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Preface

This book was conceived as an introduction to Cp-theory with the intent that it could

also be used as a reference guide for specialists. The author’s idea was to make this

introduction accessible to any reader having a minimum of mathematical culture

and, possibly, with no topological background at all. This work is a unique attempt

to offer any undergraduate student an opportunity to plunge directly into the theory

of function spaces endowed with the topology of pointwise convergence. The main

difficulty in this quest is to achieve the level of understanding in general topology

needed to be able to work in Cp-theory. It often happens that a student who wants

to study function spaces is told that he (or she) has first to learn some general

topology. Many students are lost along this path because they feel that they have to

put a considerable effort into an area they have not chosen. Some students eventu-

ally do become topologists and discover that they need not look for another field.

General topology could be accused of many things but lack of interesting unsolved

problems is not one of them.

The author became a specialist in function spaces after publishing three papers

which had nothing to do with spaces Cp(X). At that time there were no books on this

topic at all, so all that was accessible were several (very good!) surveys of

Arhangel’skii. However, at the Department of Mechanics and Mathematics at the

Moscow State University, we had a very strong topology group in which progress

could be discussed and excellent tutors were available for advice and for instruc-

tion. For this reason our department produced several hundred international-level

topologists over a 30-year period with few texts, but many research papers with

which to consult.

In 1974 A.V. Arhangel’skii and V.I. Ponomarev published (in Russian) a book

entitled “Fundamentals of General Topology. Problems and Exercises”. This work

was translated into English ten years later. The author considers that this book

contributed dramatically to his development as a topologist. Of course, outside the

USSR there was the topologists’ vademecum written by Engelking [1977] which is

a truly excellent book. Unfortunately, it first came into the author’s hands after he

had written two papers on general topology; so he used it only as a reference guide.
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Even now, after almost twenty years of heavy duty use of both books, when it

comes to choosing an introduction to general topology, the author prefers the book

of Arhangel’skii and Ponomarev. While it is true that it presents less material than

Engelking’s, the book of Engelking gives complete proofs only for the textbook

results. Engelking’s book gives the reader an opportunity to arrive to the limit

of modern knowledge in quite a few areas of topology, but even a very strong

student won’t always be able to assimilate professionally its outlined proofs and

constructions.

Even though the book of Arhangel’skii and Ponomarev has fewer topics than

Engelking’s, the range of their material is impressive. Additionally, each area is

presented in great detail and the proofs and constructions are complete. Another

advantage to their text is that all proofs are concentrated in the final parts of each

chapter and the reader mostly sees results (presented like problems) and definitions.

This makes it easier to grasp the general view of the topic and the methods that

are used.

The author accepts that he might be biased about the book of Arhangel’skii and

Ponomarev because he grew up having been nourished by it. All this praise is more

an explanation of why he wanted to write a book on Cp-theory resembling the same

format. Finally, this outline summarizes the points showing the potential usefulness

of the present work:

l The only background needed is some knowledge of set theory and real numbers.
Any reasonable course in calculus covers everything needed to understand
this book.

l The student can learn all of the general topology required without referring to
any textbook or papers. The amount of general topology in the text is strictly
minimal and is presented in such a way that the student works with the spaces
Cp(X) from the very beginning.

l This text can also be used as a reference for mathematicians working in, or
working outside of topology (in functional analysis, for example) wanting to use
results or methods of Cp-theory. He (or she) will find them easily in a concen-
trated form or with full proofs if there is such a need.

l The material presented here is up to date and brings the reader to the frontier of
a reasonable number of important areas of Cp-theory.

l This book appears to be the first self-contained introduction to Cp-theory.
Although there is an excellent textbook written by Arhangel’skii [1992a], it
heavily depends on the reader’s good knowledge of general topology.

June, 2010 Vladimir V. Tkachuk
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Convergence and Fréchet-Urysohn property

in Cp(X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Problems 1.143–1.147

Tightness of Cp(X) and Lindelöf number
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Introduction

The term “Cp-theory” was coined to abbreviate the phrase “The theory of function

spaces endowed with the topology of pointwise convergence”. The credit for the

creation of Cp-theory must undoubtedly be given to Alexander Vladimirovich

Arhangel’skii. The author is proud to say that Arhangel’skii also was the person

who taught him general topology and guided his PhD thesis. Arhangel’skii was the

first to understand the need to unify and classify a bulk of heterogeneous results

from topological algebra, functional analysis and general topology. He was also the

first to obtain crucial results that made this unification possible and the first to

formulate a critical mass of open problems which showed this theory’s huge

potential for development.

Later, many mathematicians worked hard to contribute to Cp-theory giving it the

elegance and beauty that it boasts today. The author hopes that the work he presents

will help to attract more people to this area of mathematics.

The main text of this work consists of 500 statements formulated as problems

and it constitutes Chapter 1. These statements form an introduction to Cp-theory

and general topology and provide a gradual development of many popular topics of

Cp-theory to bring the reader to the frontier of present day knowledge. A complete

solution is given to every problem in the main text.

The material of Chapter 1 is divided into five sections with 100 problems in each

one. The sections start with an introductory part where the definitions and concepts

to be used are given. The introductory part of any section never exceeds two pages
and covers everything that was not defined previously.Whenever possible, we try to

save the reader the effort of ploughing through various sections, chapters and

volumes so we give the relevant definitions in the current section not caring

much about possible repetitions.

Chapter 1 ends with some bibliographical notes to give the most important

references related to its results. The selection of references is made according

to the author’s preferences and cannot be considered complete. A complete list

of contributors to the material of Chapter 1 can be found in our bibliography of

200 items, presented in Chapter 5. I acknowledge that I consulted the paper of
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Arhangel’skii [1998a] to include quite a few of its 375 references in my

bibliography.

Sometimes as we formulate a problem, we use (without reference) definitions

and constructions introduced in other problems. The general rule is to try to find the

relevant definition not more than ten problems before.
We have followed the example of A.V. Arhangel’skii and V.I. Ponomarev’s

book [1974] which is an introduction to general topology containing 1587 problems

and exercises. Implementing this is more difficult in our case because the reader has

to get the hang of the basics of the two theories at the same time. We believe that

our approach is analogous to the situation of a small child who learns two languages

simultaneously with less effort than learning one followed by another.

With this idea in mind, we introduce the reader to the basics of general topology

reminding him (or her) at every moment, that all of the accumulated knowledge

must be applied to spaces Cp(X) and to learn as much as possible about them. This is

supposed to give the reader the impression of studying just one theory and not two.

The non-Cp material presented in Chapter 1 is more or less equivalent to the first

four chapters of Engelking’s book [1977]. It is more than sufficient for sailing on

one’s own in the sea of Cp-theory or any other area of topology. We have even

found it possible to include some highly non-trivial theorems on compact spaces

and spaces Cp(X). The fifth section is still introductory with regard to topology

while the results on realcompactness and functional tightness in Cp(X) are quite

specialized and form a part of the frontier of present-day knowledge.

The complete solutions of all problems of Chapter 1 are given in Chapter 2.

Chapter 3 begins with a selection of 100 statements which were proved as auxiliary

facts in the solutions of the problems of the main text. This material is split into six

sections to classify the respective results and make them easier to find. Chapter 4

consists of 100 open problems presented in 10 sections with the same idea: to

classify this bulk of problems and make the reader’s work easier.

Chapter 4 also contains an essential difference between the organization of

our text and the book of Arhangel’skii and Ponomarev: we never put unsolved
problems in the main text as is done in their book. All problems formulated in

Chapter 1 are given complete solutions in Chapter 2 and the unsolved ones are

presented in Chapter 4.

There is little to explain about how to use this book as a reference guide. In this

case the methodology is not that important and the only thing that the reader wants

is to find the results he (or she) needs as fast as possible. To help with this, the titles

of chapters and sections give the first approximation. To better see the material of a

chapter, one can consult the second part of the ‘Contents’ section where a detailed

summary is given; it is supposed to cover all topics presented in each section.

Besides, the index can also be used to find necessary material.

To sum up the main text, I believe that the coverage of Cp-theory will be

reasonably complete and many of the topics can be used by postgraduate students

who want to specialize in Cp-theory. This book can also be used as an introduction

to general topology. However, it would be a somewhat biased introduction, because
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the emphasis is always given to Cp-spaces and the topics are only developed when

they have some applications in Cp-theory.

In conclusion, let me quote an old saying which states that the best way for one to

learn a theorem is to prove it oneself. This text provides the possibility to do this. If

the reader’s wish is to read the proofs, there they are concentrated immediately after

the main text.
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1

Basic Notions of Topology and Function Spaces

We introduce the necessary minimum of general topology developing simultaneously

whatever is possible to develop in Cp-theory. This chapter is introductory and

contains the first 500 problems of this book. Nevertheless, many non-trivial and the

state-of-the-art results are proved here.

In Sect. 1.1 the concepts of a topology and a topological space are defined and

most important methods of generating topologies are presented. We discuss the

axioms of separation. The spaces Cp(X) are introduced and the simplest properties

of Cp(R) are studied. The main result of this section is the theorem that all of the

Cp-theory can be captured within the class of Tychonoff spaces (Problem 100).

In Sect. 1.2, we introduce the Tychonoff product and the discrete union of

spaces. Next, compactness, countable compactness, and pseudocompactness are

defined and their elementary properties are formulated. The most important cardi-

nal functions are discussed and first duality theorems are presented. The most

important result of this section is the theorem of J. Nagata (Problem 200).

Section 1.3 is devoted to metrizability, completeness and their generalizations.

We give the most important characterizations of paracompactness and study Čech-

complete and Baire spaces. The main results of this section are Reznichenko’s

theorem (Problem 294) and theorems on factorizations of continuous maps (Pro-

blems 298–300).

Section 1.4 introduces some advanced topics for dealing with compactness in

general and in Cp-theory in particular. We introduce linearly ordered spaces, dyadic

spaces and study their elementary properties. Several general theorems on compact

spaces are proved and some important concrete compact spaces are presented. The

main results are the characterizations of s-compactness and similar properties in

most important subspaces of Cp(X) and the Shakhmatov’s example of an infinite

space X whose Cp(X) is s-pseudocompact (Problem 400).

Section 1.5 starts with the basics of realcompactness and its applications in

function spaces. We also study Dieudonné complete spaces, pseudocomplete spaces

and projectively complete spaces. The main results are the duality theorems

for realcompactness (Problems 429 and 434), the characterization of discreteness

(Problem 487) and characterizations of bX and uX in algebraic terms (Problems 499

and 500).

V.V. Tkachuk, A Cp-Theory Problem Book: Topological and Function Spaces,
Problem Books in Mathematics, DOI 10.1007/978-1-4419-7442-6_1,
# Springer ScienceþBusiness Media, LLC 2011
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1.1 Topologies, Separation Axioms and a Glance at Cp(X)

Given a set X, let exp(X)¼fY: Y � Xg. A topological space is a pair (X, t), where
X is a set and t is any subfamily of exp(X) with the following properties:

(TS1) X 2 t and ; 2 t.
(TS2) If A, B 2 t then A \ B 2 t.
(TS3) If U � t then [ U 2 t.

The family t is called topology on the set X and the elements of t are called open
subsets of X. It is a common practice to write X instead of (X, t). In this case t(X)
denotes the topology of the space X. A family B � t(X) is a base of X if for every

U 2 t(X) there is a B0 � B such that [B0 ¼ U. A space is called second countable if
it has a countable base. A family S � t(X) is called subbase of X if all finite

intersections of the elements of S form a base in X. Given an x 2 X, a non-empty

family L � t(X) is called a local base of X at x if x 2 \L and x 2 U 2 t(X) implies

V � U for some V 2 L. A space which has a countable local base at every point is

called first countable.
Let X be a topological space. A subset F � X is called closed in X if X \ F is

open. Given A � X, the closure A of the set A in X is the intersection of all

closed subsets of X which contain A. The interior Int(A) of the set A is the union

of all open sets contained in A. In other words, Int(A) ¼ [fU : U 2 t(X) and
U � Ag. If it is necessary to emphasize the space of the closure (interior), we

write clX(A) (IntX(A), respectively); if t is a topology on X and the closure

(interior) is taken in (X, t) we write clt(A) (Intt(A), respectively) to avoid

confusion. If X is a topological space and A � X, we say that x 2 X is an

accumulation point of the set A, if x 2 Anfxg. A point a 2 A which is not an

accumulation point of A is called an isolated point of A. If no point x 2 X is

isolated in X then X is called dense-in-itself or crowded.
For a topological space X and Y � X, let tXY ¼ fU \ Y : U 2 t(X)g. The family tXY

is called the topology of subspace on Y induced (or inherited) from X (please, check

that tXY is indeed a topology!). The space (Y, tXY ) is called subspace Y of the space X.
In this book any subset of a space X is considered with the subspace topology if the

opposite is not stated explicitly.

The symbol R will always denote the real line with the natural topology N R ¼
f;g [ fU � R : for any x 2 U there is an ex > 0 with (x � ex, x þ ex) � Ug. (Please,
check that NR is indeed a topology!) The letter I stands for the closed interval

[�1, 1]�R, whileo¼ f0, 1, 2,� � �g is the set of natural numbers,N¼o\f0g andQ
is the set of rational numbers. All mentioned subsets of R are assumed to have the

topology inherited from R if they are referred to as topological spaces.

If X and Y are topological spaces and f : X! Y, the map f is called continuous if
f�1(U) 2 t(X) for any U 2 t(Y). Given x0 2 X, we say that f is continuous at the
point x0 if f(x0) 2 U 2 t(Y) implies f(V) � U for some V 2 t(X) such that x0 2 V.
A map f : X! Y is called a homeomorphism if it is a bijection and both mappings
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f and f�1 are continuous. The map f is an embedding if it is a homeomorphism

between X and f(X), where f(X)� Y has the subspace topology inherited from Y. The
spaces X and Y are homeomorphic if there exists a homeomorphism between them.

It is not possible to distinguish homeomorphic spaces from the topological point of

view, i.e., their topological properties are identical.

In this paragraph we list the axioms of separation for topological spaces. A space

X is a T0-space if x, y 2 X, x 6¼ y implies that there exists an open setU� X such that

U \ fx, yg consists of exactly one point. We say that X is a T1-space if for any x 2 X
the set fxg is closed in X. The space X is calledHausdorff or T2-space if for any x, y 2
X, x 6¼ y there exist U, V 2 t(X) such that x 2 U, y 2 V and U \ V ¼ ;. Now, X is

regular if for any closed set F � X and any x 2 X \ F there exist open sets U and V
such that x 2 U, F � V and U \ V ¼ ;. A regular T1-space is called T3-space. The
space X is completely regular if for any closed F � X and any x 2 X \ F there exists

a continuous function f : X ! R such that f(x) ¼ 1 and f(F) � f0g. A space is

Tychonoff or T31
2
-space if it is completely regular and T1. Finally, a space X is called

normal if for any closed sets F, G � X such that F \ G ¼ ; there exist open sets

U and V for which F � U, G � V and U \ V ¼ ;. A normal T1-space is called

T4-space.
If X and Y are topological spaces, then C(X, Y) is the set of all continuous maps

from X to Y and C(X)¼ C(X,R). A map f : X!R is called bounded if there isK 2R
such that jf(x)j � K for all x 2 X. The set ff 2 C(X) : f is boundedg is denoted by

C*(X). Given x1,� � �, xn 2 X and O1,� � �, On 2 t(Y), let [x1,� � �, xn; O1,� � �, On] ¼ ff 2
C(X, Y) : f(xi) 2 Oi for all i¼ 1,� � �, ng. Let PC(X, Y)¼ fU � C(X, Y) : for any f 2 U
we have f 2 [x1,� � �, xn;O1,� � �,On]�U for some n 2N, x1,� � �, xn 2 X andO1,� � �,On

2 t(Y)g. The family PC(X, Y) is called the topology of pointwise convergence on the
set C(X, Y) (please, check that the family PC(X, Y) is indeed a topology!). The space
(C(X, Y), PC(X, Y)) is traditionally denoted by Cp(X, Y). Of course, Cp(X, R) is
denoted by Cp(X) and C�pðXÞ is the set C*(X) with the topology inherited from

Cp(X). Given two mappings f, g : X! R and a l 2 R, let (f þ g)(x) ¼ f(x) þ g(x),
(f · g)(x)¼ f(x) · g(x), max(f, g)(x)¼maxff(x), g(x)g, min(f, g)(x)¼minff(x), g(x)g
and (lf)(x)¼ l · f(x) for all x 2 X. If g(x) 6¼ 0 for any x 2 X, let f

g

� �
ðxÞ ¼ f ðxÞ

gðxÞ for all

x 2 X. If X is a set and f, fn : X! R for each n 2 o, we say that the sequence ffng
converges uniformly to f (denoting it by fn!! f), if for any e > 0 there exists m 2 o
such that jfn(x) � f(x)j < e for all n � m and x 2 X.

If X and Y are topological spaces, a mapping ’ : Cp(X) ! Cp(Y) is called

isomorphism if ’ is a bijection, ’(f þ g) ¼ ’(f) þ ’(g) and ’(f · g) ¼ ’(f) · ’(g)
for all f, g 2 Cp(X). An isomorphism ’ : Cp(X) ! Cp(Y) is called a topological
isomorphism if it is a homeomorphism. The spaces Cp(X) and Cp(Y) are called

topologically isomorphic if there exists a topological isomorphism between

them. We will perceive topologically isomorphic function spaces as identical

because it is not possible to distinguish them by their topological or algebraic

properties.
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001. Let X be a topological space. Given an arbitrary set A � X, prove that x 2 A
if and only if U \ A 6¼ ; for any U 2 t(X) such that x 2 U.

002. Given a topological space X and a family B � t(X), prove that B is a

base of X if and only if for any U 2 t(X) and x 2 U there exists V 2 B such that

x 2 V � U.
003. Let X be a topological space. Prove that the familyF of all closed subsets of

X has the following properties:

(F1) X 2 F and ; 2 F .
(F2) If A, B 2 F then A [ B 2 F .
(F3) If g � F then \ g 2 F .

Now suppose that X is a set and F � exp(X) has the properties (F1)–(F3). Prove
that there exists a unique topology t on X such that F is the family of closed subsets

of (X, t).
004. Let X be a topological space. Show that the operator of the closure has the

following properties:

(C1) ; ¼ ;.
(C2) A [ B ¼ A [ B for any A, B � X.
(C3) A � A for any A � X.

(C4) A ¼ A for any A � X.

Now, suppose that X is a set and [·] is an operator on exp(X) with (C1)–(C4)

(i.e., [;] ¼ ;, [A [ B] ¼ [A] [ [B], A � [A] and [[A]] ¼ [A] for all A, B � X). Prove
that there exists a unique topology t on X such that [A] ¼ clt(A) for any A � X.
We will say that t is generated by the closure operator [·].

005. Let X be a topological space. Show that the operator of the interior has the

following properties:

(I1) Int(X) ¼ X.
(I2) Int(A \ B) ¼ Int(A) \ Int(B) for any A, B � X.
(I3) Int(A) � A for any A � X.
(I4) Int(Int(A)) ¼ Int(A) for any A � X.

Now, suppose that X is a set and h·i is an operator on exp(X) with (I1)–(I4) (i.e.,

h;i ¼ ;, hA \ Bi ¼ hAi \ hBi, hAi � A and hhAii ¼ hAi for all A, B� X). Prove that
there exists a unique topology t on X such that hAi ¼ Intt(A) for any A� X. We will

say that t is generated by the interior operator h·i.
006. Suppose that X is a topological space and B is a base of X. Prove that B has

the following properties:

(B1) [B ¼ X.
(B2) If U, V 2 B and x 2 U \ V then there is W 2 B such that x 2 W � U \ V.

Now, let X be a set without topology. Prove that, for any family B � exp(X) with
the properties (B1) and (B2), there exists a unique topology t on the set X such that

B is a base for (X, t). We will call t the topology generated by B as a base.
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007. Suppose that X is a topological space and, for each x 2 X we have a fixed

local base Bx at the point x. Show that the family fBx : x 2 Xg has the following

properties:

(LB1) Bx 6¼ ; and \Bx 3 x for every x 2 X.
(LB2) If x 2 X and U, V 2 Bx then there is W 2 Bx such that W � U \ V.
(LB3) If x 2 U 2 By then there is V 2 Bx such that V � U.

Now, suppose that X is an arbitrary set without topology and Bx is a family of

subsets of X for any x 2 X such that the collection fBx : x 2 Xg has the properties
(LB1)–(LB3). Show that there exists a unique topology t on the set X such that Bx is
a local base of (X, t) at x for any x 2 X. We will call t the topology generated by the
families fBx : x 2 Xg as local bases.

008. Prove that [S ¼ X for any subbase S of a topological space X. Now, let
X be an arbitrary set without topology. Prove that, for any family S � exp(X) with
[S ¼ X, there exists a unique topology t on X such that S is a subbase for (X, t). We

will call t the topology generated by S as a subbase.
009. Suppose that X and Y are topological spaces and we have a map f : X! Y.

Prove that the following conditions are equivalent:

(i) f is a continuous map.

(ii) There is a base B in Y such that f �1(U) is open in X for every U 2 B.
(iii) There is a subbase S in Y such that f�1(U) is open in X for every U 2 S.
(iv) f is continuous at every point x 2 X.
(v) f�1(F) is closed in X whenever F is closed in Y.
(vi) f(clX (A)) � clY ( f(A)) for any A � X.
(vii) clX (f�1(B)) � f�1(clY (B)) for any B � Y.
(viii) f�1(IntY (B)) � IntX ( f�1(B)) for any B � Y.

010. Show that any T1-space is a T0-space. Give an example of a T0-space which
is not a T1-space.

011. Show that any T2-space is a T1-space. Give an example of a T1-space which
is not a T2-space.

012. Show that any T3-space is a T2-space. Give an example of a T2-space which
is not a T3-space.

013. Show that any Tychonoff space is a T3-space.
014. Let Y ¼ f(x, y) 2 R2 : y � 0g. Denote by L the set f(x, y) 2 Y : y ¼ 0g. For

each z ¼ (x, 0) 2 L let Nz ¼ f(x, t) : 0 < t � 2g [ f(t þ x, t) : 0 < t � 2g. If z 2 Y \ L
we put Bz¼ ffzgg. Given z 2 L, let Bz¼ ffzg [ (Nz \ A) : A is a finite subset of Nzg.
Let p ¼ (0, �1) and X ¼ Y [ fpg. Denote by Bp the family ffpg [ On : n 2 og,
where On ¼ fz ¼ (x, y) 2 Y : x > ng for any n 2 o.

(i) Show that the families fBz : z 2 Xg satisfy the conditions (LB1)–(LB3) of

Problem 007 and hence they generate a topology t on X as local bases. Denote

by mY the topology of subspace of X on Y.
(ii) Prove that any U 2 Bz is closed in X for any z 2 Y. Deduce from this fact that

the space (Y, mY) is a Tychonoff one.
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(iii) Let f : Y! R be a continuous function. Assume that f(z) ¼ 0 for some z 2 L.
Prove that there exists a countable set N(f, z) � Nz such that f(u) ¼ 0 for any

u 2 Nz \ N(f, z).
(iv) Suppose that f : Y! R is a continuous function such that f jA � 0 for an

infinite A � Nz for some z 2 L. Prove that f(z) ¼ 0.

