21,0000000	13,0000000
	9	55,0000000	34,0000000	21,0000000
	10	89,0000000	55,0000000	34,0000000
	11	144,0000000	89,0000000	55,0000000

Программа

```
int main() {
    double a0,a1,a2;
    int n;
    a1=1;
    a2=1;
    n=1;
    do {
        n=n+1;
        a0=a1;
        a1=a2;
        a2=a1+a0;}
    while (a2<=100);
    printf("n= %i\n",n);
    system ("pause");
}</pre>
```

6. Варианты заданий

Вариант 1.

a)
$$\sum_{i=1}^{\infty} \frac{(-1)^i x^i}{2i(2i)!}$$
, s=-0.4601

б)
$$A_{n+1} = \frac{A_n + A_{n-1}}{2}$$
, $A_1 = 1$, $A_2 = 10$, $|A_n - 7| < 10^{-4}$, $n = 16$

Вариант 2.

a)
$$\sum_{i=1}^{\infty} \frac{(-1)^i x^{2i}}{3i(2i)!}$$
, s=-0.5649

6)
$$A_{n+1} = 1.99 A_n - A_{n-1}$$
, $A_1 = 1$, $A_2 = 1$, $A_n > A_{n-1}$, $n=33$

Вариант 3.

a)
$$\sum_{i=0}^{\infty} \frac{(-1)^i x^{3i+1}}{(3i+1)!}$$
, s=1.3584

6)
$$A_{n+1} = \frac{A_n - A_{n-1}}{2}$$
, $A_1 = 1$, $A_2 = 2$, $|A_n| < 10^{-3}$, $n=18$

Вариант 4.

a) 6)
$$\sum_{i=0}^{\infty} \frac{(-1)^i x^i}{(2i)!}$$
, s=0.1559

6)
$$A_{n+1} = 2.01A_n - A_{n-1}$$
, $A_1 = A_2 = 1$, $|A_n| > 2$, $n=14$

Вариант 5.

a)
$$\sum_{i=1}^{\infty} \frac{x^i}{i!i}$$
, s=3.6839

6)
$$A_{n+1} = nA_n + A_{n-1}$$
, $A_1 = 0$, $A_2 = 0.1$, $|A_n| > 100$, n=7

Вариант 6.

a)
$$\sum_{i=0}^{\infty} \frac{(-1)^i x^{2i+1}}{i!(2i+1)}$$
, s=0.8821

6)
$$A_{n+1} = A_n + 1.1A_{n-1}$$
, $A_0 = 0.1$, $A_1 = 0.2$, $A_n > 100$, $n=14$

Вариант 7.

a)
$$\sum_{i=0}^{\infty} \frac{(-1)^i x^{2i+1}}{(2i+1)!(2i+1)}$$
, s=1.6054

6)
$$A_{n+1} = \frac{A_n}{n} + A_{n-1}$$
, $A_0 = 1$, $A_1 = 1.1$, $A_n > 5$, $n=14$

Вариант 8.

a)
$$\sum_{i=1}^{\infty} \frac{(-1)^i x^{2i}}{(2i)!2i}$$
, s=-0.8474

6)
$$A_{n+1} = \frac{A_n + A_{n-1}}{n}$$
, $A_0 = A_1 = 1$, $A_n < 10^{-3}$, $n = 13$

Вариант 9.

a)
$$\sum_{i=0}^{\infty} \frac{x^{2i+1}}{(2i+1)(i+1)!}$$
, s=6.1062

б)
$$A_{n+1} = e^{-(A_n + A_{n-1})}$$
, $A_0 = 0$, $A_1 = 1$, $|A_n - A_{n-1}| < 10^{-4}$, $n=1.8$

Вариант 10.

a)
$$\sum_{i=0}^{\infty} \frac{(-1)^i x^{2i+1}}{(2i+1)(i+2)!}$$
, s=0.7231

б)
$$A_{n+1} = A_n + e^{-A_{n-1}}$$
, $A_0 = 10$, $A_1 = 1$, $|A_n - 3| < 0.01$, $n = 16$

Вариант 11.

a)
$$\sum_{i=0}^{\infty} \frac{x^{2i}}{(2i)!}$$
, s=3.7622

6)
$$A_{n+1} = \operatorname{tg} \frac{A_n + A_{n-1}}{2}$$
, $A_0 = A_1 = 1$, $|A_n| < 0.2$, $n=10$

Вариант 12.

a)
$$\sum_{i=0}^{\infty} \frac{x^{2i+1}}{(2i+1)!}$$
, s=3.6269

6)
$$A_{n+1} = A_n + nA_{n-1}$$
, $A_0 = 0$, $A_1 = 1$, $A_n > 6000$, $n=10$

Вариант 13.