(v) Given r 2 R, assume that f : Y! R is a continuous function such that fjB � 0

for an infinite set B � [r, r þ 1] 	 f0g � L. Show that there is an infinite set

B0 � [r þ 1, r þ 2] 	 f0g for which fjB0 � 0.

(vi) Denote by Wn the set fpg [ On. Prove that Wnþ2 � Wn for any n 2 o (the

closure is taken in X). Deduce from this fact that X is a T3-space.
(vii) Let F¼ f(t, 0) : t 2 (�1, 0]g. Prove that F is closed in X and f(p)¼ 0 for any

function f 2 C(X) such that f(x) ¼ 0 for all x 2 F. Conclude that X is an

example of a T3-space which is not completely regular.

015. (Urysohn’s lemma). Let X be a normal space. Suppose that F and G
are non-empty closed subsets of X with F \ G ¼ ;. Prove that for any rational

q 2 [0, 1] one can choose an open set Uq in such a way that the following pro-

perties will hold:

(i) F � U0 and U1 ¼ X \ G.
(ii) Ur � Us if r < s.

Show that the function f : X! R defined by the formula

f ðxÞ ¼ inffr : x 2 Urg; if x 2 XnG
1; if x 2 G

(

is continuous and f(F) � f0g, f(G) � f1g. Deduce from this fact that any T4-space
is a Tychonoff space.

016. Prove that the space (Y, mY), constructed in Problem 014 is Tychonoff but

not normal.

017. Let X be a Ti-space for ib 3 1
2
. Prove that any subspace of X is a Ti-space.

018. Show that a closed subspace of a T4-space is a T4-space. Give an example of

a T4-space X such that some Y � X is not normal.

019. Prove that R is a T4-space.
020. Let U be a subspace of R. Given a function f : U ! R, prove that f is

continuous in the sense of Calculus (that is, for any x 2 U and e > 0 there is d > 0

such that y 2 U and jy � xj < d implies jf(y) � f(x)j < e) if and only if it is

continuous as a map between the spaces U and R.

021. Let X, Y and Z be topological spaces. Suppose that f2 C(X, Y) and g2 C(Y, Z).
Prove that h ¼ g ∘ f 2 C(X, Z). In other words, the composition of continuous maps is

a continuous map.

022. Suppose that X and Z are topological spaces and we have a map f : X! Z.
Given a subspace Y � X, let (fjY)(x) ¼ f(x) for any x 2 Y; this defines a map

fjY : Y! Z. Prove that, if f is a continuous map, then fjY is also continuous. In other

words, the restriction of a continuous map to a subspace is a continuous map.
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023. Let X and Z be topological spaces. Suppose that, for a map f : X ! Z and

a set T � Z, we have f(X) � T � Z. Prove that f is a continuous map if and only if

f is continuous considered as a mapping of X to T.
024. Prove that a composition of homeomorphisms is a homeomorphism.

025. Prove that, for any a, b 2 R with a < b, the interval (a, b) is homeomorphic

to R.

026. Prove that R is not homeomorphic to I.

027. Let X be a topological space. Given two mappings f, g : X! R and a l 2R,
show that

(i) If f, g 2 C(X) then f þ g 2 C(X) and f · g 2 C(X).
(ii) If f, g 2 C(X) and g(x) 6¼ 0 for any x 2 X then f

g 2 CðXÞ.
(iii) If f 2 C(X) then lf 2 C(X) for any l 2 R.

028. Let X be a topological space. Given two mappings f, g 2 C(X) prove that

max(f, g) 2 C(X) and min(f, g) 2 C(X).
029. Suppose that X is a topological space and fn : X ! R for all n 2 o.

Prove that, if ffn : n 2 og � C(X) and fn !! f, then f 2 C(X). In other words, the

limit of a uniformly convergent sequence of continuous functions is a continuous

function.

030. Suppose that X is a set and fn : X! R for each n 2 o. Let gn ¼ f0þ � � � þ fn
and assume that jfn(x)j � cn for every x 2 X and n 2 o. Assume additionally that the

series
P1

n¼0 cn converges, i.e., there is c 2 R such that for every e > 0, we can find

a number m 2 o such that jPn
k¼0 ck � cj< e for all n � m. Prove that the sequence

fgn : n 2 og converges uniformly on X, i.e., gn!! g for some g : X! R.

031. (The Tietze-Urysohn theorem) Let X be a normal space. Suppose that A is

a closed subspace of X and f : A! [a, b] � R is a continuous function. Prove that

there exists a continuous function F : X! [a, b] such that FjA ¼ f, i.e., F(x) ¼ f(x)
for all x 2 A.

032. Let X be a normal space. Suppose that A is a closed subspace of X and

f : A ! R is a continuous function. Prove that there exists a continuous function

F : X! R such that FjA ¼ f, i.e., F(x) ¼ f(x) for all x 2 A.
033. Prove that X is a normal space if and only if for any closed F, G � X with

F \ G ¼ ; there exists a continuous function f : X ! R such that f(F) � f0g and
f(G) � f1g.

034. Prove that, for an arbitrary Tychonoff space X, if we are given distinct

points x1,� � �, xn 2 X and (not necessarily distinct) r1,� � �, rn 2 R, then there exists

f 2 C(X) such that f(xi) ¼ ri for all i ¼ 1, � � �, n.
035. Suppose that X is a set and fn, gn : X!R for each n 2o. Prove that, if fn!! f

and gn!! g, then fn þ gn!! f þ g.
036. Let fn, gn 2 C(X) for some topological space X. Assume that we have fn!! f

and gn!! g. Is it always true that

(i) max(fn, gn)!! max(f, g)?
(ii) fn · gn!! f · g?
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037. Call a function f : R! R increasing (decreasing) if x� y implies f(x)� f(y)
(f(x)� f(y), respectively), for all x, y 2R. Prove that the set of all increasing functions
as well as the set of all decreasing functions is closed in Cp(R).

038. Prove that some subspace of Cp(R) is homeomorphic to Cp(I).

039. Prove that C�ðRÞ ¼ CpðRÞ and Int(C*(R)) ¼ ;.
040.Given n 2o, denote by Pn� Cp(R) the set of all polynomials of degree� n.

Prove that Pn is a closed subset of Cp(R).

041. Denote by P � Cp(R) the set of all polynomials. Prove that P ¼ Cp(R) and

Int(P) ¼ ;.
042. Let H(R) � Cp(R) be the set of all homeomorphisms of R onto R. Is it true

that HðR ¼ CpðRÞ?
043. Let U be the set of all uniformly continuous functions from C(R) (that is,

f 2 U if and only if for any e > 0 there exists d > 0 such that jf(x) � f(y)j < e
whenever jx � yj < d). Is it true that U ¼ Cp(R)?

044. Prove that, for every f 2 Cp(R), we can find a family fUn : n 2 og of open
subsets of Cp(R) such that ffg ¼ \fUn : n 2 og.

045. Prove that each one of the spaces Cp(Q) and Cp(N) has a countable base.

046. Is there a countable local base at some f 2 Cp(R)?

047. Prove that there exists a countable A � Cp(R) such that A ¼ Cp(R).

048. Let hn : R! R be a homeomorphism for every n 2 o and suppose that we

have hn!! h. Is it always true that h is a homeomorphism?

049. Let un : R ! R be a uniformly continuous function for each n 2 o and

suppose that un!! u. Is it always true that u is a uniformly continuous function?

050. Suppose that ffn : n 2 og � A � Cp(R) and fn !! f. Prove that f 2 A.
Is it true that, if A � Cp(R), f 2 Cp(R) and f 2 A, then fn !! f for some sequence

ffn : n 2 og � A?
051. Denote by D the set of all functions on R which have a continuous

derivative (that is, D consists of the functions f : R ! R such that the derivative

f0 of f exists and is continuous on R). Give D the topology inherited from Cp(R) and

consider the map d : D ! Cp(R) defined by the formula d(f) ¼ f0. Is the map d
continuous?

052. Let P be the set of all polynomials in Cp(R). Give P the topology inherited

from Cp(R) and consider the map d : P! P defined by the formula d(p) ¼ p0 (i.e.,
a polynomial is mapped to its derivative). Is the map d : P! P continuous?

053. Assume that a, b 2 R and a < b; give the set [a, b] � R the topology

inherited from the space R and define the map int : Cp([a, b])! R by the formula

intðf Þ ¼ R b
a f ðtÞdt for each f 2 Cp([a, b]). Is the map int continuous?

054. Assume that a, b 2 R and a < b; give the set [a, b] � R the topology

inherited from R. Let P � Cp([a, b]) be the set of all polynomials on [a, b]. Define
the map int : P! R by the formula intðpÞ ¼ R b

a pðtÞdt for every polinomial p 2 P.
Is the map int continuous?

055. Assume that a, b 2 R and a < b; give the set [a, b] � R the topology

inherited from R. Define the map prm : Cp([a, b]) ! Cp([a, b]) by the formula

prmðf ÞðxÞ ¼ R x
a f ðtÞdt for every f 2 Cp([a, b]). Is the map prm continuous?
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056. Given a space X, show that the family f[x1, � � �, xn; O1,� � �, On] : n 2 N,

x1, � � �, xn 2 X and Oi is a rational open interval for any i � ng is a base of the space
Cp(X).

057. Prove that, for any space X, the family f[x; O] : x 2 X and O is a rational

open intervalg is a subbase of the space Cp(X).
058. Let X be a topological space. Given f 2 Cp(X), points x1, � � �, xn 2 X and e> 0,

let O(f, x1,� � �, xn, e) ¼ fg 2 Cp(X) : jg(xi) � f(xi)j < e for all i � ng. Prove that the
family fO(f, x1, � � �, xn, e) : n 2 N, x1, � � �, xn 2 X, e > 0g is a local base of Cp(X) at f.

059. For any sets A, B � Cp(X), let A þ B ¼ fa þ b : a 2 A and b 2 Bg.
Prove that, if A is an open set and B is an arbitrary subset of Cp(X), then A þ B is an

open set.

060. For any A, B � Cp(X), prove that Aþ B � Aþ B.
061. Let U be a non-empty open subset of Cp(X). Prove that there exists

a countable A � Cp(X) such that A þ U ¼ Cp(X).
062. Let f0 2 Cp(X) be equal to zero at all points of X. Suppose that B is a local

base at f0. Prove that, for any f 2 Cp(X), the family B þ f¼ fUþ f :U 2 Bg is a local
base at f. Here U þ f ¼ fu þ f : u 2 Ug.

063. Let f0 2 Cp(X) be equal to zero at all points of X. Suppose that U is an open

set of Cp(X) which contains f0. Prove that there exists an open set V of Cp(X) such
that f0 2 V and V þ V � U.

064. Define f0 2 Cp(X) to be equal to zero at all points of X. Let U be an open set

of Cp(X) which contains f0. Suppose that V is an open set of Cp(X) such that f0 2 V
and V þ V � U. Prove that V � U.

065. Let f0 2 Cp(X) be equal to zero at all points of X. Take any local base

B of Cp(X) at the point f0. Prove that, for any set A� Cp(X), we have A¼ \fAþU :

U 2 Bg.
066. Given a set A � Cp(X), let A

n ¼ ff1 þ � � � þ fn : fi 2 A, i ¼ 1,� � �, ng for any
n 2 N. Denote by f0 the function which is equal to zero at all points of X. Prove that,
for any open set U 3 f0, we have [fUn : n 2 Ng ¼ Cp(X).

067. Let X be a topological space. For an arbitrary point x 2 X, define the func-
tion ex : Cp(X)!R as follows: ex(f)¼ f(x) for any f 2 Cp(X). Show that the map ex is
continuous for any x 2 X.

068. Prove that Cp(X) is a Tychonoff space for any topological space X.
069. Call a subset C � Cp(X) convex if, for any f, g 2 C and t 2 [0, 1], we have

tf þ (1 � t)g 2 C. Prove that, for an arbitrary X, the space Cp(X) has a base con-

sisting of convex sets.

070. Prove that the intersection of any family of convex subsets of Cp(X)
is a convex set. Show that the union of two convex sets is not necessarily a

convex set.

071. Prove that, if A, B� Cp(X) are convex subsets of Cp(X) then the set Aþ B¼
fa þ b : a 2 A and b 2 Bg is convex.

072. For any A � Cp(X), consider the set conv(A) ¼ ft1f1 þ � � � þ tnfn : n 2 N,

fi 2 A, ti 2 [0, 1] for all i� n and
Pn

i¼1 ti ¼ 1g. The set conv(A) is called the convex
hull of A. Prove that the convex hull of A is a convex set and coincides with the

intersection of all convex subsets of Cp(X) which contain A.
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073. Show that, for any open U � Cp(X), its convex hull conv(U) is also an

open set.

074. Call a function ’ : Cp(X)! R a linear functional, if we have the equality
’(af þ bg) ¼ a’(f) þ b’(g) for any f, g 2 Cp(X) and a, b 2 R. Prove that a linear

functional ’ : Cp(X)! R is continuous if and only if ’�1(0) is closed in Cp(X).
075. Let ’ : Cp(X) ! R be a discontinuous linear functional. Prove that

’�1ð0Þ ¼ CpðXÞ.
076. Let X be an arbitrary space. Suppose that ’ : Cp(X) ! R is a continuous

linear functional such that ’(f) 6¼ 0 for some f 2 Cp(X). Prove that ’(U) is open in

R for any U 2 t(Cp(X)).
077. Let X be an arbitrary space. Suppose that f, g 2 Cp(X) and f 6¼ g. Prove that

there exists a continuous linear functional ’ : Cp(X)! R such that ’(f) 6¼ ’(g).
078. Let X be an arbitrary space. Denote by Lp(X) the set of continuous linear

functionals on Cp(X). Prove that Lp(X) is closed in Cp(Cp(X)).
079. Let X be a topological space. Given f 2 Cp(X), consider the map

Tf : Cp(X) ! Cp(X) defined by the formula Tf(g) ¼ f þ g for every g 2 Cp(X).
Prove that Tf is a homeomorphism for any f 2 Cp(X).

080. Let X be a topological space. Given f 2 Cp(X), consider the map

Mf : Cp(X) ! Cp(X) defined by the formula Mf(g) ¼ f · g for each g 2 Cp(X).
Prove that Mf is a continuous map for any f 2 Cp(X).

081. Let X be a topological space. For an arbitrary f 2 Cp(X), consider the map

Mf : Cp(X)! Cp(X) defined by the formula Mf(g) ¼ f · g for each g 2 Cp(X). Prove
that the map Mf : Cp(X)! Cp(X) is a homeomorphism if f(x) 6¼ 0 for all x 2 X.

082. Given a topological space X and a function f 2 Cp(X), consider the

maps Uf, Df : Cp(X) ! Cp(X) defined by the formulas Uf(g) ¼ max(f, g) and

Df(g) ¼ min(f, g) for any g 2 Cp(X). Prove that the maps Uf and Df are continuous

for any f 2 Cp(X).
083. Given a topological space X, let CI(X)¼ ff 2 C(X) : f(x) 6¼ 0 for any x 2 Xg.

Considering that the set CI(X) carries the topology inherited from Cp(X), define the
map i : CI(X)! CI(X) by the formula i(f) ¼ 1

f . Is the map i continuous?
084. For an arbitrary space X and any A � C(X) denote by Au the set ff 2 C(X) :

there exists a sequence ffn : n 2 og � A such that fn!!fg. Prove that the operator

A! Au has the properties (C1)–(C4) listed in Problem 004. Therefore there exists a

topology tu called the uniform convergence topology on C(X) such that

A
u ¼ cltuðAÞ for every A � C(X). The space (C(X), tu) will be denoted by Cu(X).
085. Prove that, for any space X, the space Cu(X) has a countable local base at

any point.

086. Define the identity map id : C(X)! C(X) by id(f) ¼ f for every f 2 C(X).
Prove that id : Cu(X)! Cp(X) is continuous for any space X.

087. Suppose that X is an arbitrary Tychonoff space. Prove that the identity

map id : Cu(X)! Cp(X) is a homeomorphism if and only if X is finite.

088. Prove that the space Cu(N) does not have countable base.

089. Let X and Y be topological spaces. Given Z� Y, each f 2 C(X, Z) can also be
considered a function from X to Y. Thus, C(X, Z)� C(X, Y). Prove that the topology

10 1 Basic Notions of Topology and Function Spaces



of Cp(X, Z) coincides with the topology on C(X, Z) induced from Cp(X, Y) and hence
Cp(X, Z) � Cp(X, Y).

090. Let X and Y be topological spaces. Given a closed Z� Y, prove that Cp(X, Z)
is a closed subspace of Cp(X, Y).

091. Let X and Y be topological spaces. If w : Y! Z is a continuous map, define

a map hw : Cp(X, Y)! Cp(X, Z) in the following way: for any function f 2 Cp(X, Y)
let hw(f) ¼ w ∘ f. Show that the map hw is continuous.

092. Show that, for any space X, there is a continuous map r : Cp(X)! Cp(X, I)
such that r(f) ¼ f whenever f 2 Cp(X, I).

093. Let ’ : Cp(X)! Cp(Y) be an isomorphism. Prove that

(i) If f, g 2 Cp(X) and f(x)� g(x) for any x 2 X then ’(f)(y)� ’(g)(y) for any y 2 Y.
(ii) If f, g 2 Cp(X) then ’(max(f, g)) ¼ max(’(f), ’(g)).
(iii) If f, g 2 Cp(X) then ’(min(f, g)) ¼ min(’(f), ’(g)).

094. Prove that, if ’ : Cp(X) ! Cp(Y) is an isomorphism, then we have the

equality ’(C*(X)) ¼ C*(Y).
095. Let ’ : Cp(X)! Cp(Y) be an isomorphism. Suppose that c 2 R and f(x) ¼ c

for every x 2 X. Prove that ’(f)(y) ¼ c for any y 2 Y.
096. Prove that there is no isomorphism between Cp(R) and Cp(I).

097. Suppose that X is a set and (Y, t) is a topological space. Given an arbitrary

map f : X! Y, denote the family ff�1(U) : U 2 tg by f�1(t). Prove that

(i) m¼ f�1(t) is a topology on X such that f is continuous considered as a map from

(X, m) to (Y, t).
(ii) If n is any topology on X, such that the map f : (X, n)! (Y, t) is continuous,

then m � n.

098. Suppose that X is a set and f : X! R. Prove that the space (X, f�1(NR)) is

completely regular.

099. Let T be a non-empty family of topologies on a set X. Show that the family

[T satisfies the condition of Problem 008 for generating a topology as a subbase.

The topology thus generated is called the supremum or the least upper bound of the
family of topologies from T . Prove that the least upper bound of Ti-topologies is
always a Ti-topology for i � 3 1

2
.

100. (Tychonoff spaces capture all of Cp-theory). Let X be a topological space.

Given x, y 2 X, define x� y to mean that f(x)¼ f(y) for every f 2 C(X). Observe that
this is an equivalence relation. Let Xc be the set of all equivalence classes. For each

f 2 C(X), let us define ’f : Xc! R in the following way: ’f(y) ¼ f(x), where x is an
arbitrary point of y (remember that y � X is an equivalence class). Given x 2 X, let
p(x) ¼ y where y is the equivalence class containing x.

(i) Observe that the map ’f is well defined for each f 2 C(X).
(ii) Denote by tf the topology ’�1f ðN RÞ. Prove that the least upper bound t of the

topologies ftf : f 2 C(X)g is a Tychonoff topology on Xc.

(iii) Show that the mapping p : X! Y ¼ (Xc, t) is continuous.
(iv) Prove that the spaces Cp(X) and Cp(Y) are topologically isomorphic.
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1.2 Products, Cardinal Functions and Convergence

In this section the word “space” will mean “Tychonoff space” as far as another

separation axiom is not mentioned explicitly. The cardinality of a set X is denoted

by jXj. If X is a space then t(X) is its topology and t*(X) ¼ t(X)\f;g. If A � X then

t(A, X) ¼ fU 2 t(X) : A � Ug. A set P � X is called a neighbourhood of the set A
if Int(P) 
 A. If x 2 X we will write t(x, X) instead of t(fxg, X). Analogously, P is

a neighbourhood of a point x 2 X if x 2 Int(P).
Let Xt be a non-empty set for all t 2 T. The set X ¼ ff : f is a map from T into

[fXt : t 2 Tg such that f(t) 2 Xt for every t 2 Tg is called the product of the sets Xt,

t 2 T, and will be denoted by
QfXt : t 2 Tg or Qt2T Xt. We will also write X ¼

X1 	 � � � 	 Xn instead of X ¼Q
t2T Xt, when T ¼ f1,� � �, ng. If Xt ¼ X for all t 2 T,

the product
Q

t2T Xt is denoted by X
T. If X¼QfXt : t2 Tg, define the map pt : X! Xt

as follows: pt(x) ¼ x(t) for any x 2 X. The map pt is called the natural projection of
the product onto its tth factor Xt. If each Xt is a topological space, then the topology

t generated by the family
S fp�1t ðtðXtÞÞ : t 2 Tg as a subbase (see Problems 008

and 097) is called the Tychonoff product topology and (X, t) is called the topo-
logical (or Tychonoff) product of the spaces Xt.

Given spaces X and Y and a continuous onto map f : X! Y say that f is quotient
if f�1(U) 2 t(X) implies U 2 t(Y); call f closed (open) if for each closed (open)

A � X the set f(A) is closed (open) in Y. The map f is a condensation if it is

a bijection; say that f is R-quotient if, for every g : Y! R, the map g is continuous,
if so is g ∘ f.

If X is a set and A � exp(X), we say that A is a cover of Y � X if Y � [A.
In particular, A is a cover of X, if [A ¼ X. A space X is compact if for any
U � t(X) with [ U ¼ X, there is a finite U0 � U such that [U0 ¼ X. In other

words, X is compact if every open cover of X has a finite subcover. A space X
is countably compact if every countable open cover of X has a finite subcover.

We say that X is pseudocompact if C(X) ¼ C*(X). Now, X is a Lindel€of space
if every open cover of X has a countable subcover. A space X is discrete if

t(X) ¼ exp(X). If k is a cardinal number, we denote by D(k) the discrete space

of cardinality k. Given a cardinal k, let A(k) ¼ k [ fag, where a =2 k. If x 2 k,
let Bx ¼ ffxgg. If x ¼ a, then Bx ¼ ffag [ (k \ B) : B is a finite subset of kg.
The families fBx : x 2 A(k)g satisfy the conditions (LB1)–(LB3) of Problem

007 (check it, please!), so there exists a unique topology t(A(k)) for which Bx
is a local base at x for any x 2 A(k). The space A(k) is called Alexandroff one-
point compactification of D(k). A space X is s-compact (s-pseudocompact or

s-countably compact) if X ¼ [n2o Xn and Xn is a compact (pseudocompact or

countably compact) subspace of X for every n 2 o.
If X is a space and s¼ fxn : n 2 og � X, we say that the sequence s converges to

x 2 X (denoting this by xn! x or s! x) if, for any U 2 t(x, X), there is m 2 o such

that xn 2 U for all n � m; the sequence s is trivial if the set fxn : n 2 og is finite.
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Now, X is a Fréchet-Urysohn space, if for any A � X and any x 2 A there is a

sequence fan : n 2 og � A such that an! x.
Given a space X, a family N � exp(X) is called a network of X if, for any

U 2 t(X), there isN 0 � N with [N 0 ¼ U. If L � exp(X) we call L discrete (locally
finite) in X if each x 2 X has a neighbourhood which intersects at most one element

(finitely many elements) of L. If the family fU 2 L : x 2Ug is finite for every x 2 X,
we say that L is a point-finite family. Given A � X, a family B � t(X) is an (outer)
base of A in X if B 6¼ ;, \ B 
 A and, for every U 2 t(A, X), there is V 2 B such

that V � U.
If X is a space then the cardinal w(X) ¼ minfjBj : B is a base of Xg is called

weight of X. The cardinal nw(X) ¼ minfjN j : N is a network of Xg is the network
weight of X. A set A � X is dense in X if A ¼ X; the cardinal d(X) ¼ minfjPj : P is

dense in Xg is called the density (or the density degree) of X. A space X is separable
if d(X) � o. Now, s(X) ¼ supfjDj : D � X is discreteg. The cardinal s(X) is spread
of X. Let ext(X)¼ supfjDj :D� X is closed and discreteg. The cardinal ext(X) is the
extent of the space X. The cardinal l(X) ¼ minfk: every open cover of X has a

subcover of power � kg is called the Lindel€of number of X.
The cardinal c(X)¼ supfjUj : U � t*(X) is disjointg is called the Souslin number

of X. The space X has the Souslin property if c(X)� o. The cardinal p(X)¼ supfjUj :
U � t*(X) is point-finiteg is called the point-finite cellularity of X. The cardinal iw
(X) ¼ minfjkj : there is a condensation of X onto a space of weight � kg is the
i-weight of X. Given a cardinal k and A � X, let [A]k ¼ [fB : B � A and jBj � kg.
Define t(X)¼minfk : A¼ [A]k for every A� Xg. The cardinal t(X) is tightness of X.
For an A� X, let c(A, X)¼minfjUj : U � t(X) and \U ¼ Ag. The cardinal c(A, X)
is called pseudocharacter of A in X. If A ¼ fxg, we write c(x, X) instead of c(fxg,
X). The cardinal c(X) ¼ supfc(x, X) : x 2 Xg is the pseudocharacter of X. The
minimum of cardinalities of outer bases of A in X is called the character w(A, X)
of A in X. In case when A ¼ fxg, we use the expression w(x, X) instead of w(fxg, X).
The cardinal w(X) ¼ supfw(x, X) : x 2 Xg is the character of the space X. The set

DX ¼ f(x, x) : x 2 Xg � X 	 X is the diagonal of X. The diagonal number of a space
X is the cardinal D(X) ¼ c(DX, X 	 X).

A familyF � exp(X)\f;g,F 6¼ ; is a filter onX, if A, B2F implies A\B 2F and

B 
 A 2 F implies B 2 F . A family B � exp(X)\f;g, B 6¼ ; is a filter base if A,
B 2 B implies C � A \ B for some C 2 B. A family C � exp(X)\f;g is centered
(or has finite intersection property) if C 6¼ ; and \U 6¼ ; for any finite U � C.

A set A � C(X) is an algebra, if ff þ g, f · gg � A whenever f, g 2 A and A
contains all constant functions. The set A is closed with respect to uniform conver-
gence if ffn : n 2og � A and fn!! f imply f 2 A. A set A� C(X) separates the points
of X, if for any distinct points x, y 2 X, there exists f 2 A with f(x) 6¼ f(y). Given f 2
Cp(X), x1,� � �, xn 2 X and e> 0, let O(f, x1,� � �, xn, e)¼ fg 2 Cp(X) : jg(xi)� f(xi)j< e
for all i � ng. The family fO(f, x1,� � �, xn, e) : n 2 N, x1,� � �, xn 2 X, e > 0g is a local
base of Cp(X) at f.
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101. Suppose that Xt is a space for each t 2 T. Prove that the family B ¼ fQt2T
Ut : Ut 2 t(Xt) for all t, and the set ft 2 T : Ut 6¼ Xtg is finiteg is a base for the space
X ¼ Q

t2T Xt. It is called the canonical (or standard) base of the product
Q

t2T Xt.

102. Suppose Xt is a space for any t 2 T and we are given a space Y together with

a map f : Y!Q
t2T Xt. Prove that f is continuous if and only if pt ∘ f is continuous

for any t 2 T.
103. Let fXt : t 2 Tg be a family of topological spaces. Suppose that T ¼ [fTs :

s 2 Sg, where Ts 6¼ ; for all s 2 S, and Ts \ Ts0 ¼ ; if s 6¼ s0. Prove that the spacesQ
t2T Xt and

Q
s2S

Q
t2Ts Xt

� �
are homeomorphic, i.e., the topological product is

associative.

104. Let fXt : t 2 Tg be a family of spaces. Suppose that ’ : T! T is a bijection.

Prove that the spaces
Q

t2T Xt and
Q

t2T X’(t) are homeomorphic, i.e., the topolo-

gical product is commutative.

105. Show that, for every i 2 0; 1; 2; 3; 3 1
2

� �
, the Tychonoff product of any

family of Ti-spaces is a Ti-space.
106. Show that, for any non-empty topological product X ¼ Q

t2T Xt and any

s 2 T, the space X has a closed subspace homeomorphic to Xs.

107. Given a topological product X ¼QfXt : t 2 Tg and S� T, define the S-face
of X to be the product XS¼

QfXt : t 2 Sg. Let pS : X! XS be defined by the formula

pS(x) ¼ xjS for every x 2 X. The map pS is called a natural projection of X onto its

face XS. Prove that the natural projection onto any face is a continuous open map. In

particular, the projections to the factors of any product are continuous open maps.

108. (The Hewitt–Marczewski–Pondiczery theorem) Given an infinite cardinal

k, suppose that jTj � 2k and Xt is a space such that d(Xt)� k for all t 2 T. Prove that

d
Q

t2T Xt

� � � k. In particular, the product of at most 2o-many separable spaces is

separable.

109. Prove that any product of separable spaces has the Souslin property.

In particular, the space RA has the Souslin property for any set A.
110. Suppose that X is a space and Y is a dense subspace X. Prove that

c(X) ¼ c(Y).
111. Given spaces X and Y, observe that C(X, Y)� YX. Prove that the topology of

Cp(X, Y) coincides with the topology induced in C(X, Y) from the Tychonoff

product YX. In particular, Cp(X) is a subspace of RX. Prove that Cp(X) dense in

R
X. Hence, for any space X, the space Cp(X) has the Souslin property.

112. Let Yt be a space for every t 2 T. Show that, for any space X, the space

Cp(X,
Q

t2T Yt) is homeomorphic to
QfCp(X, Yt) : t 2 Tg.

113. Suppose that Xt is a space for each t 2 T and consider the set X¼ [fXt	 ftg :
t 2 Tg. For each t 2 T, define the map qt : Xt	 ftg! Xt by the formula qt(x, t)¼ x for
each x 2 Xt. If U � X, let U 2 t if qt(U \ (Xt	 ftg)) is open in Xt for all t 2 T. Prove
that t is a topology on X. The space (X, t) is denoted by

LfXt : t 2 Tg and is called

the discrete (or free) union of the spaces Xt. Show that

(i) If Xt 	 ftg is given the topology of subspace of
LfXt : t 2 Tg then the map qt

is a homeomorphism for each t. Thus Xt 	 ftg is a copy of Xt.

(ii) Each Xt 	 ftg is a clopen (� closed-and-open) subset of
LfXt : t 2 Tg.
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(iii) If a space X can be represented as a union of a family fXt : t 2 Tg of pairwise
disjoint open subsets of X, then X is homeomorphic to

LfXt : t 2 Tg.
114. Suppose that X ¼ LfXt : t 2 Tg. Prove that, for any space Y, the space

Cp(X, Y) is homeomorphic to the space
QfCp(Xt, Y) : t 2 Tg.

115. Given a space X, define the map sm : Cp(X) 	 Cp(X) ! Cp(X) by the

equality sm(f, g) ¼ f þ g for any f, g 2 Cp(X). Prove that the map sm is continuous.

116.Given a space X, define the map pr : Cp(X)	 Cp(X)! Cp(X) by the equality
pr(f, g) ¼ f · g for any f, g 2 Cp(X). Prove that the map pr is continuous.

117. Let X be an arbitrary set. Given a family F � exp(X) with a property

P, we say that F is a maximal family with the property P, if F has P and for any

g � exp(X) with the property P, we have g ¼ F whenever F � g. Prove that

(i) Any filter is a filter base and any filter base is a centered family.

(ii) For any centered family C on X, there is a filter F on X such that C � F .
(iii) If F is a filter on X then there is a maximal filter U on X such that F � U.

A maximal filter is called ultrafilter, so applying (ii), this statement could be

formulated as follows: every centered family on X is contained in an ultrafilter

on X.
(iv) A family U � exp(X) is an ultrafilter if and only if it is a maximal centered

family. As a consequence, any centered family on X is contained in a maximal

centered family on X.
(v) A family U � exp(X) is an ultrafilter if and only if it is a centered family and,

for any A � X, we have A 2 U or X \ A 2 U.
(vi) If X is a topological space and g � t*(X) is disjoint then there is a maximal

disjoint m � t*(X) such that g � m.
(vii) There are no maximal point-finite families of non-empty open subsets of R.

118. Prove that the following properties are equivalent for any (not necessarily

Tychonoff) space X:

(i) X is compact.

(ii) There is a base B in X such that every cover of X with the elements of B has

a finite subcover.

(iii) There is a subbase S in X such that every cover of X with the elements of

S has a finite subcover.

(iv) If P is a filter base in X then \fP : P 2 Pg 6¼ ;.
(v) If F is a filter on X then \fF : F 2 Fg 6¼ ;.
(vi) Given an ultrafilter U on the set X we have \fU : U 2 Ug 6¼ ;.
(vii) If C is a centered family of subsets of X then \fC : C 2 Cg 6¼ ;.
(viii) If D is a centered family of closed subsets of X then \fD : D 2 Dg 6¼ ;.
(ix) If G is a filter base of closed subsets of X then \fG : G 2 Gg 6¼ ;.
(x) For any infinite A � X there is a point x 2 X such that jU \ Aj ¼ jAj for any

neighbourhood U of the point x (such a point x is called a complete accumu-
lation point of A). Thus, this criterion could be formulated as follows: a space

X is compact iff any infinite subset of X has a complete accumulation point.
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119. Prove that a continuous image of a compact space is a compact space.

120. Prove that a closed subspace of a compact space is a compact space.

121. Prove that, if X is a Hausdorff space and Y is a compact subspace of X, then
Y is closed in X. Show that this is not true if X is not Hausdorff.

122. Let X be a compact space. Show that, for any Hausdorff space Y, any
continuous surjective mapping f : X! Y is closed.

123. Show that, if X is a compact space and f : X! Y is a condensation then f is
a homeomorphism.

124. Show that any Lindel€of T3-space is normal as well as any Hausdorff

compact space.

125. (The Tychonoff theorem) Show that any product of compact spaces is a

compact space.

126. Prove that a space X is compact if and only if X is homeomorphic to a closed

subspace of IA for some A with jAj � w(X).
127. Prove that the following properties are equivalent for any (not necessarily

Tychonoff) space:

(i) X is homeomorphic to a subspace of a compact Tychonoff space.

(ii) X is homeomorphic to a subspace of a compact Hausdorff space.

(iii) X is homeomorphic to a subspace of IA for some A.
(iv) X is homeomorphic to a subspace of a T4-space.
(v) X is a Tychonoff space.

128. Denote by A the set of numeric sequences a ¼ fai : i 2 Ng such that ai ¼ 0

or ai ¼ 2 for all i. Given a ¼ fai : i 2 Ng 2 A, let xðaÞ ¼P1
i¼1

3�i � ai. The set

K ¼ fx(a) : a 2 Ag is called the Cantor perfect set. Prove that

(i) the set K is a compact subset of the segment I ¼ [0, 1].

(ii) K is uncountable and the interior of K is empty.

(iii) K is homeomorphic to f0, 1gN.
(iv) if F is a non-empty closed subspace ofK then there exists a continuous map r :

K! F such that r(x) ¼ x for all x 2 F.
(v) K maps continuously onto any second countable compact space.

129. Prove that, for any cardinal k, the space A(k) is a compact Fréchet–

Urysohn space of uncountable weight if k > o.
130.Given a point x¼ (x1,� � �, xn) 2Rn and a real number r> 0, define Bn(x, r)¼

fy ¼ (y1,� � �, yn) 2 R
n :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðxi � yiÞ2

q
< rg. The set Bn(x, r) will be called the

n-dimensional open ball of radius r centered at x. Prove that

(i) The family B of all open balls in R
n satisfies the conditions (B1) and (B2) of

Problem 006 and hence it can be considered a base for some topology

N n
R which is called the natural (or usual) topology on R

n.

(ii) The space (Rn,N n
R) is homeomorphic to the topological product of n copies of

(R, N R).
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131. Given a subset A of the space Rn, we say that A is bounded if we can find

a point x 2 Rn and r> 0 such that A� Bn(x, r). Prove that a subspace K of the space

R
n is compact if and only if K is a closed and bounded subset of Rn.

132. Prove that the following conditions are equivalent for any space X:

(i) X is countably compact.

(ii) Any closed discrete subspace of X is finite.

(iii) Any infinite subset of X has an accumulation point.

(iv) If fFn : n 2 og is a sequence of closed non-empty subsets of X such that

Fnþ1 � Fn for every n 2 o, then \fFn : n 2 og 6¼ ;.
(v) If g is an open cover of the space X then there exists a finite set A� X such that

[fU 2 g : U \ A 6¼ ;g ¼ X.

133. Prove that a continuous image of a countably compact space is a countably

compact space.

134. Prove that a closed subspace of a countably compact space is a countably

compact space.

135. For an uncountable cardinal k, define S ¼ fx 2 I
k : the set x�1(I\f0g) is

countableg. Prove that
(i) The set S is dense in Ik.

(ii) If A � S is countable, then A is compact (the closure is taken in S).
(iii) S is a Fréchet–Urysohn space.

(iv) The space S is countably compact and non-compact.

136. Prove that the following conditions are equivalent for any space X:

(i) X is pseudocompact.

(ii) Any locally finite family of non-empty open subsets of X is finite.

(iii) Any discrete family of non-empty open subsets of X is finite.

(iv) For every decreasing sequence U0 
 U1 
 � � � of non-empty open subsets of

X, the intersection \fUn : n 2 og is non-empty.

(v) For every countable centered family fUn : n 2 og of open subsets of X, the
intersection \fUn : n 2 og is non-empty.

137. Prove that any countably compact space is pseudocompact. Show that a

pseudocompact normal space is countably compact.

138. Prove that any pseudocompact Lindel€of space is compact.

139. Prove that a continuous image of a pseudocompact space is a pseudo-

compact space.

140. Prove that any condensation of a pseudocompact space onto a second

countable space is a homeomorphism.

141. Call a family C � exp(o) almost disjoint, if every C 2 C is infinite and

C \ D is finite if C and D are distinct elements of C. A family C � o is maximal
almost disjoint if it is almost disjoint and, for any almost disjoint D 
 C, we have
D ¼ C. Prove that
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(i) Every almost disjoint C � exp(o) is contained in a maximal almost disjoint

family D � exp(o).
(ii) Every maximal almost disjoint infinite family on o is uncountable.

(iii) There exists a maximal almost disjoint family C � exp(o) with jCj ¼ c.

142. Let M be an infinite (and hence uncountable) maximal almost disjoint

family ino andM¼o [M. If x 2o, let Bx¼ fxg. Given x 2M, define Bx¼ ffxg
[ (x \ A) : A is a finite subset of xg (remember that for x 2M, we can consider x to
be a point of M or a subset of o). Prove that

(i) The families fBx : x 2 Mg generate a topology tM on M as local bases (see

Problem 007).

(ii) The space (M, tM) (called Mrowka space) is a Fréchet–Urysohn separable

space; we will further denote it by M.

(iii) The space M is locally compact (i.e., each point of M has a compact neigh-

bourhood) and pseudocompact.

(iv) The subspaceM is closed and discrete in M and therefore the space M is not

countably compact. This also shows that a closed subspace of a pseudo-

compact space is not necessarily pseudocompact.

143. Show that a sequence ffn : n 2 og � Cp(X) converges to a function f :
X ! R if and only if the numeric sequence ffn(x) : n 2 og converges to f(x) for
every x 2 X.

144. Suppose that X is an arbitrary set. Given a family g of subsets of X, let
lim g¼ fx 2 X : jfU 2 g : x =2Ugj< og. We call g an o-cover of X, if for any finite
A � X, there is U 2 g such that A � U. Prove that the following conditions are

equivalent:

(i) Cp(X) is a Fréchet–Urysohn space.

(ii) For any open o-cover g of the space X, there is a countable family x� g such
that lim x ¼ X.

(iii) For any sequence fgngn2o of open o-covers of X, one can choose a Un 2 gn for
each n, in such a way that limfUn : n 2 og ¼ X.

145. Prove that, if Cp(X) is a Fréchet–Urysohn space, then (Cp(X))
o is also

a Fréchet–Urysohn space.

146. Prove that Cp(A(k)) is a Fréchet–Urysohn space for any cardinal k.
147. Prove that Cp(I) is not a Fréchet–Urysohn space.

148. Prove that the following properties are equivalent for any space X and any

infinite cardinal k:

(i) For every open o-cover g of the space X, there exists an o-cover m � g of the
space X such that jmj � k. In other words, every open o-cover of X has an

o-subcover of cardinality � k.
(ii) l(Xn) � k for all n 2 N.

149. Prove that t(Cp(X))¼ supfl(Xn) : n 2 Ng. In particular, tightness of Cp(X) is
countable if and only if Xn is a Lindel€of space for any n 2 N.
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150. Prove that t(Cp(X)) ¼ t( (Cp(X))
o) for any space X.

151. Show that there exist spaces X and Y such that t(Cp(X)) ¼ o and t(Cp(Y)) ¼ o
while t(Cp(X) 	 Cp(Y)) > o.

152. Let Y be a subspace of a space X. Denote by pY : Cp(X) ! Cp(Y) the

restriction map, i.e., pY(f) ¼ f jY for any f 2 Cp(X). Prove that

(i) The map pY is continuous and pYðCpðXÞÞ ¼ CpðYÞ.
(ii) The map pY is an injection if and only if Y is dense in X.
(iii) The map pY is a homeomorphism if and only if Y ¼ X.
(iv) Y is closed in X if and only if the map pY : Cp(X)! pY(Cp(X)) is open.
(v) If X is normal and Y is closed in X then pY(Cp(X)) ¼ Cp(Y).

153. Prove that closed maps as well as open ones are quotient. Give an example

(i) Of a quotient map which is neither closed nor open.

(ii) Of a closed map which is not open.

(iii) Of an open map which is not closed.

154. Prove that every quotient map is R-quotient. Give an example of an

R-quotient non-quotient map.

155. Prove that any R-quotient condensation is a homeomorphism.

156. For any space X prove that

(i) c(X) � d(X) � nw(X) � w(X).
(ii) c(X) � s(X) and ext(X) � l(X) � nw(X).
(iii) c(X) � w(X) and c(X) � iw(X) � nw(X).
(iv) t(X) � w(X) � w(X) and t(X) � nw(X).

157. Prove that, for any space X, if Y is a continuous image of X, then

(i) c(Y) � c(X).
(ii) d(Y) � d(X).
(iii) nw(Y) � nw(X).
(iv) s(Y) � s(X).
(v) ext(Y) � ext(X).
(vi) l(Y) � l(X).

158. Let ’ 2 fweight, character, pseudocharacter, i-weight, tightnessg. Show that

there exist spaces X and Y such that Y is a continuous image of X and ’(Y) > ’(X).
159. Suppose that X is a space and Y � X. Prove that

(i) w(Y) � w(X).
(ii) nw(Y) � nw(X).
(iii) c(Y) � c(X).
(iv) s(Y) � s(X).
(v) iw(Y) � iw(X).
(vi) t(Y) � t(X).
(vii) w(Y) � w(X).
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160. Let ’ 2 fSouslin number, density, extent, Lindel€of numberg. Show that

there exist spaces X and Y such that Y � X and ’(Y) > ’(X).
161. Let f : X! Y be an open map. Prove that w(Y) � w(X) and w(Y) � w(X).
162. Let f : X! Y be a quotient map. Prove that t(Y) � t(X).
163. Let X and Y be topological spaces. Given a continuous map r : X! Y, define

the dual map r* : Cp(Y)! Cp(X) by r*(f) ¼ f ∘ r for any f 2 Cp(Y). Prove that

(i) The map r* is continuous.

(ii) If r(X) ¼ Y, then r* is a homeomorphism of Cp(Y) onto r*(Cp(Y)).
(iii) If r(X) ¼ Y, then the set r*(Cp(Y)) is closed in Cp(X) if and only if r is an

R-quotient map.

(iv) If r(X) ¼ Y, then the set r*(Cp(Y)) is dense in Cp(X) if and only if r is a con-
densation.

(v) If r(X) ¼ Y, then the set r*(Cp(Y)) coincides with Cp(X) if and only if r is a
homeomorphism.

(vi) If r(X) ¼ Y and s : X! Z is a continuous onto map, then there exists a con-

tinuous map t : Z! Y with t ∘ s ¼ r if and only if r*(Cp(Y)) � s*(Cp(Z)).

164. Let X be a separable space with ext(X) � c. Prove that X cannot be normal.

165. Consider the family B ¼ f[a, b) : a, b 2 R, a < bg. Check that B has the

properties (B1) and (B2) formulated in Problem 006 and hence can be considered

a base for a unique topology ts on the set R. The space S ¼ (R, ts) is called the

Sorgenfrey line. Prove that

(i) Any subspace of S is Lindel€of.
(ii) Any subspace of the space S is separable.

(iii) No uncountable subspace of S has a countable network.

(iv) The space S 	 S is not normal and has a closed discrete subspace of power c.
(v) Prove that the space Cp(S) has a closed discrete subspace of cardinality c.

Deduce from this fact that Cp(S) is not normal.

166. Suppose that X is an arbitrary space and F � Cp(X). For any x 2 X, define
the function eFx : F! R by the formula eFx ðf Þ ¼ f ðxÞ for any f 2 F; observe that eFx
belongs to Cp(F). Let E

FðxÞ ¼ eFx for any x 2 X; then EF : X! Cp(F) is called the
evaluation map. Prove that

(i) EF is continuous for any F � Cp(X).
(ii) EF is injective if and only if F separates the points of X, i.e., for any distinct

x, y 2 X there is f 2 F with f(x) 6¼ f(y).
(iii) EF is an embedding if and only if F generates the topology of X, i.e., the family

UF ¼ ff�1(U) : f 2 F, U 2 t(R)g is a subbase of X.
(iv) EF is an embedding if F separates the points and the closed subsets of X, i.e.,

for any x 2 X and any closed G � X such that x =2 G, we have f ðxÞ =2 f ðGÞ for
some f 2 F.

(v) The set X0 ¼ EF(X) � Cp(F) generates the topology of F and hence F embeds

in Cp(X
0).

20 1 Basic Notions of Topology and Function Spaces



167. Let X be an arbitrary space. For each point x 2 X, define the function

ex : Cp(X)!R by the formula ex(f)¼ f(x) for all f2 Cp(X). For any x2 X, letE(x)¼ ex.

(i) Show that the map E : X! Cp(Cp(X)) is an embedding.