a)
$$\sum_{i=0}^{\infty} \frac{(-1)^i x^i}{(2i+3)i!}$$
, s=0.1157

6)
$$A_{n+1} = \sin A_n + A_{n-1}$$
, $A_0 = 0$, $A_1 = 1$, $A_n > 5$, $n=11$

Вариант 14.

a)
$$\sum_{i=0}^{\infty} \frac{(-1)^i x^{2i}}{(2i)!}$$
, s=-0.4161

6)
$$A_{n+1} = \lg |A_n - A_{n-1}|$$
, $A_0 = 1$, $A_1 = 100$, $|A_n + 1.42| < 10^{-4}$, $n=13$

Вариант 15.

a)
$$\sum_{i=0}^{\infty} \frac{(-1)^i x^{2i+1}}{(2i+1)!}$$
, s=0.9093

6)
$$A_{n+1} = A_n + e^{-A_{n-1}}$$
, $A_0 = 10$, $A_1 = 1$, $A_n > 3$, $n=16$

6

Вариант 16.

a)
$$\sum_{i=0}^{\infty} \frac{x^{3i+2}}{(3i)!}$$
, s=9.6946

$$6) A_{n+1} = \sin A_n + A_{n-1}, A_0 = 1, A_1 = 2, A_n < 0, n=10$$

Вариант 17.

a)
$$\sum_{i=0}^{\infty} \frac{x^{3i+3}}{(2i+2)!}$$
, s=7.4890

б)
$$A_{n+1} = nA_n - \frac{1}{n}A_{n-1}$$
, $A_0 = 0$, $A_1 = 1$, $A_n > 10^4$, $n=9$

Вариант 18.

a)
$$\sum_{i=1}^{\infty} \frac{x^{2i-1}}{(2i+1)!}$$
, s=0.4067

6)
$$A_{n+1} = \frac{\cos A_n}{n} + A_{n-1}$$
, $A_0 = 1$, $A_1 = 0.3$, $A_n \le -0.5$, $n=15$

Вариант 19.

a)
$$\sum_{i=1}^{\infty} \frac{(-1)^i x^{i+1}}{i!(i+1)}$$
, s=-1.1353

б)
$$A_{n+1} = n(n+1)A_n + n^2 A_{n-1}$$
, $A_0 = 1$, $A_1 = 2$, $A_n > 10^8$, n=8

Вариант 20.

a)
$$\sum_{i=0}^{\infty} \frac{x^{2i+2}}{i!(2i+1)}$$
, s=32.9053

6)
$$A_{n+1} = \frac{n}{n+1} A_n - A_{n-1}$$
, $A_0 = 1$, $A_1 = 10$, $|A_n| > 10$, $n=9$

Вариант 21.

a)
$$\sum_{i=1}^{\infty} \frac{(-1)^i x^{2i-2}}{(2i)!(2i+2)}$$
, s=-0.0998

6)
$$A_{n+1} = \frac{n}{n+1} A_n + \frac{1}{n} A_{n-1}$$
, $A_0 = 0.1$, $A_1 = 1$, $A_n > 1$, $n=10$

Вариант 22.

a)
$$\sum_{i=1}^{\infty} \frac{(-1)^i x^{i-1}}{(2i)!(i+1)}$$
, s=-0.2236

6)
$$A_{n+1} = \frac{1}{n} \operatorname{tg} A_n - A_{n-1}$$
, $A_0 = 0$, $A_1 = 0.1$, $|A_n| < 10^{-3}$, n=7

Вариант 23.

a)
$$\sum_{i=0}^{\infty} \frac{(-1)^i x^{3i+3}}{(2i+1)!}$$
, s=0.8714

б)
$$A_{n+1} = e^{-n} A_n + e^n A_{n-1}$$
, $A_0 = 1$, $A_1 = 1$, $A_n > 10^4$, $n=7$

Вариант 24.

a)
$$\sum_{i=1}^{\infty} \frac{(-1)^i x^{2i+3}}{i(i+1)!}$$
, s=-9.7017

6)
$$A_{n+1} = A_n - \frac{e^{-n}}{n} A_{n-1}$$
, $A_0 = 2$, $A_1 = 2.9887$, $|A_n - 2| < 10^{-5}$, $n=11$

Вариант 25.

a)
$$\sum_{i=1}^{\infty} \frac{(-1)^i x^{2i-2}}{(2i)!(2i+2)}$$
, s=-0.0998

6)
$$A_{n+1} = \frac{n+2}{n} A_n - \operatorname{tg} A_{n-1}$$
, $A_0 = 0$, $A_1 = 1$, $|A_n| < 0.2$, $n=8$

7