(ii) Prove that E(X) is closed in Cp(Cp(X)).

As a consequence, any space X can be canonically identified with the closed

subspace E(X) of the space Cp(Cp(X)).
168. Prove that, for any continuous function f : E(X) ! R, there exists a

continuous function F : RCpðXÞ ! R such that FjE(X) ¼ f. Identifying X and E(X),
it is possible to say that each continuous real-valued function on X extends

continuously to RCpðXÞ and hence to Cp(Cp(X)).
169. Prove that we have jXj ¼ w(Cp(X)) ¼ w(Cp(X)) for any infinite space X.

In particular, weight of Cp(X) is countable if and only if X is countable.

170. Let X be an arbitrary space. Suppose that there exists a compact subspace K
of Cp(X) such that w(K, Cp(X)) � o. Prove that X is countable.

171. Given a space X and x 2 X, call a family B � t*(X) a p-base of X at x, if for
any U 2 t(x, X) there is V 2 B such that V�U. Note that the elements of a p-base at
x need not contain the point x. Prove that if Cp(X) has a countable p-base at some of

its points then X is countable.

172. Prove that, for any space X, we have the equality nw(X) ¼ nw(Cp(X)).
In particular, the space Cp(X) has a countable network if and only if X has one.

173. Prove that d(X) ¼ c(Cp(X)) ¼ D(Cp(X)) ¼ iw(Cp(X)) for any space X. In
particular, Cp(X) condenses onto a second countable space if and only if X is

separable.

174. Prove that, for any space X, we have iw(X) ¼ d(Cp(X)). In particular, the

space Cp(X) is separable if and only if X condenses onto a second countable space.

175. Suppose that c(K, Cp(X)) � o for some compact subspace K of the space

Cp(X). Prove that X is separable.

176. Prove that s(X) � s(Cp(X)) for any space X. Give an example of a space X
with s(X) < s(Cp(X)).

177. Suppose that X is homeomorphic to Y 	 R for some space Y. Prove that

Cp(X) is linearly homeomorphic to (Cp(X))
o, i.e., there exists a homeomorphism

x : Cp(X) ! (Cp(X))
o such that x(f þ g) ¼ x(f) þ x(g) and x(lf) ¼ lx(f) for all

f, g 2 Cp(X) and l 2 R.

178. Given a space Z let a(Z) ¼ supfjYj : Y � Z and Y is homeomorphic to the

Alexandroff one-point compactification of an infinite discrete spaceg. Prove the

equality p(X) ¼ a(Cp(X)) for any infinite space X.
179. Prove that, for an arbitrary space X, we have c(X)� p(X)� d(X) and p(X)�

s(X). Give an example of a space Y such that c(Y) < p(Y). Is it possible for such a

space Y to be a space Cp(X) for some X?
180. Prove that, for an arbitrary space X, any locally finite family of non-empty

open subsets of the space Cp(X) is countable. Is it possible to say the same about

point-finite families of non-empty open subsets of Cp(X)?
181. Prove that, if a space X is pseudocompact, then c(X) ¼ a(Cp(X)), where a

(Cp(X)) ¼ supfk : A(k) embeds in Cp(X)g.
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182. Given a space X and x 2 X, let Cx¼ ff 2 Cp(X) : f(x)¼ 0g. Prove that Cp(X)
is homeomorphic to Cx 	 R.

183. Prove that compact spaces X and Y are homeomorphic if and only if C(X)
and C(Y) are isomorphic (the isomorphism between C(X) and C(Y) need not be

topological). Show that there exists a compact space X and a non-compact space

Y such that C(X) is isomorphic to C(Y).
184. Suppose that we are given a function fn 2 Cp(X) for all n 2 o. Prove that, if

f : X! R and fn!! f, then fn! f. Give an example of a sequence ffn : n 2 og �
Cp(I) such that fn! f for some f 2 Cp(I) and ffng does not converge uniformly to f.

185. (The Dini theorem). Let X be a pseudocompact space. Suppose that

fn 2 Cp(X) and fnþ1(x) � fn(x) for all x 2 X and n 2 o. Prove that if there exists

f 2 Cp(X) such that fn ! f then the sequence ffng converges uniformly to the

function f.
186. Prove that the following are equivalent for any non-empty space X:

(i) Cp(X) is s-compact.

(ii) Cp(X) is s-countably compact.

(iii) Cp(X) is locally compact, i.e., every f 2 Cp(X) has a compact neighbourhood.

(iv) Cp(X) is locally countably compact, i.e., every f 2 Cp(X) has a countably

compact neighbourhood.

(v) Cp(X) is locally pseudocompact, i.e., every f 2 Cp(X) has a pseudocompact

neighbourhood.

(vi) The space X is finite.

187. Prove that Cp(X) is locally Lindel€of (� each f 2 Cp(X) has a Lindel€of
neighbourhood) if and only if Cp(X) is Lindel€of.

188. Assume that Cp(X) is Lindel€of for some space X. Prove that any discrete

family g � t*(X) is countable.
189. (Asanov’s theorem). Prove that t(Xn)� l(Cp(X)) for any space X and n 2 N.

In particular, if Cp(X) is a Lindel€of space, then t(Xn) � o for all n 2 N.

190. For a space X, let A � C*(X) be an algebra which is closed with respect

to uniform convergence. Prove that f, g 2 A implies max(f, g) 2 A and min(f, g) 2 A.
191. (The Stone–Weierstrass theorem). Let X be a compact space. Suppose that

A is an algebra in C(X) which separates the points of X and is closed with respect to

uniform convergence. Prove that A ¼ C(X). Deduce from this fact that if A is an

algebra in C(X) which separates the points of X then, for any f 2 C(X), there is a

sequence ffngn2o � A such that fn!! f.
192. Let X be an arbitrary space. Prove that, if A � Cp(X) is an algebra which

separates the points of X, then A is dense in Cp(X).
193. Prove that, for any function f 2 C([a, b]), there exists a sequence of poly-

nomials fpn : n 2 og such that pn!! f on [a, b].
194. Prove that, for any function f 2 Cp(R), there exists a sequence of poly-

nomials fpn : n 2 og such that pn! f.
195. Is it true that, for any function f 2 Cp(R), there exists a sequence of

polynomials fpn : n 2 og such that pn!! f ?
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196. Let us call a function ’ : Cp(X) ! R a linear functional if we have

’(af þ bg) ¼ a’(f)þb’(g) for any f, g 2 Cp(X) and a, b 2 R. The functional ’ is

called trivial if ’(f) ¼ 0 for any f 2 Cp(X). Prove that, for any x1,� � �, xn 2 X and

l1,� � �, ln 2 R, the function l1ex1 þ � � � þ lnexn is a linear continuous functional on
Cp(X). Recall that ex : Cp(X)! R is defined by ex(f) ¼ f(x) for all f 2 Cp(X).

197. Prove that, for any continuous linear functional ’ : Cp(X)! R, there exist

x1,� � �, xn 2 X and l1,� � �, ln 2 R such that ’ ¼ l1ex1 þ � � � þ lnexn .
198. Give an example of a (discontinuous) linear functional ’ : Cp(R)!R

which cannot be represented as l1ex1 þ � � � þ lnexn for any points x1,� � �, xn 2 X
and l1,� � �, ln 2 R.

199. A map x : Cp(X)! R is called a linear multiplicative functional if x(f þ g)
¼ x(f) þ x(g) and x(f · g) ¼ x(f) · x(g) for all f, g 2 Cp(X). Prove that, for any

continuous non-trivial linear multiplicative functional x : Cp(X)! R, there exists a

point x 2 X such that x ¼ ex.
200. (Theorem of J. Nagata). Prove that spaces X and Y are homeomorphic if and

only if the algebras Cp(X) and Cp(Y) are topologically isomorphic.
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1.3 Metrizability and Completeness

All spaces of this section are assumed to be Tychonoff. Given a set X, a metric on
X is any function d : X 	 X! R with the following properties:

(MS1) d(x, y) � 0 for any x, y 2 X; besides, d(x, y) ¼ 0 if and only if x ¼ y.
(MS2) (the axiom of symmetry) d(x, y) ¼ d(y, x) for any x, y 2 X.
(MS3) (the triangle inequality) d(x, z) � d(x, y) þ d(y, z) for any x, y, z 2 X.

If d is a metric on a set X and x, y 2 X then d(x, y) is often called the distance
between the points x and y. Given a point x 2 X and r> 0, the set Bd(x, r)¼ fy 2 X :

d(x, y) < rg is called the open ball of radius r centered at x. We will write B(x, r)
instead of Bd(x, r) if this does not lead to a confusion. A pair (X, d), where X is a set

and d is a metric on X, is called a metric space. Given a metric d on a set X, let t(d)¼
fU � X : for any x 2 U there is e > 0 such that B(x, e) � Ug. The family t(d) is
called the topology generated by the metric d. Two metrics d and r on the set X are

called equivalent if t(d) ¼ t(r). A space X is called metrizable if there exists a

metric d on X such that t(d) ¼ t(X).
A sequence fxn : n 2 og in a metric space (X, d) is called fundamental

(or Cauchy) if, for any e > 0, there exists m 2 o such that, for any n, k > m, we
have d(xn, xk) < e. A metric space (X, d) (or, equivalently, the metric d) is complete
if every fundamental sequence in (X, d) is convergent. A metric space (X, d)
(or, equivalently, the metric d) is totally bounded if, for any e > 0, there exists a

finite set A� X such that [fB(a, e) : a 2 Ag ¼ X. A subset Y of a metric space (X, d) is
totally bounded if, for any e > 0, there exists a finite set A � X such that [fB(a, e) :
a 2 Ag 
 Y. Say that Y is bounded in X if there exists x 2 X and r> 0 such that Y� B
(x, r). If (X, d) is a metric space and A is a non-empty subset of X let diamd(A) ¼
supfd(x, y) : x, y 2 Ag. The number diamd(A) is called the diameter of the set A. We

write diam(A) if the metric d is clear. Given metric spaces (X, d) and (Y, r), a map f : X
! Y is called uniformly continuous if, for any e > 0, there exists d > 0 such that, for

any x, y 2 Xwith d(x, y)< d, we have r(f(x), f(y))< e. The map f is an isometry if it is
surjective and d(x, y) ¼ r(f(x), f(y)) for any x, y 2 X. Two metric spaces are

isometric if there exists an isometry between them. We perceive isometric spaces

as identical, because it is impossible to distinguish them by their topological or

metric properties.

If X is a space, and (Y, r) is a metric space, a map f : X! Y is called bounded if

f(X) is a bounded subset of Y. The set of all continuous bounded maps from X to Y is

denoted by C*(X, Y). For an arbitrary A� C(X), denote by Au the set ff 2 C(X) : there
exists a sequence ffn : n 2 og � A such that fn !! fg. There exists a topology tu
called the uniform convergence topology on C(X) such that A

u ¼ cltuðAÞ for every
A � C(X). The space (C(X), tu) will be denoted Cu(X). If C*(X) has the topology

inherited from Cu(X), it is denoted C�uðXÞ. If X and Y are arbitrary spaces, a map

f : X! Y is called perfect if it is closed and f �1(y) is compact for any y 2 Y. If P is

a topological property, we say that a topological object has the property s-P if it is

a union of countably many objects with the property P. For example, a cover of a

space X is s-discrete if it is a union of countably many discrete families. We say that
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a space X has the property P hereditarily (or X has hP, written also as X ‘ hP) if
any subspace of X has P. A space X has a property P locally (or is locally P) if any
point of X has a neighbourhood which has P. In particular, X is locally compact
if every point of X has a compact neighbourhood. If ’ is a cardinal function, then

’*(X)¼ supf’(Xn) : n 2Ng and h’ is its hereditary version, i.e., h’(X)¼ supf’(Y) :
Y � Xg.

Given a cover U of a set X, we say that a family V is a refinement of U if [V ¼ X
and for any V 2 V there isU 2 U such that V�U. A space X is paracompact if every

open cover of X has an open locally finite refinement. If every countable open cover

of X has an open locally finite refinement, then X is called countably paracompact.
A family x� exp(X) is called an ultrafilter on X if x is a filter and, for any filter m on

the set X, we have m ¼ x whenever m 
 x.
A family U � exp(X) is closure-preserving if, [U0 ¼ [fU : U 2 U0g for any

U0 � U. Given a family U � exp(X) and A � X, let St(A, U) ¼ [fU : U 2 U and

A \ U 6¼ ;g. We will write St(x, U) instead of St(fxg, U). A family V � exp(X) is a
barycentric refinement of a family U � exp(X) if, for any x 2 X, we have St(x, V)�U
for some U 2 U. A family V � exp(X) is a star refinement of a family U � exp(X)
if for any V 2 V we have St(V, V) � U for some U 2 U.

Call a space X collectionwise normal if, for any discrete family fFt : t 2 Tg of
closed subsets ofX, there exists a discrete family fUt : t2 Tg of open subsets ofX such

thatFt�Ut for each t2 T. A subspaceA� X is called aGk-subspace (or Gk-subset) of
X if A¼ \U, where U � t(X) and jUj � k. TheGo-subsets are calledGd-subsets. The

complements ofGk-subsets are calledFk-subsets (orFs-sets ifk¼o). A subsetA� X
is C-embedded in X if, for every continuous f : A! R, there exists g 2 C(X) such that
gjA¼ f. If every f2C*(A) can be extended to a continuous g :X!R, the setA is called

C*-embedded in X. A space X is perfect if every closed subspace of X is a Gd-set. It is

perfectly normal if it is perfect and normal. A space X is sequential if, for any non-

closed A � X, there is a sequence (an) � A which converges to some point of X \ A.
An extension of a space X is any space Y which contains X as a dense subset.

Given a space X, denote by A the set C(X, I) and for each x 2 X and f 2 A, let bx( f )¼
f(x). Then bx : A ! I and the subspace ~X ¼ fbx : x 2 Xg is homeomorphic to

X (see Problem 166 to verify this). Identifying the spaces X and ~X, we consider that
X � I

A. Denote by bX the closure of X in IA. The space bX is called the Čech–Stone
compactification of the space X. The space X is Čech-complete if it is aGd-set in bX.
A set A � X is nowhere dense in X if Int(A) ¼ ;. A first category subset of X is the

one representable as a countable union of nowhere dense subsets of X. A subset of

X is of second category if it is not of first category. A space X has the Baire property
or is a Baire space if any open non-empty subset of X is of second category.

201. Let (X, d) be a metric space. Show that

(i) The open balls form a base of (X, t(d)).
(ii) (X, t(d)) is Hausdorff and hence T1.

As a consequence, every metrizable space is Hausdorff and hence T1.
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202. Let (X, d) be a metric space. Considering that X has the topology t(d), prove
that the metric is a continuous function on X 	 X. Deduce from this fact that any

metrizable space is Tychonoff.

203. Let (X, d) be a metric space. Given a subspace Y � X, prove that the

function dY ¼ dj(Y 	 Y) is a metric on Y which generates on Y the topology of the

subspace of the space (X, t(d)).
204. Let X be a discrete space. Prove that the function defined by the formula

dðx; yÞ ¼ 0; if x ¼ y

1; if x 6¼ y

(
is a complete metric on X which generates the topology

of X. Hence every discrete space is completely metrizable.

205. For any points x ¼ (x1,� � �, xn) and y ¼ (y1,� � �, yn) of the space R
n let

rnðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðxi � yiÞ2
q

. Prove that rn is a complete metric on R
n which

generates the natural topology on R
n. Hence Rn is completely metrizable.

206. Let (X, d) be a metric space. Given x, y 2 X consider the function

d�ðx; yÞ ¼ dðx; yÞ; if dðx; yÞ � 1;

1; if dðx; yÞ>1:

(
Prove that

(i) d* is a metric on Xwhich generates the same topology on X; hence the metrics d
and d* are equivalent.

(ii) If d is a complete metric then d* is also complete.

As a consequence, every (complete) metric space has an equivalent (complete)

metric which is bounded by 1.

207. Let (Xn, dn) be a (complete) metric space such that dn(x, y)� 1 for all n 2 N

and x, y 2 Xn. For arbitrary points x, y 2 X ¼QfXn : n 2 Ng, consider the function
dðx; yÞ ¼P1

n¼1 2
�n � dnðxðnÞ; yðnÞÞ. Prove that d is a (complete) metric on X which

generates the product topology on X.
208. Show that any countable or finite product of (completely) metrizable spaces

is a (completely) metrizable space.

209. Prove that the following conditions are equivalent for any infinite space

X and an infinite cardinal k:

(i) w(X) � k.
(ii) X embeds in I

k.

(iii) X embeds in R
k.

Deduce from these equivalencies that any second countable space is metrizable.

210. Prove that any metrizable space is first countable. As a consequence, Cp(X)
is metrizable if and only if X is countable.

211. Given an arbitrary space X and functions f, g 2 Cu(X), let d(f, g) ¼ 1

if jf(x) � g(x)j � 1 for some x 2 X. If jf(x) � g(x)j < 1 for all x 2 X, then let d
(f, g) ¼ supfjf(x) � g(x)j : x 2 Xg. Prove that d is a metric on Cu(X) which

generates the topology of Cu(X). In particular, the space Cu(X) is metrizable for

any space X.
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212. Show that, for any metrizable space X, the following are equivalent:

(i) X is compact.

(ii) X is countably compact.

(iii) X is pseudocompact.

(iv) There exists a complete and totally bounded metric d on X with t(d) ¼ t(X).
(v) X embeds as a closed subset into Io.

213. Let X be a compact space. Prove that X is metrizable if and only if Cp(X) is
separable.

214. Prove that ext(X) ¼ s(X) ¼ c(X) ¼ d(X) ¼ nw(X) ¼ w(X) ¼ l(X) for any
metrizable space X. Hence, for a metrizable space X being Lindel€of or separable or
having the Souslin property is equivalent to X being second countable.

215. Let X be a metrizable space. Prove that the following properties are

equivalent:

(i) Cp(X) is Lindel€of.
(ii) Cp(X) is normal.

(iii) The extent of Cp(X) is countable.
(iv) All compact subspaces of Cp(X) are metrizable.

(v) X is second countable.

216. Let X be a metrizable space such that Cp(X) is separable. Is it true that

X must be second countable?

217. Suppose that Z is a space and Y is a dense subspace of Z. Prove that, for any
point y 2 Y, we have w(y, Y) ¼ w(y, Z). Deduce from this fact that, if Cp(X) has a
dense metrizable subspace, then it is metrizable and hence X is countable.

218. (The Stone Theorem) Prove that every open cover of a metrizable space has

an open refinement which is s-discrete and locally finite at the same time. In

particular, every metrizable space is paracompact.

219. Let X be an arbitrary space. Prove that Cp(X) is paracompact if and only if it

is Lindel€of.
220. Suppose that Cp(X) has a dense paracompact subspace. Must Cp(X) be

Lindel€of?
221. Prove that the following conditions are equivalent for any space X:

(i) X is metrizable.

(ii) X has a s-discrete base.
(iii) X has a s-locally finite base.

The equivalence (i) , (ii) is known as the Bing metrization theorem. The
statement (i), (iii) is the Nagata–Smirnov metrization theorem.

222. Let Ia ¼ (0, 1]	 fag for each a< k and J(k)¼ [fIa : a< kg [ f0g. Given
x, y 2 J(k), x¼ (t, a), y¼ (s, b), let r(x, y)¼ jt � sj if a¼ b. If a 6¼ b then r(x, y)¼
t þ s. Let r(x, 0) ¼ t, r(0, y) ¼ s and r(0, 0) ¼ 0. Prove that

(i) (J(k), r) is a complete metric space (called Kowalsky hedgehog with k spines).
(ii) Any metrizable space embeds into (J(k))o for some k.
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223. Show that a space is first countable if and only if it is an open continuous

image of a metrizable space.

224. Show that a space is sequential if and only if it is a quotient image of a

metrizable space.

225. A continuous onto map f : X! Y is called pseudo-open if, for any y 2 Y and

any U 2 t(X) such that f�1(y) � U, we have y 2 Int(f(U)). Show that

(i) A map f : X! Y is pseudo-open if and only if it is hereditarily quotient, i.e.,

fj(f�1(Z)) : f�1(Z)! Z is quotient for any Z � Y.
(ii) A composition of pseudo-open maps is a pseudo-open map.

(iii) Any open map as well as any closed one is pseudo-open.

(iv) If X is a Fréchet–Urysohn space and f : X! Y is a pseudo-open map then Y is

Fréchet–Urysohn.

(v) A space is Fréchet–Urysohn if and only if it is a pseudo-open image of a

metrizable space.

226. Prove that a perfect image of a metrizable space is a metrizable space.

227. Show that a closed image of a countable second countable space is not

necessarily a metrizable space.

228. Suppose that Cp(X) is a closed image of a metrizable space (i.e., there is

a metrizable space M and a closed map ’ : M ! Cp(X)). Prove that Cp(X) is

metrizable and hence X is countable.

229. Suppose that Cp(X) is an open image of a metrizable space (i.e., there is a

metrizable space M and an open map ’ : M ! Cp(X)). Prove that Cp(X) is

metrizable and hence X is countable.

230. Prove that the following conditions are equivalent for any space X:

(i) X is paracompact.

(ii) Every open cover of X has a (not necessarily open) locally finite refinement.

(iii) Every open cover of X has a closed locally finite refinement.

(iv) Every open cover of X has a s-locally finite open refinement.

(v) Every open cover of X has a s-discrete open refinement.

(vi) Every open cover of X has an open closure-preserving refinement.

(vii) Every open cover of X has a closure-preserving refinement.

(viii) Every open cover of X has a closed closure-preserving refinement.

(ix) Every open cover of X has a s-closure-preserving open refinement.

(x) Every open cover of X has a barycentric open refinement.

(xi) Every open cover of X has an open star refinement.

231. Prove that any paracompact space is collectionwise normal. In particular,

every metrizable space is collectionwise normal.

232. Give an example of a space which is collectionwise normal but not

paracompact.

233. Let N ¼ f(x, y) 2 R
2 : y � 0g. Given z ¼ (a, b) such that b > 0, let Bz ¼

fUn(z) : n 2 N, n > 1
b g where Un(z) ¼ f(x, y) 2 N : (x � a)2 þ (y � b)2 < 1

n2 g for
each n 2 N, n > 1

b . If z ¼ (a, 0) then Bz ¼ fUn(z) : n 2 Ng where
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UnðzÞ ¼ fzg [ ðx; yÞ : ðx� aÞ2 þ y� 1
n

� �2
< 1

n2

n o
. Show that

(i) The families fBz : z 2 Ng generate a topology t on N as local bases. The

resulting space N ¼ (N, t) is called the Niemytzki plane.
(ii) N is a separable Tychonoff space with iw(N) ¼ o.
(iii) ext(N) ¼ c and hence N is not normal.

(iv) N is a locally metrizable non-metrizable space.

234. Prove that any paracompact locally metrizable space is metrizable.

235. Let N be the Niemytzki plane. Prove that ext(Cp(N)) ¼ c. Deduce from this

fact that Cp(N) is not normal.

236. Let (X, d) be a metric space. Say that a family F of subsets of X has
elements of arbitrarily small diameter if, for any e > 0, there is F 2 F such that

diam(F) < e. Prove that the following properties are equivalent:

(i) (X, d) is complete.

(ii) For every decreasing sequence F1 
 F2 
 � � � of closed non-empty subsets of

X such that diam(Fi)! 0 when i!1, we have \fFi : i 2 Ng 6¼ ;.
(iii) For any centered family F of closed subsets of X which has elements of

arbitrarily small diameter, we have \F 6¼ ;.
237. Show that every metric space X is isometric to a dense subspace of a

complete metric space ~X, which is called the completion of X.
238. Let A be a dense subset of a metric space (X, d). Suppose that (Y, r) is a

complete metric space, B � Y and ’ : A! B is an isometry. Prove that there exists

an isometry f : X! Y0 � Y such that fjA ¼ ’.
239. Let (X, d) and (Y, r) be complete metric spaces. Suppose that A is dense

in X, and B is dense in Y. Prove that any isometry between A and B (with

the metrics induced from X and Y, respectively), can be extended to an isometry

between (X, d) and (Y, r). In particular, the completion ~X of a metric space

X is unique in the sense that if Z is another completion of X then there is

an isometry between ~X and Z which is the identity restricted to the respective

copies of X.
240. Given metric spaces (X, d) and (Y, r), call a map f : X! Y a contraction if

there is a k 2 (0, 1) such that r(f(x), f(y))� k · d(x, y) for any x, y 2 X. Prove that any
contraction is a uniformly continuous map.

241. Let (X, d) be a complete metric space. Prove that if f : X ! X is a

contraction, then it has a unique fixed point, i.e., there is a unique x 2 X such that

f(x) ¼ x.
242. Let (X, d) be a compact metric space. Prove that, for any metric space (Y, r)

and any continuous f : X! Y, the map f is uniformly continuous.

243. Let (X, d) be a metric space such that, for any metric space (Y, r), any
continuous map f : X! Y is uniformly continuous. Must X be a compact space?

244. Let (X, d) be a compact metric space. Prove that, for any open cover U of the

space X, there is a number d ¼ d(U)> 0 such that for each A � X with diamd(A)< d
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there exists a set U 2 U such that A � U. The number d(U) is called the Lebesgue
number of the cover U.

245. Let (X, d) and (Y, r) be metric spaces. A set F � C(X, Y) is called

equicontinuous at a point x 2 X if, for any e > 0, there is d > 0 such that

f(Bd(x, d)) � Br(f(x), e) for every f 2 F . The set F is called an equicontinuous
family if it is equicontinuous at every x 2 X. Prove that every finite F � C(X, Y) is
equicontinuous.

246.Given metric spaces (X, d) and (Y, r), a set F � C(X, Y) is called a uniformly
equicontinuous family if, for any e > 0, there exists d > 0 such that, for any x, y 2 X
with d(x, y) < d, we have r(f(x), f(y)) < e for all f 2 F . Prove that
(i) Every subset of a uniformly equicontinuous set is uniformly equicontinuous.

(ii) If F is uniformly equicontinuous then every f 2 F is uniformly continuous.

(iii) A finite set of maps F is uniformly equicontinuous if and only if each f 2 F is

uniformly continuous.

247. Let (X, d) be a compact metric space. Given a metric space (Y, r) and an

equicontinuous family F � C(X, Y), prove that F is uniformly equicontinuous.

248. Suppose that X is a space and (Y, r) is a (complete) metric space. For any

functions f, g 2 C*(X, Y) let s(f, g) ¼ supfr(f(x), g(x)) : x 2 Xg. Show that s is a

(complete) metric on C*(X, Y). It is called the metric of uniform convergence.
249. Let (X, d) be a totally bounded metric space. Suppose that (Y, r) is a metric

space and F � C(X, Y) has the following properties:

(1) The family F is uniformly equicontinuous.

(2) For any x 2 X, the set F (x) ¼ ff(x) : f 2 Fg is totally bounded in (Y, r).

Prove that F � C*(X, Y) and the family F is totally bounded in C*(X, Y). Here
C*(X, Y) is considered with the metric s of uniform convergence.

250. Let X be a compact (not necessarily metrizable) space. Given a metric space

(Y, r), prove that any continuous map f : X ! Y is bounded, i.e., we have the

equality C(X, Y) ¼ C*(X, Y).
251. Let (X, d) be a compact metric space. Given a metric space (Y, r) and a family

F � C*(X, Y), prove that F is totally bounded if and only if F is equicontinuous and

F (x) ¼ ff(x) : f 2 Fg is totally bounded in (Y, r) for any x 2 X. Here C*(X, Y) is
assumed to be endowed with the metric s of uniform convergence.

252. Given a compact metric space (X, d), suppose that (Y, r) is a complete

metric space. Prove that a set F � C*(X, Y) is compact if and only if it is closed,

equicontinuous and F (x)¼ ff(x) : f 2 Fg is compact for any x 2 X. Here C*(X, Y) is
considered to be endowed with the metric s of uniform convergence.

253. Let (X, d) and (Y, r) be compact metric spaces. Show that a set F � C(X, Y)
¼ C*(X, Y) is compact if and only if it is closed and equicontinuous. Here C*(X, Y)
is assumed to be endowed with the metric s of uniform convergence.

254. Let (X, d) be a compact metric space. Prove that a set F � C*(X) is compact

if and only if it is closed, bounded and equicontinuous. Here the space C*(X) ¼ C
(X) is assumed to be endowed with the metric s of uniform convergence.
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255. Given a space Xt for each t 2 T, let X ¼ [fXt 	 ftg : t 2 Tg. Define the

map qt : Xt	 ftg! Xt by the formula qt(x, t)¼ x for all t 2 T and x 2 Xt. If we have

a set U � X, let U 2 t if qt(U \ (Xt	 ftg)) is open in Xt for all t 2 T. The family t is
a topology on X (see Problem 113); the space (X, t) is called the discrete (or free)
union of the spaces Xt and we also denote (X, t) by

LfXt : t 2 Tg. Suppose that

X ¼LfXt : t 2 Tg, where jXtj � o for each t 2 T. Prove that Cp(X) is homeomor-

phic to a product of metric spaces. Give an example of a space Y such that Cp(Y)
is homeomorphic to a product of metric spaces but Y cannot be represented as a

discrete union of countable spaces.

256. Suppose that Cp(X) is homeomorphic to a product of metrizable spaces.

Prove that, if X is Lindel€of or pseudocompact, then it is countable.

257. Let X be any space. Prove that, for any compact space Y and any continuous

map ’ : X! Y, there exists a continuous map F : bX! Y such that FjX ¼ f.
258. Let cX be a compact extension of a space X. Prove that the following

properties are equivalent:

(i) For any compact space Y and any continuous map f : X ! Y there exists a

continuous map F : cX ! Y such that FjX ¼ f.
(ii) For any compact extension bX of the space X there exists a continuous map p :

cX! bX such that p(x) ¼ x for all x 2 X.
(iii) There is a homeomorphism ’ : cX! bX such that ’(x) ¼ x for any x 2 X.

259. Prove that the following conditions are equivalent for any space X:

(i) X is Čech-complete.

(ii) X is a Gd-set in some compact extension of X.
(iii) X is a Gd-set in any compact extension of X.
(iv) X is a Gd-set in any extension of X.

260. Prove that

(i) Any closed subspace of a Čech-complete space is Čech-complete.

(ii) Any Gd-subspace of a Čech-complete space is Čech-complete. In particular,

every open subspace of a Čech-complete space is Čech-complete.

261. Prove that any perfect image as well as any perfect preimage of a Čech-

complete space is Čech-complete.

262. Prove that any discrete union as well as any countable product of Čech-

complete spaces is a Čech-complete space.

263. Let X be a Čech-complete space. Given a compact K � X, prove that there
exists a compact L � X such that K � L and w(L, X) ¼ o. In particular, any point of
X is contained in a compact set of countable character in X.

264. Let X be a non-empty space and suppose that Y and Z are dense Čech-

complete subspaces of X. Prove that Y \ Z 6¼ ;.
265. Prove that the following are equivalent for any space X:

(i) The space Cp(X) is Čech-complete.

(ii) Cp(X) has a dense Čech-complete subspace.

(iii) X is countable and discrete.
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266. Considering Cp(X) as a subspace of R
X, assume that it is a Gd-subset of R

X.

Prove that X is discrete (and hence Cp(X) ¼ R
X).

267. Considering Cp(X) as a subspace ofR
X, assume that it is an Fs-subset ofR

X.

Prove that X is discrete (and hence Cp(X) ¼ R
X).

268. Let X be a space. Given a sequence G ¼ fgn : n 2 og of open covers of X,
say that a filter F is dominated by G if, for any n 2 o, there is Fn 2 F with Fn� Un

for some Un 2 gn. The sequence G is called complete if for any filter F in X,
dominated by G, we have \fF : F 2 Fg 6¼ ;. Prove that a space X is Čech-complete

if and only if there is a complete sequence of open covers of X.
269. Prove that a metrizable space is Čech-complete if and only if it is metrizable

by a complete metric.

270. Prove that, for any Čech-complete space X, we have w(X) ¼ nw(X). In
particular, any Čech-complete space with a countable network is second countable.

271. Let X be a Lindel€of Čech-complete space. Prove that Xo is a Lindel€of
space.

272. Prove that the Sorgenfrey line is not Čech-complete. Recall that the

Sorgenfrey line is the space (R, ts), where ts is the topology generated by the

family f[a, b) : a, b 2 R, a < bg as a base.
273. Prove that a second countable space is Čech-complete if and only if it

embeds into R
o as a closed subspace.

274. Prove that

(i) Any Čech-complete space has the Baire property.

(ii) Any pseudocompact space has the Baire property.

275. Let X be a Baire space. Prove that any extension of X as well as any open

subspace of X is a Baire space. Show that a closed subspace of a Baire space is not

necessarily a Baire space.

276. Prove that a dense Gd-subspace of a Baire space is a Baire space. As a

consequence, Q is not a Gd-subset of R.

277. Prove that an open image of a Baire space is a Baire space.

278. Prove that Cp(X) is a Baire space if and only it is of second category

in itself. Give an example of a non-Baire space Y which is of second category in

itself.

279. Suppose that X is an infinite set and x is a free ultrafilter on X (i.e., x is

an ultrafilter on X and \ x ¼ ;). Denote by Xx the set X [ fxg with the topology

tx ¼ fA : A � Xg [ fB : x 2 B and X \ B =2 xg. Show that tx is indeed a topology on
Xx such that x is the unique non-isolated point of Xx. Prove that Cp(Xx) is a Baire

space.

280. Show that Cp(X) is a Baire space if and only if pA(Cp(X)) is a Baire space for
any countable A � X. Here pA : Cp(X) ! Cp(A) is the restriction map defined by

pA(f) ¼ f jA for every f 2 Cp(X).
281. Prove that a countable product of second countable Baire spaces is a Baire

space.

282. Prove that, for every Baire space X, we have p(X) ¼ c(X).

32 1 Basic Notions of Topology and Function Spaces



283. Prove that, ifCp(Xt) is a Baire space for all t 2 T, then the product
QfCp(Xt) :

t 2 Tg is a Baire space.
284. Given a (not necessarily metric!) space X, call a subset A � X bounded if,

for any f 2 C(X), the set f(A) is bounded in R. Prove that if Cp(X) is a Baire space
then every bounded subset of X is finite. In particular, every pseudocompact

subspace of X is finite. As a consequence, if X is a metrizable space such that

Cp(X) is has the Baire property, then X is discrete.

285. Prove that there exist spaces X such that Cp(X) is not a Baire space while all
bounded subsets of X are finite.

286. Prove that if Cp(X) is a Baire space then Cp(X, I) is also Baire. Give an

example of a space X such that Cp(X, I) is a Baire space but Cp(X) does not have the
Baire property.

287. Prove that if Cp(X, I) has a dense Čech-complete subspace then X is

discrete.

288. Prove that the following are equivalent for any normal space X:

(i) X is countably paracompact.

(ii) X 	 K is normal for any metrizable compact K.
(iii) X 	 I is normal.

(iv) X 	 A(o) is normal.

289. Prove that, if Cp(X) is normal, then it is countably paracompact.

290. Prove that Cp(X) is normal if and only if any Fs-subset of Cp(X) is countably
paracompact.

291. Suppose that Cp(X) is normal and Y is closed in X. Prove that the space

pY(Cp(X)) ¼ ffjY : f 2 Cp(X)g � Cp(Y) is also normal.

292. Prove that every perfectly normal space is hereditarily normal but not vice

versa. Show that, for any space X, if Cp(X) is hereditarily normal then it is perfectly

normal.

293. Give an example of a space which is normal but not collectionwise normal.

294. (Reznichenko’s theorem) Call a set P � I
A convex if tf þ (1 � t)g 2 P for

any f, g 2 P and t 2 [0, 1]. Let D be a dense convex subset of IA. Prove that, if

D is normal then ext(D) ¼ o. Deduce from this fact that any normal convex dense

D � I
A is collectionwise normal.

295. Prove that, if Cp(X) is normal then ext(Cp(X)) ¼ o. Deduce from this fact

that, if Cp(X) is normal then it is collectionwise normal.

296. Prove that, if Cp(X, I) is normal then ext(Cp(X, I)) ¼ o. Deduce from this

fact that, if Cp(X, I) is normal then it is collectionwise normal.

297. Give an example of a space X, for which ext(Cp(X))¼ o, while Cp(X) is not
normal.

298. Suppose that L is a subspace of a product X ¼QfXt : t 2 Tg and l(L) � k.
Prove that, for any second countable space Y and any continuous map f : L ! Y,
there exists a set S � T with jSj � k and a continuous map h : pS(L) ! Y such

that f ¼ h ∘ pS. Here pS : X ! XS ¼
Q

t2SXt is the natural projection defined by

pS(x) ¼ xjS for any x 2 X.
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299. Suppose that k is an infinite cardinal and nw(Xt) � k for all t 2 T. For
the space X ¼ QfXt : t 2 Tg and T0 � T, the map qT0 : X ! XT0 ¼

Q
t2T0Xt is the

natural projection defined by qT0(x) ¼ xjT0 for any x 2 X. Suppose that D is a dense

subspace of X and we are given a continuous onto map f : D! Y for some space Y.
Let Q¼ fy 2 Y : w(y, Y)� kg and P¼ f�1(Q). Prove that there exist a set S� Twith

jSj � k, a closed subset L of the spaceD, a closed subspaceM of the space qS(D) and
a continuous map h : M! Y with the following properties:

(i) P � L and qS(L) ¼ M.

(ii) f(x) ¼ h(qS(x)) for every x 2 L.

Deduce from this fact that nw(Q) � k. In particular, if w(Y) � k then nw(Y) � k
and there exists a set T0 � T together with a continuous mapping h : qT

0(D)! Y such

that f ¼ h ∘ (qT
0jD).

300. Given a space Z and a second countable space Y show that, for any

continuous map p : Cp(Z) ! Y, there is a countable set A � Z and a continuous

mapping q : pA(Cp(Z))! Y such that p ¼ q ∘ pA. Here pA : Cp(Z)! Cp(A) is the
restriction map defined by the formula pA(f) ¼ fjA for every f 2 Cp(Z).
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1.4 Compactness Type Properties in Function Spaces

All spaces in this section are assumed to be Tychonoff. A compact space is called

dyadic if it is a continuous image of the Cantor cube f0, 1gk for some k. Given
a locally compact non-compact space X, consider a(X) ¼ X [ fag, where a =2 X.
Let m ¼ t(X) [ ffag [ U : X\U is compactg. The space (a(X), m) is called one-point
compactification (or Alexandroff compactification) of the space X.

An arbitrary relation � on a set L is called partial order if the following

conditions are fulfilled:

(PO1) for any x 2 L we have x � x.
(PO2) x � y and y � x implies x ¼ y.
(PO3) x � y and y � z implies x � z.

If the partial order � on L has also the following property.

(LO) for any x, y 2 L either x � y or y � x,
then it is called a linear order on the set L.

The pair (L, �) is called partially (or linearly) ordered set. If (L, �) is a linearly
ordered set and A � L, then an x 2 A is called the smallest (or the minimal) element
of A if, for any a 2 A, we have x � a. If a � x for any a 2 A, we call x the largest
(or the maximal) element of A. We denote by x � y the fact that y � x and use the

abbreviation x < y for x � y and x 6¼ y. Of course, x > y means y < x. A linearly

ordered set (L, �) is called well ordered if any A � L has a smallest element.

Two linearly ordered sets (L, �) and (M, �) are isomorphic if there is a bijection

f : L! M (called an (order) isomorphism) such that x < y implies f(x) � f(y). All
examples of well-ordered sets (up to an isomorphism) are given by the ordinals.

If (L, �) is a linearly ordered set, there is a natural way to introduce a topology

on L. For a, b 2 L, let (a,!)¼ fx 2 L : a< xg, ( , b)¼ fx 2 L : x< bg and (a, b)¼
fx 2 L : a < x < bg; then the family B ¼ f(a, b) : a, b 2 Lg [ f(a,!) : a 2 Lg [
f( , a) : a 2 Lg generates a topology t(�) on L (as a base) which is called the
topology generated by the order � and (L, t(�)) is called a linearly ordered space.
A space X is linearly orderable if t(X) can be generated by some linear order on X.
In our future considerations all linearly ordered sets (ordinals in most cases) carry

this topology if another one is not introduced explicitly.

Given a space X and x 2 X, call a family B � t*(X) a p-base of X at x if, for any
U 2 t(x, X), there is V 2 B such that V � U. Note that the elements of a p-base at x
need not contain the point x. Now, pw(x, X)¼minfjBj : B is a p-base of X at xg and
pw(X) ¼ supfpw(x, X) : x 2 Xg. A family B � t*(X) is called a p-base of X if any

non-empty open subset of X contains an element of B. The cardinal number pw(X)
¼minfjBj : B is a p-base in Xg is called p-weight of X. A family U of subsets of X is

said to have order � k if any x 2 X belongs to� k-many elements of U. A subset of

a space is clopen if it is closed and open at the same time. If X ¼ Q
t2TXt is a

topological product and S � T, the map pS : X ! XS ¼
Q

t2SXt is defined by the

formula pS(x) ¼ xjS; it called the natural projection of X onto the face XS.
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Given an uncountable cardinal k, let L(k)¼ k [ fag, where a =2 k. If x2 k, letBx¼
ffxgg. If x ¼ a, then Bx ¼ ffag [ (k\B): B is a countable subset of kg. It is clear
that the families fBx : x 2 L(k)g satisfy the properties (LB1)–(LB3) of Problem 007 so

there exists a unique topology t(L(k)) for whichBx is a local base at x for any x2 L(k).
The space L(k) is called the Lindel€ofication of the discrete space of cardinality k.

A continuous surjective map f : X! Y is irreducible if, for any closed set F � X
with F 6¼ X, we have f(F) 6¼ Y. A subset A of a space X is bounded if for any f 2 C(X)
the set f(A) is bounded in R. If the opposite is not stated explicitly, for any ordinal k
(which can be finite), the set Rk is always considered with the topology of the

product of k-many copies of the real line.

Let Xt be a space for each t 2 T. Consider the set X ¼ [fXt 	 ftg : t 2 Tg.
For each t 2 T, define the map qt : Xt	 ftg ! Xt by the formula qt(x, t)¼ x for each
x 2 Xt. If U� X, let U 2 t if qt(U \ (Xt	 ftg)) is open in Xt for all t 2 T. The family

t is a topology on X; the space (X, t) is denoted by
LfXt : t 2 Tg and is called the

discrete (or free) union of the spaces Xt.

Let X be a space and denote by AD(X) the set X 	 f0, 1g. Given x 2 X, let
u0(x)¼ (x, 0) and u1(x)¼ (x, 1). Thus, AD(X)¼ u0(X) [ u1(X). Declare the points of
u1(X) isolated. Now, if z ¼ (x, 0) 2 AD(X) then the base at z is formed by the sets

u0(V) [ (u1(V)\fu1(x)g) where V runs over the open neighbourhoods of x. The space
AD(X) with the topology thus defined is called the Alexandroff double of the space X.
Let T¼ ( (0, 1]	 f0g)[ ([0, 1)	 f1g)�R2. If z¼ (t, 0)2 T, letBz¼ f((a, t]	 f0g)
[ ((a, t)	 f1g) : 0< a< tg. Now if z¼ (t, 1)2 T, let Bz¼ f([t, a)	 f1g) [ ( (t, a)	
f0g) : t< a< 1g. Let t be the topology generated by the families fBz : z 2 Tg as local
bases. The space (T, t) is called two arrows (or double arrow) space.

A family F of subsets of a set X is almost disjoint if F \ F0 is finite for any

distinct F, F0 2 F ; say that F is a maximal family with a property P, if F ‘ P
and for any F0 � exp(X) with the property P, we have F0 ¼ F whenever F0 
 F .
LetM be a maximal almost disjoint family on o andM(M)¼o [M. If x 2o, let
Bx¼ fxg. Given x 2M, define Bx¼ ffxg [ (x \ A) : A is a finite subset of xg. Let tM
be the topology generated by families fBx : x 2Mg as local bases. Then (M(M), tM)
is called the Mrowka space; it will be denoted by M ifM is clear.

Let N¼ f(x, y) 2 R
2 : y� 0g. Given z¼ (a, b) such that b> 0, let Bz¼ fUn : n 2

Ng where Un¼ f(x, y) 2 N : (x� a)2þ (y� b)2< 1
n2 g for each n 2 N, n> 1

b . If z¼
(a, 0) then Bz¼ fUn : n 2Ngwhere Un ¼ fzg [ ðx; yÞ : ðx� aÞ2 þ y� 1

n

� �2
< 1

n2

n o
.

The families fBz : z 2 Ng generate a topology t on N as local bases. The resulting

space N ¼ (N, t) is called the Niemytzki plane. Denote by ts the topology generated
by the family B ¼ f[a, b) : a, b 2R, a< bg as a base. The space S¼ (R, ts) is called
the Sorgenfrey line.
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301. Prove that, if jXj > 1, then the space Cp(X) is not linearly ordered.

302. Prove that any linearly ordered space is collectionwise normal and T1.
Deduce from this fact that any linearly ordered space is Tychonoff.

303. Prove that t(X) ¼ c(X) ¼ w(X) for any linearly ordered topological space X.
304. Prove that d(X) ¼ hd(X) ¼ pw(X) for any linearly ordered topological

space X.
305. Prove that a linearly ordered space X is compact if and only if any

non-empty closed subset of X has the smallest and the largest element under the

order that generates t(X).
306. Suppose that a well order � generates the topology of a space X. Prove that

X is compact if and only if (X, �) has the largest element.

307. Let X be an arbitrary product of separable spaces. Prove that every pseu-

docompact subspace of Cp(X) is metrizable (and hence compact).

308. Let X be an arbitrary product of separable spaces. Suppose that Y is a dense

subspace of X. Is it true that every compact subspace of Cp(Y) is metrizable?

309. Suppose that Cp(X) has a dense s-pseudocompact subspace. Does it neces-

sarily have a dense s-countably compact subspace?

310. Suppose that Cp(X) has a dense s-countably compact subspace. Does it

necessarily have a dense s-compact subspace?

311. Prove that any space X is a continuous image of a space Y such that Cp(Y)
has a dense s-compact subspace.

312. Is it true that any space X is an R-quotient image of a space Y such that

Cp(Y) has a dense s-compact subspace?

313. Let X be a metrizable space. Prove that Cp(X) has a dense s-compact

subspace.

314. Show that the space o1 is countably compact and (o1 þ 1) is compact.

Prove that, for every continuous function f : o1! R, there exists a0 < o1 such that

f(a) ¼ f(a0) for every a � a0. Deduce from this fact that bo1 ¼ o1 þ 1.

315. Prove that Cp(o1) has no dense s-compact subspace.

316. Prove that Cp(o1) is Lindel€of.
317. Prove that Cp(o1 þ 1) does not have a dense Lindel€of subspace.
318. Prove that Cp(o1 þ 1) embeds into Cp(o1). Is it possible to embed Cp(o1)

into Cp(o1 þ 1)?

319. Prove that Cp(o1 þ 1) is a Fréchet–Urysohn space.

320. Prove that Cp(o1 þ 1) is not normal.

321. Let X be an arbitrary space. Supposing that all compact subspaces of Cp(X)
are first countable, prove that they are all metrizable.

322. Does there exist a space X such that all countably compact subspaces of

Cp(X) are first countable but not all of them are metrizable?

323. Suppose that all countably compact subspaces of Cp(X) are metrizable.

Is the same true for all pseudocompact subspaces of Cp(X)?
324. Is it true that any compact space X can be embedded into Cp(Y) for some

pseudocompact space Y?
325. Is it true that any compact space X can be embedded into Cp(Y) for some

space Y with c(Y) ¼ o?
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326. Is it true that any compact space X can be embedded into Cp(Y) for some

space Y with ext(Y) ¼ o?
327. Prove that, for any compact space X, we have c(F, X) ¼ w(F, X) for any

closed F � X. In particular, w(X) ¼ c(X).
328.Let X be a space. Call a set F¼ fxa : a< kg � X a free sequence of length k if

fxa : a< bg \ fxa : a � bg ¼ ; for every b < k. Prove that, for any compact space

X, tightness of X is equal to the supremum of the lengths of free sequences in X.
329. Prove that jXj � 2w(X) for any compact space X. In particular, the cardinality

of a first countable compact space does not exceed c.

330. Given an infinite cardinal k, let X be a compact space such that w(x, X) � k
for any x 2 X. Prove that jXj � 2k.

331. (Shapirovsky’s theorem on p-character) Prove that pw(X) � t(X) for any
compact space X.

332. (Shapirovsky’s theorem on p-bases) Suppose that X is a compact space with

t(X) � k. Prove that X has a p-base of order � k.
333. Suppose that X has a dense s-compact subspace. Prove that so does

Cp(Cp(X)).
334. Is it true that if Cp(Cp(X)) has a dense s-compact subspace, then so has X?
335. Suppose that every compact subspace of X is metrizable. Is the same true

for Cp(Cp(X))?
336. Give an example of a compact space X such that Cp(Cp(X)) is not Lindel€of.
337. Given a space X prove that, for any n 2 N, the space Xn is homeomorphic to

a closed subspace Cn of the space Lp(X) (see Problem 078). Therefore, every Xn

embeds into Cp(Cp(X)) as a closed subspace.

338. Say that a space X is Ksd if there exists a space Y such that X � Y and

X¼ \fYn : n 2og where each Yn is a s-compact subset of Y. Prove that a space X is

Ksd if and only if X embeds as a closed subspace into a countable product of

s-compact spaces. Deduce from this fact that

(i) Any closed subset of a Ksd-space is a Ksd-space.

(ii) Any countable product of Ksd-spaces is a Ksd-space.

(iii) If X is a Ksd-space then Xo is Lindel€of.

339. Give an example of a Ksd-space which is not s-compact.

340. Prove that Cp(X) is a Ksd-space for any metrizable compact space X.
341. Prove that Cp(X) is a Ksd-space for every countable metrizable X.
342. LetM be a separable metrizable space. Prove that there is a countable space

Y such that M is homeomorphic to a closed subspace of Cp(Y).
343. Prove that there exist countable spaces X for which Cp(X) is not a

Ksd-space.

344. Call a subset A � Cp(X) strongly (or uniformly) dense if, for every

f 2 Cp(X), there is a sequence ffn : n 2 og � A such that fn!! f. In other words, a

subset is strongly dense in Cp(X) if it is dense in the uniform convergence topology

on C(X). Prove that

(i) If A � Cp(X) is strongly dense in Cp(X) then it is dense in Cp(X).
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(ii) For any compact X, the space Cp(X) has a strongly dense s-compact subspace if

and only if it has a dense s-compact subspace.

345. Give an example of a space X such that Cp(X) has a dense s-compact

subspace while there is no strongly dense s-compact subspace in Cp(X).
346. Prove that Cp(A(k)) has a strongly dense s-compact subspace for any

cardinal k.
347. Suppose that there exists a strongly dense subset A� Cp(X) such that t(A)�

k. Prove that t(Cp(X)) � k.
348. Suppose that there exists a strongly dense Fréchet–Urysohn subspace

A � Cp(X). Prove that Cp(X) is a Fréchet–Urysohn space.

349. Suppose that there exists a strongly dense subspace A � Cp(X) with c(A)�
o. Is it true that Cp(X) has countable pseudocharacter?

350. Suppose that there exists a strongly dense s-pseudocompact subspace

A � Cp(X). Prove that X is pseudocompact.

351. Suppose that there exists a strongly dense s-countably compact set

A � Cp(X). Prove that X is compact.

352. Suppose that there exists a strongly dense countable A � Cp(X). Prove that
X is compact and metrizable.

353.Give an example of a non-compact space X for which there exists a strongly

dense s-pseudocompact A � Cp(X).
354. Prove that L(k)o is a Lindel€of space for any k.
355. Prove that every Gd-subset of X is open if and only if for any countable A�

Cp(X) we have A � Cp(X) (the closure is taken in R
X).

356. Prove that Cp(L(k), I) is countably compact.

357. Prove that Cp(L(k)) has a dense s-compact subspace.

358. Given an uncountable cardinal k, let S(k) ¼ fx 2 R
k : the set x�1(R\f0g) is

countableg. Prove that, if a compact space X is a continuous image of S(k) then X is

metrizable.

359. Prove that a dyadic compact space of countable tightness is metrizable.

360. Suppose that X is a dyadic compact space such that the set fx 2 X : w(x, X)�
og is dense in X. Prove that X is metrizable.

361. Show that any hereditarily normal dyadic compact space is metrizable.

362. Let X be a dyadic compact space. Prove that, if Cp(X) is Lindel€of then X is

metrizable.

363. Let X be a dyadic compact space. Suppose that Cp(X) has a dense s-pseu-
docompact subspace. Prove that X is metrizable.

364. Prove that the Alexandroff double AD(X) of a compact space X is a compact

space which is metrizable if and only if X is countable.

365. Let X be a metrizable compact space. Denote by AD(X) the Alexandroff

double of the space X. Prove that Cp(AD(X)) has a dense s-compact subspace.

366. Let X and Y be any spaces. Given a perfect map f : X! Y, prove that there is
a closed F � X such that f(F) ¼ Y and fjF is an irreducible map. As a consequence,

the same is true for any continuous surjective map between compact spaces.
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367. Given a cardinal k, let S(k) ¼ fx 2 R
k : the set x�1(R\f0g) is countableg.

Prove that any compact space of countable tightness admits an irreducible continuous

map onto a subspace of S(k) for some k.
368. Prove that w(bo) ¼ c and jboj ¼ 2c.

369. Prove that bo \ fxg is countably compact for any x 2 bo.
370. Prove that every non-empty Gd-subset of o* ¼ bo\o has a non-empty

interior.

371. Prove that c(bo \ o) ¼ c.
372. Prove that bo admits an irreducible map onto a subspace of S(k) for some k.
373. Prove that bo \ o does not admit an irreducible map onto a subspace of

S(k) for any k.
374. Prove that tightness of bo \ o is uncountable.

375. Prove that, for any separable compact space X, the space Cp(X) embeds into

Cp(bo) as a closed subspace.

376. Prove that Cp(bo) embeds into Cp(bo \ o) while Cp(bo \ o) does not

embed into Cp(bo).
377. Prove that Cp(bo\o) does not condense onto a compact space.

378. Prove that Cp(bo) condenses onto a s-compact space.

379. Prove that neither Cp(bo) nor Cp(bo \ o) has a dense s-compact subspace.

380. Prove that either of the spaces Cp(bo) or Cp(bo \ o) maps openly and

continuously onto another.

381. Prove that neither of the spaces Cp(bo) or Cp(bo \ o) is normal.

382. Prove that, for any discrete space D, we have p(Cp(bD)) ¼ o.
383. Prove that, for any compact space X and any continuous surjective mapping

f : X! bo, there exists an F � X such that f(F)¼ bo and fjF is a homeomorphism.

384. Let T be the two arrows space. Prove that T is a perfectly normal hereditar-

ily separable compact space and ext(Cp(T)) ¼ c. Deduce from this fact that Cp(T) is
not normal.

385. Let T be the two arrows space. Show that p(Cp(T)) ¼ c.
386. Consider the two arrows space T and let S be the Sorgenfrey line. Prove that

Cp(T) embeds into Cp(S) while Cp(S) does not embed into Cp(T).
387. Let M0 be the one-point compactification of the Mrowka space M. Prove

that M0 is a sequential compact space which is not a Fréchet–Urysohn space.

388. Let M0 be the one-point compactification of the Mrowka space M.

Prove thatM0 \ o is homeomorphic to the Alexandroff compactification of a discrete

space.

389. Let M0 be the one-point compactification of the Mrowka space M. Prove

that, for every second countable space Z and any continuous f : M0 ! Z, the set

f(M0) is countable.

390. Let M0 be the one-point compactification of the Mrowka space M. Prove

that Cp(M0) is not Lindel€of.
391. Let M0 be the one-point compactification of the Mrowka space M. Prove

that Cp(M0) does not have a dense s-compact subspace.

392. Let M0 be the one-point compactification of the Mrowka space M. Prove

that Cp(M0) is a Fréchet–Urysohn space.
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393. Prove that IX ¼ b(Cp(X, I)) if and only if every countable subset of X is

closed and C*-embedded in X.
394. Prove that Cp(X) has a dense s-compact subspace if and only if Cp(X, I) has

a dense s-compact subspace.

395. Prove that Cp(X) has a dense Lindel€of subspace if and only if Cp(X, I) has a
dense Lindel€of subspace.

396. Suppose that Cp(X, I) is s-compact. Prove that X is discrete and hence

Cp(X, I) is compact.

397. Prove that the following conditions are equivalent for any space X:

(i) Cp(X, I) is countably compact.

(ii) Cp(X, I) is s-countably compact.

(iii) Every Gd-subset of X is open in X.

398. Prove that the following conditions are equivalent for any space X:

(i) Cp(X, I) is pseudocompact.

(ii) Cp(X, I) is s-pseudocompact.

(iii) Cp(X, I) is s-bounded.
(iv) Every countable subset A of X is closed and C*-embedded in X.

399. Prove that the following conditions are equivalent for any space X:

(i) Cp(X) is s-pseudocompact.

(ii) Cp(X) is s-bounded.
(iii) The space X is pseudocompact and every countable subset of X is closed and

C*-embedded in X.

400. Prove that there exists a dense pseudocompact subspace X of the cube I
c

such that every countable subspace of X is closed and C*-embedded in X. Observe
that Cp(X) is s-pseudocompact. Hence Cp(X) can be s-pseudocompact for an

infinite space X.
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1.5 More on Completeness: Realcompact Spaces

All spaces in this section are assumed to be Tychonoff. Given a space Y, suppose
that ft : Y! Xt for any t 2 T. Let f : Y! X ¼QfXt : t 2 Tg be the map defined by

f(y)(t) ¼ ft(y) for any y 2 Y. The map f is called the diagonal product of the family
F ¼ fft : t 2 Tg and denoted by Dfft : t 2 Tg or DF . If ft is continuous for each t 2 T
then the map f ¼ Dt2Tft is also continuous; indeed, if pt : X ! Xt is the natural

projection then pt ∘ f ¼ ft is a continuous map for each t 2 T (see Problem 102).

Suppose that gt : Xt! Yt is a map for any t 2 T. Let g : X¼QfXt : t 2 Tg !QfYt :
t 2 Tg be the mapping defined by g(x)(t)¼ ft(x(t)) for any x 2 X. The map g is called
the product of the family G ¼ fgt : t 2 Tg. It will be denoted Q

t2T gt or
QG. Any

product of continuous maps is a continuous map (see Fact 1 of S.271).

Consider the map i¼ DC(X) : X! R
C(X); observe that i coincides with the mapp-

ing EC(X) : X ! Cp(Cp(X)) � R
C(X) introduced in Problem 166. The space X being

Tychonoff, for every x 2 X and every closed F� X with x =2 F, there is f 2 C(X) such
that f ðxÞ =2 f ðFÞ. This implies that i ¼ EC(X) is an embedding (166) and hence we can

identify X and i(X). Denote the subspace iðXÞ by uX (the closure is taken in R
C(X));

identifying X and i(X), we call the space uX the Hewitt real-compactification of the
space X. The space X is called realcompact if X ¼ uX (this is the same as saying that

i(X) is closed in RC(X)). Realcompact spaces are also called Hewitt spaces, Q-spaces,
Hewitt-Nachbin spaces, realcomplete spaces, spaces complete in the sense of Hewitt.
A space is called Dieudonné complete if it is homeomorphic to a closed subspace of

some product of metric spaces. We will say that an extension rX of a space X is
canonically homeomorphic to uX if there exists a homeomorphism ’ : rX! uX such

that’(x)¼ x for any x 2 X. It is evident that if rX is canonically homeomorphic to uX,
then it is impossible to distinguish these two spaces by their topological properties, or

by the properties of the placement of X in uX. Therefore, if rX is canonically

homeomorphic to uX, we will identify rX with uX. The same agreement is applicable

to bX; we say that a compact extension bX of a space X is canonically homeomorphic
to bX if there exists a homeomorphism ’ : bX! bX such that ’(x)¼ x for all x 2 X.
Of course, we will identify bX and bX if bX is canonically homeomorphic to bX.

If we have a continuous map r : X ! Y, denote by r* : Cp(Y) ! Cp(X) the
mapping defined by r*(f) ¼ f ∘ r for any f 2 Cp(Y). Then r* is called the dual map
of the map r. Suppose that X is an arbitrary space and F � Cp(X). For any x 2 X,
define the function eFx : F! R by the formula eFx ðf Þ ¼ f ðxÞ for any f 2 F. Observe
that the map eFx belongs to Cp(F). In case F ¼ C(X), we denote the map eFx by ex.
Letting EFðxÞ ¼ eFx for any x 2 X we obtain the evaluation (or the reflection) map

EF : X! Cp(F); in case F ¼ C(X), we denote the map EF by E. If X is a space and

Y � X, let pY : Cp(X) ! Cp(Y) be the restriction map, i.e., pY(f) ¼ fjY for any

f 2 Cp(X). Finally, Cp(YjX) ¼ pY(Cp(X)) � Cp(Y).
Let X be a space. Given an infinite cardinal k, a function f : X ! R is called

k-continuous if fjA is continuous for any A � X such that jAj � k. If, for any A � X
with jAj � k, there exists g 2 C(X) with fjA ¼ gjA then f is called strictly
k-continuous. In other words, the function f is strictly k-continuous if fjA 2
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pA(Cp(X)) for any A � X with jAj � k. Let t0(X) ¼ minfk : any k-continuous
function on X is continuousg and tm(X)¼minfk : any strictly k-continuous function
on X is continuousg. The cardinal invariants t0(X) and tm(X) are called functional
tightness and weak functional tightness, respectively. Let a(X) ¼ supfjYj : Y � X
and Y is homeomorphic to an Alexandroff one-point compactification of an infinite

discrete spaceg. The cardinal a(X) is called the Alexandroff number of X. Note that
a(X) makes sense only if X has a non-trivial convergent sequence. A subspace Y of a

space X is called k-placed in X if, for any x 2 X\Y, there exists a Gk-set H in X such

that x 2 H � X\Y. Let q(X) ¼ minfk : X is k-placed in bXg. The cardinal invariant
q(X) is called the Hewitt-Nachbin number of the space X. Call a space X an
mk-space if, for any U 2 t(X) and any x 2 U, there is a Gk-set H in X such that

x 2 H � U. The cardinal function m(X) ¼ minfk : X is an mk-spaceg is called

the Moscow number of X. If the Moscow number of X is countable, we call X a
Moscow space.

Given a spaceX, suppose that Cn� t*(X) for each n2o. The sequence fCn : n2og
is called pseudocomplete if, for any family fUn : n 2 og such thatUnþ1� Un and we

have Un 2 Cn for each n 2 o, we have \fUn : n 2 og 6¼ ;. A space X is called

pseudocomplete if there is a pseudocomplete sequence fBn : n 2 og of p-bases in X.
The space X is projectively complete if, for any open map f : X! Y, the space Y is

Čech-complete whenever it is second countable.

A subset A � X is a Gds in X if A is a countable union of Gd-subsets of X. A
map f : X ! Y is called finite-to-one if f�1(y) is finite for any y 2 Y. Given a

space X, call a set F ¼ fxa : a < kg � X a free sequence of length k in X if

fxa : a< bg \ fxa : a � bg ¼ ; for every b< k. Let Ia¼ (0, 1] 	 fag for each a<
k. Consider the set J(k) ¼ [fIa : a < kg [ f0g. Given x, y 2 J(k), x ¼ (t, a), y ¼
(s, b), let r(x, y) ¼ jt � sj if a ¼ b. If a 6¼ b then r(x, y) ¼ t þ s. Let r(x, 0) ¼ t,
r(0, y) ¼ s and r(0, 0) ¼ 0. Then (J(k), r) is a complete metric space called

Kowalsky hedgehog with k spines.
If F is a filter on a set X, we say that F is o1-complete if, for any countable

family A � F , we have \ A 2 F (and hence \ A 6¼ ;). A continuous onto map

f : X! Y is called pseudo-open if, for any point y 2 Y and any set U 2 t(f�1(y), X),
we have y 2 IntY(f(U)). Given an uncountable cardinal k, let S(k) ¼ fx 2 R

k : the

set x�1 (R\f0g) is countableg and s(k)¼ fx 2Rk : the set x�1(R\f0g) is finiteg. The
space S(k) is called the S-product of k-many real lines and s(k) is the s-product of
k-many real lines. Analogously, S*(k) ¼ fx 2 R

k : the set x�1(R\(�e, þe)) is finite
for any e > 0g is the S*-product of k-many real lines. A space X is called

a S-product (S*-product or s-product) of real lines if it is homeomorphic to the

space S(k) (S*(k) or s(k), respectively), for some uncountable cardinal k.
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401. Prove that the following conditions are equivalent:

(i) X is a realcompact space.

(ii) X embeds as a closed subspace into Rk for some k.
(iii) If X is a dense subspace of a space Y and Y 6¼ X then there exists a continuous

function f : X! R which does not extend to Y continuously.

(iv) If z 2 bX \ X then there exists a Gd-set H in bX such that z 2 H � bX \ X.

402. Prove that an arbitrary product of realcompact spaces is a realcompact

space.

403. Prove that a closed subset of a realcompact space is a realcompact space.

404. Prove that an open subset of a realcompact space is not necessarily

realcompact.

405. Let X be an arbitrary space. Suppose that Xt is a realcompact subspace of X
for any t 2 T. Prove that \fXt : t 2 Tg is a realcompact subspace of X.

406. Prove that any Lindel€of space is a realcompact space.

407. Prove that any pseudocompact realcompact space is compact.

408. Let X be a realcompact space. Suppose that Y � X can be represented as a

union of Gd-subsets of X. Prove that X \ Y is realcompact. In particular, any

Fs-subspace of a realcompact space is realcompact.

409. Prove that Cp(X) is a realcompact space if and only if it is a locally

realcompact space.

410. Prove that Cp(X) is a realcompact space if and only if Cp(X, I) is realcom-

pact.

411. Give an example of a locally realcompact non-realcompact space.

412. Let X be any space. Prove that, for any realcompact space Y and any

continuous map ’ : X ! Y, there exists a continuous map F : uX ! Y such that

FjX ¼ f.
413. Let rX be a realcompact extension of a space X. Prove that the following

properties are equivalent:

(i) For any realcompact space Y and any continuous map f : X! Y, there exists a
continuous map F : rX! Y such that FjX ¼ f.

(ii) For any realcompact extension sX of the space X, there exists a continuous
map p : rX! sX such that p(x) ¼ x for all x 2 X.

(iii) There is a homeomorphism ’ : rX! uX such that ’(x) ¼ x for any x 2 X, i.e.,
rX is canonically homeomorphic to uX.

414. Let X be an arbitrary space and suppose that X � Y � uX. Prove that uY is

canonically homeomorphic to uX.
415. Prove that Y is a bounded subset of X if and only if cluX(Y) is compact.

416. Prove that X is s-bounded if and only if uX is s-compact.

417. Prove that the space uX is canonically homeomorphic to the space fx 2 bX :

H \ X 6¼ ; for every Gd-set H � bX with x 2 Hg.
418. Prove that tm(X) � t0(X) � d(X) for any space X. In particular, functional

tightness of a separable space is countable.
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419. Prove that htm(X) ¼ ht0(X) ¼ t(X) and hence t0(X) � t(X) for any space X.
Give an example of a space X for which t0(X) < t(X).

420. Let Y be an R-quotient image of X. Prove that tm(Y) � tm(X).
421. Prove that, for any infinite cardinal k, every k-continuous function on a

normal space is strictly k-continuous. As a consequence, t0(X) ¼ tm(X) for any
normal space X.

422. Prove that, for any space X and any closed Y � X, we have q(Y) � q(X).
423. Prove that a dense subspace of a Moscow space is a Moscow space.

424. Prove that Cp(X) is a Moscow space for any space X.
425. Let Y be any space with m(Y) � k. Suppose that X � Y ¼ X and q(X) � k.

Prove that X is k-placed in Y.
426. Prove that tm(X) � k if and only if Cp(X) is k-placed in R

X.

427. Prove that Cp(X) is realcompact if and only if it is o-placed in R
X.

428. Suppose that there exists a non-empty Gd-subspace H � Cp(X) such that

H is realcompact. Prove that Cp(X) is realcompact.

429. Prove that tm(X) ¼ q(Cp(X)) for any space X. In particular, Cp(X) is

realcompact if and only if tm(X) ¼ o.
430. Prove that tm(bo \ o)> o. As a consequence, Cp(bo \ o) is not realcompact.

431.Give an example of a space X for which Cp(X) is realcompact while Cp(Y) is
not realcompact for some closed Y � X.

432. Prove that an open continuous image of a realcompact space is not

necessarily realcompact.

433. Give an example of a space X with t0(X) 6¼ tm(X).
434. (Uspenskij’s theorem) Prove that q(X) ¼ t0(Cp(X)) ¼ tm(Cp(X)) for any

space X. In particular, X is a realcompact space if and only if functional tightness of

Cp(X) is countable.
435. Prove that q(X) ¼ q(Cp(Cp(X))) for any space X. In particular, X is

realcompact if and only if so is Cp(Cp(X)).
436. For any space X, consider the restriction map p : Cp(uX)! Cp(X) defined by

p(f) ¼ fjX. Prove that p is a condensation and pjA : A! p(A) is a homeomorphism

for any countable A � Cp(uX).
437. Let X be an arbitrary space. Let p : Cp(uX) ! Cp(X) be the restriction

map. Prove that the topology of Cp(uX) is the strongest one on C(uX) such that

pjA : A! p(A) is a homeomorphism for each countable A � Cp(uX).
438. Prove that, for any X, the space u(Cp(X)) is canonically homeomorphic to

the subspace SX ¼ ff 2 R
X : f is strictly o-continuousg of the space RX.

439. Prove that, for any normal space X, there exists a space Y such that Cp(Y) is
homeomorphic to u(Cp(X)).

440. Give an example of a (non-normal) space X such that there is no space Y for

which u(Cp(X)) is homeomorphic to Cp(Y).
441. Suppose that Cp(X) is a normal space. Prove that u(Cp(Cp(X))) is homeo-

morphic to Cp(Cp(uX)).
442. Give an example of a realcompact space which is not hereditarily

realcompact.

1.5 More on Completeness: Realcompact Spaces 45



443. Prove that a space X is hereditarily realcompact if and only if X \ fxg is
realcompact for any x 2 X.

444. Prove that any realcompact space of countable pseudocharacter is heredi-

tarily realcompact.

445. Give an example of a hereditarily realcompact space X with c(X) > o.
446. Prove that a space which condenses onto a second countable one is

hereditarily realcompact.

447. Prove that Cp(X) is hereditarily realcompact if and only if X is separable

(and hence c(Cp(X)) ¼ iw(Cp(X)) ¼ o).
448. Let D be a discrete space. Prove that D is realcompact if and only if every

o1-complete ultrafilter on the set D has a non-empty intersection.

449. Prove that any o1-complete ultrafilter on a set D has a non-empty intersec-

tion if and only if tm(R
D) ¼ o.

450. Let D be a set of cardinality� c. Prove that everyo1-complete ultrafilter on

the set D has a non-empty intersection.

451. Suppose that a non-empty space Xt is realcompact for any t 2 T. Prove that
the space X ¼ LfXt : t 2 Tg is realcompact if and only if every o1-complete

ultrafilter on the set T has a non-empty intersection.

452. Prove that a paracompact space X is realcompact if and only if every

discrete closed subspace of X is realcompact. In particular, a metrizable space M
is realcompact if and only if every closed discrete subspace of M is realcompact.

453. Let X be a realcompact space. Suppose that Y is a paracompact space and

f : X! Y is a continuous onto map. Prove that Y is realcompact.

454. Observe that any realcompact space is Dieudonné complete. Prove that a

Dieudonné complete space X is realcompact if and only if all closed discrete

subspaces of X are realcompact.

455. Prove that any pseudocompact Dieudonné complete space is compact.

456. Observe that any closed subspace of a Dieudonné complete space is a

Dieudonné complete space; prove that any product of Dieudonné complete spaces

is a Dieudonné complete space. Show that an open subspace of a Dieudonné

complete space may fail to be Dieudonné complete.

457. Let X be an arbitrary space. Suppose that Xt is a Dieudonné complete

subspace of X for any t 2 T. Prove that \fXt : t 2 Tg is a Dieudonné complete

subspace of X.
458. Suppose that Y is a Dieudonné complete space with the Souslin property.

Prove that Y is realcompact. Deduce from this fact that Cp(X) is Dieudonné

complete if and only if it is realcompact.

459. Prove that X is Dieudonné complete if and only if it embeds as a closed

subspace into a product of completely metrizable spaces.

460. Let X be a Dieudonné complete space. Prove that any Fs-subspace of X is

also Dieudonné complete.

461. Suppose that X can be condensed onto a first countable Dieudonné complete

space. Prove that X is Dieudonné complete.

462. Prove that every paracompact space is Dieudonné complete.
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463. Prove that X is Dieudonné complete if and only if, for any z 2 bX \ X, there
exists a paracompact Y � bX such that X � Y � bX \ fzg.

464. Prove that any pseudocomplete space has the Baire property.

465. Prove that any Čech-complete space is pseudocomplete.

466. Prove that any non-empty open subspace of a pseudocomplete space is

pseudocomplete.

467. Suppose that X has a dense pseudocomplete subspace. Prove that X is

pseudocomplete. In particular, if X has a dense Čech-complete subspace then X is

pseudocomplete.

468. Prove that a metrizable space is pseudocomplete if and only if it has a dense

Čech-complete subspace.

469. Give an example

(a) Of a Baire space which is not pseudocomplete.

(b) Of a pseudocomplete space which has no dense Čech-complete subspace.

Observe that it is an immediate consequence of (b) that there exist pseudocom-

plete non-Čech-complete spaces.

470. Prove that any product of pseudocomplete spaces is a pseudocomplete

space.

471. Prove that an open metrizable image of a pseudocomplete space is a

pseudocomplete space.

472. Prove that a space X is pseudocompact if and only if any continuous image

of X is pseudocomplete.

473. Prove that a dense Gd-subspace of a pseudocompact space is pseudo-

complete.

474. Prove that a dense Gd-subspace of a metrizable pseudocomplete space is

pseudocomplete.

475. Prove that, if Cp(X) is an open image of a pseudocomplete space then it is

pseudocomplete.

476. Prove that, if Cp(X) is pseudocomplete then Cp(X, I) is pseudocomplete.

477. Give an example of a space X for which Cp(X, I) is pseudocomplete but

Cp(X) is not pseudocomplete.

478. Let X be a normal space. Prove that Cp(X, I) is pseudocomplete if and only

if it is pseudocompact.

479. Prove that, if Cp(X, I) is countably compact then Cp(X) is pseudo-

complete.

480. Give an example of a space X such that Cp(X) is pseudocomplete but

Cp(X, I) is not countably compact.

481. Prove that, if Cp(X, I) is pseudocompact then (Cp(X, I))
k is pseudocompact

for any cardinal k.
482. Prove that, if Cp(X, I) is countably compact then so is (Cp(X, I))

k for any

cardinal k.
483. Give an example of a countably compact space X such that X 	 X is not

pseudocompact.
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484. Give an example of a space X such that Cp(X, I) is not countably compact

but has a dense countably compact subspace.

485. Prove that the following are equivalent:

(i) The space Cp(X) is pseudocomplete.

(ii) u(Cp(X)) ¼ R
X, i.e., RX is canonically homeomorphic to u(Cp(X)).

(iii) Any countable subset of X is closed and C-embedded in X.

486. Prove that X is discrete if and only if Cp(X) is pseudocomplete and

realcompact.

487. Prove that, if Cp(X) is homeomorphic to R
k for some k then X is discrete.

488. Suppose that there is an open subspace Y � Cp(X) homeomorphic to Rk for

some k. Is it true that X is discrete?

489. Given an arbitrary space X, suppose that, for some cardinal k, there exists a
continuous onto map ’ : Rk! Cp(X) such that ’(af þ bg) ¼ a’(f) þ b’(g) for all
f, g 2 Rk and a, b 2 R (such maps are called linear). Prove that X is discrete.

490. Prove that any open image of a projectively complete space is projectively

complete.

491. Prove that any product of Čech-complete spaces is projectively complete.

492. Prove that a separable metrizable space is projectively complete if and only

if it is Čech-complete. Give an example of a pseudocomplete space which is not

projectively complete.

493. Give an example of a projectively complete space which is not pseudo-

complete.

494. Suppose that Cp(X) is projectively complete. Prove that any open subspace

of Cp(X) is also projectively complete.

495. Suppose that Cp(X) is projectively complete. Prove that any countable

closed A � X is discrete and C-embedded in X.
496. Prove that Cp(bo) is not projectively complete.

497. Suppose that A has a countable network for each countable A � X. Prove
that, if Cp(X) is projectively complete, then it is pseudocomplete.

498. Let X be any space. Prove that, if Cp(X) is pseudocomplete then it is

projectively complete.

499. Prove that C(X) and C(Y) are isomorphic as algebraic rings if and only if

uX is homeomorphic to uY.
500. Prove that C*(X) and C*(Y) are isomorphic as algebraic rings if and only if

bX is homeomorphic to bY.
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1.6 Bibliographic Notes

The material of Chap. 1 consists of problems of the following types:

(i) Textbook statements which give a gradual development of a topic.

(ii) Folkloric statements that might not be published but are known by specialists.

(iii) Famous theorems cited in textbooks and well-known surveys.

(iv) Comparatively recent results which have practically no presence in textbooks.

We will almost never cite original papers for the results of the first three types.
We will cite them for a very small selection of results of the fourth type. This

selection is made according to the preferences of the author and does not mean that
all statements of the fourth type will be mentioned. I bring my apologies to the

readers who might think that I did not select something more important than what

is selected. The point is that such a selection has to be subjective because it is

impossible to mention all contributors. As a consequence, there are many state-
ments which are published as results in papers, but this fact is never mentioned in
this book. There are statements of the main text which constitute published or

unpublished results of the author. However, they are treated exactly like the results

of others: some are mentioned and some aren’t. On the other hand, the bibliography

presented in Chapter 5 contains (to the best knowledge of the author) the papers and

books of all contributors to the material of this book.
Section 1.1 mostly contains textbook and folkloric stuff. More material can be

found in Engelking [1977], Gillman and Jerison [1960], Arhangel’skii [1992a],

Bessaga and Pelczynski [1975].

The general topology part of Sect. 1.2 can be found in Engelking [1977].

Practically all Cp-theory of this section is covered by Arhangel’skii [1992a]. Let

us mention that the results of Problems 144 and 148 first appeared in Gerlits and

Nagy [1982]. Problem 149 is, in fact, a theorem of Arhangel’skii–Pytkeev (see

Arhangel’skii [1992a]). The result in Problem 145 was obtained by Tkachuk

[1984a] and Problem 189 is a theorem of Asanov [1979]. Problem 200 states a

result of Nagata [1949].

The material of Sect. 1.3 is mostly covered by the books of Engelking

[1977] and Arhangel’skii [1992a]. The results of Problem 265 were obtained

by Lutzer and McCoy in [1980]. Problems 266 and 267 present results from

Dijkstra, Grillot, Lutzer and van Mill [1985]. The statement in Problem 283

was proved independently by Pytkeev in [1985] and Tkachuk in [1985b]. The

results stated in Problems 295 and 296 were obtained by Reznichenko (see

[1990a]).

Section 1.4 also presents textbook results. The books to consult are Engelking

[1977], Arhangel’skii and Ponomarev [1974], Arhangel’skii [1992a] and Juhász

[1980]. The survey of Arhangelskii [1978b] is an excellent presentation of classi-

cal results on cardinal invariants. The statements in Problems 328 and 329 were

proved by Arhangelskii (see [1978b]). Problem 330 presents a classical result

of Čech-Pospišil (see Juhász [1980]) and Problems 331–332 are theorems of
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Shapirovsky [1981] (see also Arhangel’skii [1978b]). Another important theorem

of Arhangel’skii is stated in Problem 359. Problem 382 presents a result proved in

Arhangel’skii and Tkachuk in [1986]. The results of Problems 398 and 399 were

obtained by Tkachuk in [1986a]. The example described in Problem 400, belongs

to Shakhmatov [1986].

An important part of Sect. 1.5 is covered by the books of Engelking [1977],

Arhangel’skii [1992a] and Gillman and Jerison [1960]. Problem 429 is a theorem of

Arhangel’skii [1983c]. A very non-trivial example of 433 was constructed by

Reznichenko in [1987]. The statement 434 is a result of Uspenskij [1983b].

Problems 436–437 contain the results obtained by Okunev in [1984]. The result

in 487 was proved in Tkachuk [1985a].
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2

Solutions of Problems 001–500

In this chapter we present solutions of problems 001–500 of the main text. We will

need to refer both to the main text problems and to their solutions; to distinguish a

problem from its solution, we use the prefix “S.” to the number of the solved

problem. For example, the solution of Problem 349 is numbered as S.349. We tried

to uniformize and clarify all possible references by formulating useful statements as

independent facts. We have always avoided statements like “it is clear that the proof

of Fact 3 of S.351 gives a stronger property”. If such a property was needed after the

Fact was proved, we preferred to return to that Fact, reformulate it and redo its proof

if necessary.

In quite a few cases the author had a strong temptation to refer to future results to

make a solution short and elegant. He managed to resist it so that this is never done

in this book; we only refer to previous problems and solutions. The short and

elegant proofs are given after the respective methods are introduced and studied

systematically. This sounds like a merit but has its price: sticking to this principle

implied that sometimes a solution occupies ten or more pages because the author

had to develop the basics of a theory in the same solution. The author fully under-

stands that it is ridiculous to expect that someone develops a theory to solve an

exercise; however, the merit seems to make up for this drawback. Besides, I don’t

think this is going to bother a specialist; a beginner student could be annoyed of

course, but my experience shows that a beginner gets much more annoyed by a

reference to nowhere, like, for example, the phrase “Gul’ko proved that this space

can be condensed into a S�-product of real lines”. Another justification is that, in the
author’s biased opinion, there will be no more than 1% of the readers who will

really try to solve the problems without opening the solutions. The rest of the

people will use this composition as a reference book or as a textbook so, if a result is

needed, one needs the basics of the relevant theory anyway.

Another principle the author tried to implement was to get the solutions to be as

independent as reasonably possible. This will be of help for specialists wishing to

look up the solution of any problem without browsing through the previous ones.

There are references, of course, but only to the results and never to definitions or

constructions. We also use some minimal number of concepts and notation without

explanations but they are always standard and can be found in introductory parts or

V.V. Tkachuk, A Cp-Theory Problem Book: Topological and Function Spaces,
Problem Books in Mathematics, DOI 10.1007/978-1-4419-7442-6_2,
# Springer ScienceþBusiness Media, LLC 2011
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in the index. In most cases even the fundamental concepts are introduced again in

the respective solution to make it as self-contained as possible.

The last thing to keep in mind is that any solution is a continuation of the

respective problem. Thus, if the problem says: “Let X be a metrizable compact

space. Prove that X . . .”, we do not repeat this assumption about X considering that

it was already made in the formulation of the problem. Thus our solution could start

with the phrase: “Since X is metrizable and compact. . .”.
The material of this volume is an introductory one. An evident consequence is an

abundance of simple facts proved in great detail. This could be a nuisance for a

specialist but of help for the beginner. Five hundred solutions are presented here;

some of them are quite difficult to understand and much more difficult to figure out

on one’s own without consulting this chapter.

The base of the theory presented in this chapter is given by the problems of the

main text. However, there are quite a few (more than 200) auxiliary statements;

they are presented as facts or observations inside solutions. Some of them are well-

known theorems, other are just simple lemmas formulated to avoid repetitions of

the same proof.

The reader will notice that we expect him/her to have a higher level of under-

standing as the theory builds up. Eventually, there are more phrases like “it is easy

to see” or “it is an easy exercise”; the reader should trust the author’s word and

experience that the statements like that are really easy to prove as soon as one has

the necessary background. The author is convinced that if a student attacks a

problem after understanding the solutions of all previous ones, his/her preparation

is more than sufficient for being able to grasp the current solution.

In fact, much less is necessary than all previous problems. The main text is really

a bulk of many topics which are developed independently or with little dependency.

I am afraid, a beginner will not be able to trace the minimal set of topics to master,

needed for understanding current solution. However this can be easily done by a

specialist so consult one if you want to minimize your efforts.

A beginner should also remember that we use without explanations themost well-

known properties of the real numbers and some simple facts of the set theory. A one-

year calculus course is more than sufficient to cover all formal prerequisites. The

informal prerequisite is to be able to understand logical implications and to be

persistent enough not to give up even if the solution is not understood after ten

readings. In the worst case, try to prove that the problem or the solution is false. It

normally shouldn’t be, but no big work is free of errors (and believe me this is a huge

one!) so try to find them and communicate them tome to correct the respective parts.
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S.001. Let X be a topological space. Given an arbitrary set A � X, prove that x 2 A
if and only if U \ A 6¼ ; for any U 2 t(X) such that x 2 U.

Solution. Suppose that x 2 A and x 2 U 2 t(X). If U\A ¼ ; then A � F ¼ X \U
and the set X \U is closed in X. Since the closure of A is the intersection of all closed

sets which contain A, we have A � F. Thus x 2 A � F and x 2 U ¼ X \F, a
contradiction.

Assume that U \ A 6¼ ; for all open U 3 x. If x =2 A then the set V¼ X \A is open

and x 2 V. However, V \ A ¼ ;, a contradiction.
S.002. Given a topological space X and a family B � t(X), prove that B is a base of
X if and only if for any U 2 t(X) and x 2 U there exists V 2 B such that x 2 V � U.

Solution. Suppose that B � t(X) is a base. If x 2 U 2 t(X) then there is B0 � B such

that U ¼ SB0. Therefore, there is V 2 B0 with x 2 V � SB0 ¼ U. Then V 2 B and

x 2 V � U.

Now, suppose that B � t(X) and, for any x 2 U 2 t(X), there exists V 2 B such

that x 2 V � U. If U ¼ ; then, letting B0 ¼ ;, we have B0 � B and U ¼SB0. If U 2
t(X) is non-empty find for each x 2U a set Vx 2 B such that x 2 Vx�U and consider

the family B0 ¼ {Vx : x 2U}. It is immediate that B0 � B andSB0 ¼Uwhich proves

that B is a base of the topology t(X).

S.003. Let X be a topological space. Prove that the family F of all closed subsets of
X has the following properties:

(F1) X 2 F and ; 2 F .
(F2) If A, B 2 F then A [ B 2 F .
(F3) If g � F then

T
g 2 F .

Now suppose that X is a set and F � exp(X) has the properties (F1)–(F3). Prove
that there exists a unique topology t on X such that F is the family of closed subsets
of (X, t).

Solution. Clearly, F 2 F iff X \F 2 t(X). Thus ; ¼ X \X 2 F and X¼ X \ ; 2 F (we

applied (TS1) twice). Therefore (F1) holds for F . To check (F2), note that if A, B 2
F then X \A 2 t(X) and X \B 2 t(X) and applying (TS2) we obtain (X \A)\ (X \B)¼
X \ (A [ B) 2 t(X), whence A [ B 2 F. Finally, to see that (F3) holds, let m¼ {X \F :

F 2 g}. Then m � t(X) and hence
S

m 2 t(X) by (TS3). Since X \
T
g ¼ S m, the

property (F3) is also proved.

Now, suppose that F is a family of subsets of X with properties (F1)–(F3).

Let t ¼ {X \F : F 2 F}. The laws of De Morgan together with (F1)–(F3) imply

that the axioms (TS1)–(TS3) hold for t. The definition of t shows that F is

precisely the family of all closed sets for t. Now, if t0 is another topology for

whichF consists of closed sets for t0, then t0 ¼ {X \F : F 2F}¼ t and this proves
the uniqueness.

S.004. Let X be a topological space. Show that the operator of the closure has the
following properties:
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(C1) ; ¼ ;.
(C2) A [ B ¼ A [ B for any A, B � X.
(C3) A � A for any A � X.
(C4) A ¼ A for any A � X.

Now, suppose that X is a set and [·] is an operator on exp(X) with (C1)–(C4) (i.e.,
[;] ¼ ;, [A [ B] ¼ [A] [ [B], A � [A] and [[A]] ¼ [A] for all A, B � X). Prove that
there exists a unique topology t on X such that [A] ¼ clt(A) for any A � X. We will
say that t is generated by the closure operator [·].

Solution. Since ; is a closed set and ; � ;, we have ; � ;, so (C1) holds. The set

F ¼ A [ B is closed and A � A � F as well as B � B � F whence A [ B � F. Since
the closure is the intersection of all closed supersets, we have A [ B � F. Now, A�
A [ B � A [ B and the set G ¼ A [ B is closed. Since the closure is the intersection

of all closed supersets, we have A�G. Reasoning in the same way we obtain B�G
and hence F ¼ A [ B � G. This shows that F ¼ G so (C2) is settled. The property

(C3) is immediate from the definition of the closure. Since A is closed and A � A,
we have A � A. The reverse inclusion is a consequence of (C3) and therefore we

proved (C4).

Now, let X be an arbitrary set without topology. Assume that [·] is an operator on

exp(X) with the properties (C1)–(C4) i.e., [;]¼ ;, [A [ B]¼ [A] [ [B], A� [A] and
[[A]]¼ [A] for all A, B� X. Observe first that the condition A� B implies [B¼ A [
(B \A)]¼ [A] [ [B \A]� [A] and hence [A]� [B]. Now, let F ¼ {A� X : [A]¼ A}.
We are going to check that F satisfies (F1)–(F3) from 003.

The property (C1) shows that ; 2 F and (C3) implies X � X whence X ¼ X and

X 2 F which settles (F1). If A, B 2 F then A ¼ [A] and B ¼ [B]. Applying (C2) we
conclude that [A [ B]¼ [A] [ [B] ¼ A [ B and hence A [ B 2 F . This proves (F2).
Now, take any g�F and denote byG the set

T
g. For any A 2 g, we haveG� A and

therefore [G]� [A]¼ A. Thus [G]�T{A : A 2 g}¼Tg¼ G. By property (C3) we
have [G] ¼ G and hence (F3) is checked. Note that we did not use (C4) yet.

By Problem 003 there exists a unique topology t for which F consists of closed

sets for t and hence t ¼ {X \A : A 2 F}. Let us prove that A ¼ [A] for any A � X.
Since A is closed, we have [A] ¼ A and hence [A] � [A] ¼ A. The set [A] � A is

closed by (C4) and hence A � [A] which proves the promised equality.

Suppose finally that t0 is a topology such that [A] ¼ clt0 (A) for any A � X. Thus
F is closed in t if and only if F¼ F¼ [F]¼ clt0(F) which happens iff F is closed in

t0. This shows that F is precisely the family of all closed subsets of t0 so by the

uniqueness part of Problem 003, we have t ¼ t0.

S.005. Let X be a topological space. Show that the operator of the interior has the
following properties:

(I1) Int(X) ¼ X.
(I2) Int(A \ B) ¼ Int(A) \ Int(B) for any A, B � X.
(I3) Int(A) � A for any A � X.
(I4) Int(Int(A)) ¼ Int(A) for any A � X.
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Now, suppose that X is a set and h·i is an operator on on exp(X) with (I1)–(I4)
(i.e., h;i ¼ ;, hA \ Bi ¼ hAi \ hBi, hAi � A and hhAii ¼ hAi for all A, B � X).
Prove that there exists a unique topology t on X such that hAi ¼ Intt(A) for any
A � X. We will say that t is generated by the interior operator h·i.
Solution. To see that (I1) holds, observe that there is nothing contained in an empty

set so Int(;)¼ ;. Since Int(A \ B) is an open set contained in A \ B, it is contained
in A. The set Int(A) is the union of all open sets contained in A, so Int(A \ B) � Int

(A). The same reasoning shows that Int(A \ B)� Int(B) and therefore Int(A\B)�
Int(A)\ Int(B). On the other hand, Int(A)\ Int(B) � A\B is an open set, so we can

again use the fact that Int(A\B) is the union of all open sets contained in A\B
and hence Int(A)\ Int(B) � Int(A\B). This settles (I2). The property (I3) is an

immediate consequence of the definition of the interior. To check (I4), observe that

Int(A) � Int(A) is an open set and hence Int(A) � Int(Int(A)). Since the reverse

inclusion is stated in (I3), we have proved (I4).

Now, let X be an arbitrary set without topology. Suppose that h·i is an operator

on exp(X) with the properties (I1)–(I4), i.e., h;i ¼ ;, hA\Bi ¼ hAi \ hBi, hAi � A
and hhAii ¼ hAi for all A, B� X). Observe first that, if A� B then (I2) implies hAi ¼
hA \ Bi ¼ hAi \ hBi � hBi. Now, let t ¼ {A � X : hAi ¼ A} and check that t is

a topology on X. The property (I1) implies X 2 t and ; 2 t by (I3). If U, V 2 t then
U ¼ hUi and V ¼ hVi and therefore U \ V ¼ hUi \ hVi ¼ hU \ Vi which shows

that U \ V 2 t. Now, take any g � t and denote byW the set
S
g. For any U 2 g, we

haveU�W and thereforeU¼ hUi � hWi. This shows thatW¼Sg� hWi. Since the
reverse inclusion is a consequence of (I3), we have hWi ¼ W and (TS3) is proved

together with the fact that t is a topology. Note that we did not need the property

(I4) yet.

Let us show that hAi ¼ Int(A) for any A� X. Since Int(A) is an open set, we have
hInt(A)i ¼ Int(A) which shows that Int(A) ¼ hInt(A)i � hAi. The property (I4)

shows that hAi is an open set and hence hAi � Int(A) which proves that hAi ¼
Int(A). Finally, let t0 be a topology on X such that hAi ¼ Intt0 (A) for any A � X.
Then U belongs to t if and only if U¼ Int(U)¼ hUi ¼ Intt0 (U) and this happens iff
U 2 t0. Hence t ¼ t0 and the uniqueness is also proved.

S.006. Suppose that X is a topological space and B is a base of X. Prove that B has
the following properties:

(B1)
SB ¼ X.

(B2) If U, V 2 B and x 2 U \ V then there is W 2 B such that x 2 W � U \ V.

Now, let X be a set without topology. Prove that, for any family B � exp(X) with
the properties (B1) and (B2), there exists a unique topology t on the set X such that
B is a base for (X, t). We will call t the topology generated by B as a base.

Solution. The property (B1) holds because X is an open subset of X. Suppose that
U, V 2 B and x 2 U \ V. Since the set U \ V is open, there exists B0 � B such that

U \ V¼ [B0. This means that there isW 2 B0 with x 2W. It is clear thatW 2 B and

x 2 W � U \ V so that (B2) is also fulfilled.
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Now, suppose that X is an arbitrary set without topology in which we have a

family B � exp(X) with the properties (B1) and (B2). Let us prove that the family

t ¼ {
S
g : g � B} is a topology on X. If g ¼ ; then g � B and

S
g ¼ ; which shows

that ; 2 t. The property (B1) implies X 2 t (just take g ¼ B) so the axiom (TS1) is

checked. If U, V 2 t then there are g, m � B such that U ¼ Sg and V ¼ Sm. For an
arbitrary x 2 U \ V there is Ux 2 g and Vx 2 m such that x 2 Ux \ Vx and it is

immediate from the definition of g and m thatUx�U and Vx� V. The property (B2)
guarantees the existence of Wx 2 B such that x 2 Wx � Ux \ Vx � U \ V. It is
evident that, for the familyB0 ¼ {Wx : x2U \ V}, we haveB0 � B and[B0 ¼U \ V
which proves thatU \ V 2 t settling (TS2). Given a family g� t, for anyU 2 g, fix
a family gU � B such that

S
gU ¼ U. Then B0 ¼ S{gU : U 2 g} � B and

SB0 ¼ Sg
which proves that

S
g 2 t and hence (TS3) holds as well.

By the definition of t, the unions of all subfamilies of B represent all elements of

t which shows that B is a base for t. Finally, if t0 is another topology on X for which

B is a base then B � t0 and t � t0 because any union of elements of t0 has to belong
to t0. On the other hand, any element of the topology t0 is a union of some subfamily

of B and hence belongs to t by the definition of t. This proves t ¼ t0 and the

uniqueness is also established.

S.007. Suppose that X is a topological space and, for each x 2 X we have a fixed
local base Bx at the point x. Show that the family {Bx : x 2 X} has the following
properties:

(LB1) Bx 6¼ ; and
TBx 3 x for every x 2 X.

(LB2) If x 2 X and U, V 2 Bx then there is W 2 Bx such that W � U \ V.
(LB3) If x 2 U 2 By then there is V 2 Bx such that V � U.

Now, suppose that X is an arbitrary set without topology and Bx is a family of
subsets of X for any x 2 X such that the collection {Bx : x 2 X} has the properties
(LB1)–(LB3). Show that there exists a unique topology t on the set X such that Bx is
a local base of (X, t) at x for any x 2 X. We will call t the topology generated by the
families {Bx : x 2 X} as local bases.

Solution. The second part of (LB1) is a part of the definition of a local base. Since

x 2 X 2 t(X), there is U 2 Bx with x 2 U � X and hence B 6¼ ; so that (LB1) is true.
The properties (LB2) and (LB3) follow immediately from the fact that U and U \ V
are both open sets.

Now, let X be an arbitrary set without topology. Suppose that Bx � exp(X)
for any x 2 X and the family {Bx : x 2 X} has the properties (LB1)–(LB3). Consider
the family B ¼S{Bx : x 2 X}. Since x 2SBx �SB for each x 2 X, we have

SB ¼
X so the axiom (B1) holds for B. Assume that U, V 2 B and x 2 U \ V. There are
y, z 2 X with U 2 By and V 2 Bz. Applying (LB3) we obtain U0, V0 2 Bx such that

U0 � U and V0 � V. The property (LB2) shows that there exists a set W 2 Bx for
which x 2 W � U0 \ V0 � U \ V. As a consequence the family B satisfies (B2).

By Problem 006 there is a unique topology t on X such that B is a base for t. In
particular, Bx� t for all x 2 X. If x 2 U 2 t then there is V 2 B such that x 2 V� U.
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By the definition of B we have V 2 By for some y 2 X. Applying (LB3) we can

obtainW 2 Bx such that x 2W� V�U. This proves that Bx is a local base for t at x
for each x 2 X.

Suppose finally, that t0 is a topology on X such that Bx is a local base for t0 at x for
every x2X. It is immediate from the definition of a local base thatB¼S{Bx : x2X}
is a base for t0. By the uniqueness part of Problem 006, we have t0 ¼ t and our proof
is complete.

S.008. Prove that
S

S¼ X for any subbase S of a topological space X. Now, let X be
an arbitrary set without topology. Prove that, for any family S � exp(X) with

S
S¼

X, there exists a unique topology t on X such that S is a subbase for (X, t).We will
call t the topology generated by S as a subbase.

Solution. Since the finite intersections of the elements of S form a base of X,
the set X is a union of those finite intersections. As a consequence, for any x 2 X,
there are U1, . . . , Un 2 S for which x 2 U1 \ � � � \Un �

S S. This proves thatSS ¼ X.

Now, let X be an arbitrary set without topology for which we have a family S �
exp(X) with

S S ¼ X. Denote by B the family of all finite intersections of the

elements of S. The property (B1) holds for B because S 2 B. It is immediate that,

for any U, V 2 B, we have U \ V 2 B. Therefore, taking W ¼ U \ V in the

hypothesis of (B2) shows that (B2) holds for B as well.

Take the unique topology t on X for whichB is a base (see Problem 006). Since B
coincides with all finite intersections of the elements of S, the family S is a subbase

for t. Finally, if t0 is another topology with S a subbase of t0 thenB is a base for t0 by
the definition of subbase. Hence t0 ¼ t by the uniqueness part of Problem 006.

S.009. Suppose that X and Y are topological spaces and f : X! Y. Prove that the
following conditions are equivalent:

(i) f is a continuous map.
(ii) There is a base B in Y such that f�1(U) is open in X for every U 2 B.
(iii) There is a subbase S in Y such that f�1(U) is open in X for every U 2 S.
(iv) f is continuous at every point x 2 X.
(v) f�1(F) is closed in X whenever F is closed in Y.
(vi) f(clX(A)) � clY( f(A)) for any A � X.
(vii) clX( f

�1(B)) � f�1(clY(B)) for any B � Y.
(viii) f�1(IntY(B)) � IntX( f

�1(B)) for any B � Y.

Solution. To see that (i)¼)(ii) let B ¼ t(Y). The implication (ii)¼)(iii) is obtained

looking at the subbase S ¼ B.
To establish the implication (iii)¼)(iv) assume that f(x) 2 U 2 t(Y). There exist

sets U1, . . . , Un 2 S such that f(x) 2 U1 \ � � � \ Un � U. Now observe that the set

V ¼ f�1(U1) \ � � � \ f�1(Un) is open in X, contains x and f(V) � U which proves

continuity of f at the point x.
To show that (iv)¼)(v), take any closed F � Y. Given x 2 X \ f�1(F), we have

f(x) 2 U ¼ Y \F 2 t(Y). By continuity of the function f at the point x, there is a set
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Vx 2 t(X) such that f(Vx) � U and, as a consequence, Vx � X \ f�1(F). Therefore
X \ f�1(F) ¼ S{Vx : x 2 X \ f�1(F)} is an open set and hence f�1(F) is closed.

Let us prove the implication (v)¼)(vi). Take any A � X and any point y 2 F ¼
clY ( f (A)). The set G ¼ f�1(F) is closed in X and contains the set f�1( f (A)) � A.
Therefore clX(A) � G and hence f(clX(A)) � F ¼ clY( f(A)).

To show that (vi)¼)(vii) take an arbitrary set B � Y and observe that

f (clX ( f�1(B))) � clY( f( f
�1(B))) � clY(B) and, as a consequence, we have

clX( f
�1(B)) � f�1(clY(B)).

To prove the implication (vii)¼)(viii) take any B � Y and note that the set F ¼
Y \ IntY(B) is closed in Y. Thus clX( f

�1(F)) � f�1(clY(F)) ¼ f�1(F), which shows

that f�1(F) is closed in X. Hence the set f�1(IntY(B)) ¼ X \ f�1(F) is open in X and

f�1(IntY(B)) � f�1(B). Since the interior of f�1(B) is the union of all open sets

contained in f�1(B), we have f�1(IntY(B)) � IntX( f
�1(B)).

To establish the implication (viii)¼)(i) take any open U � Y and observe that

IntX( f
�1(U)) � f�1(IntY(U)) ¼ f�1(U) which shows that f�1(U) is open in X.

S.010. Show that any T1-space is a T0-space. Give an example of a T0-space which
is not a T1-space.

Solution. Suppose that X is a T1-space. Given distinct points x, y 2 X, the set U ¼
X \ {x} is open and U \ {x, y} ¼ {y} which shows that X is a T0-space. To see that

the classes T0 and T1 do not coincide, please, check that the space X ¼ {0, 1} with

t(X) ¼ {;, X, {0}} is a T0-space which is not a T1-space.

S.011. Show that any T2-space is a T1-space. Give an example of a T1-space which
is not a T2-space.

Solution. Suppose that X is a Hausdorff space and x 2 X. For any y 2 X \ {x} fix open
disjoint sets Uy and Vy such that x 2 Uy and y 2 Vy. We have y 2 Vy � X \ {x} and

therefore X \ {x} ¼ [{Vy : y 2 X \ {x}} is an open set. Hence {x} is closed.

Now, let X¼ R and t(X)¼ {;} [ {R \A : A is a finite subset of R}. Since R \ {x}
2 t(X) for any x 2 X, the space X is a T1-space. However, there are no disjoint open
sets U and V such that 0 2 U and 1 2 V and therefore X is not a Hausdorff space.

S.012. Show that any T3-space is a T2-space. Give an example of a T2-space which
is not a T3-space.

Solution. Let X be a T3-space. Given distinct x, y 2 X, the set F ¼ {y} is closed and
does not contain x. Therefore there are open U, V � X such that x 2 U, {y} � V and

U \ V ¼ ;. It is clear that the sets U and V separate the points x and y.

To get an example of a Hausdorff non-regular space, denote the set {1n : n 2 N}
by S and let U ¼ N R [ fR n Sg. Since

S U � S N R ¼ R, the family U generates a

topology t on R as a subbase (Problem 008). Denote the space (R, t) by X. Given
distinct p, q 2 X, let r ¼ jp � qj (remember that p and q are real numbers!) and

consider the intervals U ¼ ðx� r
2
; xþ r

2
Þ and V ¼ ðy� r

2
; yþ r

2
Þ which are open and

disjoint.
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Observe that any open interval (a, b) � R is open in the natural topology N R

on R because, if x 2 (a, b) then, for e ¼ min{x � a, b � x}, we have (x � e, x þ e)
� (a, b). Since p 2 U, q 2 V, U, V 2 N R � t and U \ V ¼ ;, we proved that X is

Hausdorff.

To see that X is not regular, let x¼ 0 and F¼ S. It is clear that F is a closed subset

of X which does not contain x. Suppose that U, V 2 t, x 2 U, F� V and U \ V¼ ;.
As the familyU is a subbase for t, there areU1, . . . ,Un2U with x2W¼U1 \ � � � \
Un � U. Then W0 ¼ W \ (R \ S) 2 t and if we take the intersection G of all Ui’s

which belong toN R thenW0 ¼ G \ (R \ S). Since G 2 N R, there is e > 0 such that

(�e, e) � G. It is clear that the set W00 ¼ (�e, e) \ S belongs to t and W00 \ V ¼ ;.
The sequence 1

n

� �
converges to zero and hence 1

m�1<e for some m 2 N. Since 1
m 2

V 2 t, there are V1, . . . , Vk 2 U such that 1
m 2 V1 \ � � � \ Vk � V. Observe

that Vi 6¼ (R \ S) for all i because 1
m =2 (R \ S). Thus, there exists d > 0 such that

d<min 1
m�1� 1

m;
1
m� 1

mþ1
n o

and H¼ 1
m� d; 1mþ d
� �� Vi for all ib k. Now, the point

z¼ 1
mþ d

2
belongs to H \ (�e, e) \ (R \ S) � U \ V ¼ ; which is a contradiction.

S.013. Show that any Tychonoff space is a T3-space.

Solution. Any Tychonoff space is T1 by definition. Suppose that X is Tychonoff,

x 2 X and F is a closed subset of X with x =2 F. There exists a continuous function
f : X ! R with f (x) ¼ 1 and f (y) ¼ 0 for all y 2 F. In the previous problem,

we proved that any interval (a, b) � R is open in R. By continuity of f the

sets U ¼ f�1 1
2
; 3
2

� �� �
and V ¼ f�1 �1

2
; 1
2

� �� �
are open in X and U \ V ¼ ;. It is

immediate that x 2 U and F � V so X is regular.

S.014. Let Y ¼ {(x, y) 2 R2 : y r 0}. Denote by L the set {(x, y) 2 Y : y ¼ 0}. For
each z¼ (x, 0)2 L let Nz¼ {(x, t) : 0< tb 2}[ {(tþ x, t) : 0< tb 2}. If z 2 Y \L we
put Bz ¼ {{z}}. Given z 2 L, let Bz ¼ {{z} [ (Nz \A) : A is a finite subset of Nz}.

Let p ¼ (0, �1) and X ¼ Y [ {p}. Denote by Bp the family {{p} [ On : n 2 o},
where On ¼ {z ¼ (x, y) 2 Y : x > n} for any n 2 o.

(i) Show that the families {Bz : z 2 X} satisfy the conditions (LB1)–(LB3) of the
Problem 007 and hence they generate a topology t on X as local bases.
Denote by mY the topology of subspace of X on Y.

(ii) Prove that any U 2 Bz is closed in X for any z 2 Y. Deduce from this fact that
the space (Y, mY) is a Tychonoff one.

(iii) Let f : Y! R be a continuous function. Assume that f (z) ¼ 0 for some z 2 L.
Prove that there exists a countable set N( f, z) � Nz such that f (u) ¼ 0 for any
u 2 Nz \ N( f, z).

(iv) Suppose that f : Y ! R is a continuous function such that f jA � 0 for an
infinite A � Nz for some z 2 L. Prove that f (z) ¼ 0.

(v) Given r 2 R, assume that f : Y! R is a continuous function such that f jB � 0

for an infinite set B � [r, r þ 1] � {0} � L. Show that there is an infinite set
B0 � [r þ 1, r þ 2] � {0} for which f jB0 � 0.

(vi) Denote by Wn the set {p} [ On. Prove that Wnþ2 � Wn for any n 2 o (the
closure is taken in X). Deduce from this fact that X is a T3-space.
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(vii) Let F ¼ {(t, 0) : t 2 (�1, 0]}. Prove that F is closed in X and f (p) ¼ 0 for
any function f 2 C(X) such that f (x) ¼ 0 for all x 2 F. Conclude that X is an
example of a T3-space which is not completely regular.

Solution. (i) The property (LB1) is clear. It is also immediate that U, V 2 Bz
implies U \ V 2 Bz for all z 2 X. Thus (LB2) also holds. The property (LB3) is

evident for any z 2 Y \L because Bz¼ {{z}} and z 2U 2 Bt implies {z}�U. Now, if
z 2 L and z 2 U 2 By for some y 6¼ z then y ¼ p and U ¼ On for some n 2 o.
Therefore Mz ¼ {z} [ Nz � On ¼ U and (LB3) is checked for z. Now, if z ¼ p then

z 2 U 2 By is possible only if y ¼ p so this case is trivial.

(ii) If z2 Y \L thenU¼ {z} and, for any y2 Y \ {z}, the set V \ {z} is open for every
V 2 By. Indeed, if y 2 Y \L then V ¼ {y} and V \ {z} ¼ {y} \ {z} ¼ V. If y 2 L then

V¼My \A for some finite A� Ny and V \ {z}¼My \ (A [ {z}) 2 By. This shows that,
for every point y 2 Y \ {z}, there is an open setWy such that y 2Wy� Y \ {z}. Thus Y
\ {z}¼S{Wy : y 2 Y \ {z}} is an open set and hence U¼ {z} is closed. In particular,
{z} is closed for any z 2 Y \L. If z 2 L then the set Y \ {z} ¼ S{Nt : t 2 L \ {z}} [
(
S
{{z} : z 2 Y \L}) is open and hence {z} is also closed in Y. Thus, Y is a T1-space.
Suppose now that U 2 Bz for some point z 2 L. Then U ¼ Mz \A for some finite

A � Nz. If y 2 (Y \L) \U then we let Wy ¼ {y} 2 By. It is clear that y 2 Wy � Y \U.
Now, if y 2 L \ {z} then the sets Ny and Nz can have at most two points (say a, b) in
their intersection. If we let Wy ¼ My \ {a, b} then again Wy 2 By and Wy � Y \U.
Therefore Y \U ¼ S{Wy : y 2 Y \U} is an open set and hence U is closed.

Let us prove that (Y, mY) is completely regular (and hence Tychonoff) space.

Given a point y 2 Y and a closed set F� Y such that y =2 F, there is U 2 By such that
U \ F ¼ ; because Y \F is an open neighbourhood of y and By is a local base of Y
at y. Now, let f (x)¼ 1 if x 2 U and f (x)¼ 0 if x 2 Y \U. For the function f : Y! [0, 1]

we have f (y) ¼ 1 and f (x) ¼ 0 for any x 2 F so we only must prove that f is
continuous. We will use the condition 009(vi) which is equivalent to continuity of

f. For any A � Y the set f (A) consists of one or two points of [0, 1] so f ðAÞ ¼ f(A)
(the bar denotes the closure in [0, 1]). If f(A)¼ {0, 1} then f(clY(A))� f(Y)¼ {0, 1}¼
f(A) ¼ f ðAÞ. If f(A) is a one-point set, say f(A) ¼ {1} then A � U and, the set U
being closed, we have clY(A) � U whence f(clY(A)) � f(U) ¼ {1} ¼ f ðAÞ. If f(A) ¼
{0} then A � Y \U and clY(A) � Y \U because Y \U is also closed. Thus f(clY(A)) �
f(Y \U) ¼ {0} ¼ f ðAÞ.

(iii) We use the condition 009(iv) which is equivalent to continuity of f. Recall
that Mz ¼ Nz [ {z} for any z 2 L. For any n 2 N, the interval �1

n;
1
n

� �
is an open set

which contains 0 and therefore there is an open U 3 z for which f ðUÞ � �1
n;

1
n

� �
.

Since Bz is a local base at z, there is a finite An� Nz such thatMz \An� U and hence

f(Mz \An)� f(U)� �1
n;

1
n

� �
. We claim that the countable set N( f, z)¼S{An : n 2N}

is as promised. Indeed, if u 2 Nz \N( f, z) then u 2 T{Nz \An : n 2 N} and hence

j f(u)j < 1
n for all n 2 N. Therefore f(u) ¼ 0.

(iv) Note that z 2 clY(A) so we can apply the condition 009(vi) to conclude that

f ðzÞ 2 f ðAÞ ¼ f0g ¼ f0g (the closure is taken in R) and hence f(z) ¼ 0.

(v) Given an arbitrary point z¼ (x, 0) 2 L, let N0
z ¼ {(x, t) : 0 < t < 2} and N1

z ¼
{(tþ x, t) : 0< tb 2}. We can assume that B is countable because every infinite set
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contains an infinite countable subset. Let NB¼
S
{N( f, z) : z 2 B}. Denote by pr the

projection of the set Y onto L, i.e., pr((x, y))¼ (x, 0) for any (x, y) 2 Y. Note that, for
any z 2 B, we have pr(N1

z ) � [r þ 1, r þ 2] � {0} and hence N1
z \ N0

y 6¼ ; for any
y 2 [r þ 1, r þ 2]. The set P ¼ pr(NB) is countable and therefore there is an infinite

set B0 � ([r þ 1, r þ 2] � {0}) \P. Let us prove that B0 is as promised. If z 2 B0 and
y 2 B, denote by ty the unique intersection point of the sets N0

z and N1
y . Since

N0
z \ NB ¼ ;, we have ty =2 N( f, y) (see (iii)) and hence f(ty) ¼ 0. It is evident that

y 6¼ y0 implies ty 6¼ ty0 and therefore {ty : y 2 B} is an infinite subset of Nz on which

the function f is equal to zero. Now the statement (iv) shows that f(z) ¼ 0.

(vi) Since Wnþ2 � Wn, we only have to prove that Wnþ2nWnþ2 � Wn. All points

of Wnþ2nWnþ2 belong to L so let z ¼ (x, 0) 2 L. If x b n then Nz\Wnþ2 ¼ ; and
hence x =2 Wnþ2. Thus Wnþ2 � Wn.

To prove thatX is a T3-space, note that we proved that all points of Y are closed inY.
Observe that, for any z2 Y, there is n2N such that z =2Wn. This shows that p cannot be
in the closure of {z} and hence {z} is also closed in X. It is immediate that Y is open in

X and therefore {p} is closed. This proves that X is a T1-space so we only need to

establish regularity of X. Observe first that, for any z 2 Y, the point p is not in the

closure of any U 2 Bz and hence U is also closed and open in X. If z 2 Y and F is a

closed subset of X with z =2 F then there is U 2 BzwithU \ F¼ ;. Then for the open
setsU andV¼ X \U, we haveF� V, x2U andU \ V¼;. Finally, suppose thatF is a

closed subset ofXwith p =2 F. Since the family {Wn : n2N} is a local base at p, there is
n2N such thatWn \ F¼;. Now letU¼Wnþ2 andV¼ X \Wnþ2. It is easy to see that
U and V are open sets such that p 2 U, F � V and U \ V ¼ ;.

(vii) The set F must be closed in the space X because its complement X \F ¼S
{{z} : z 2 Y \L} [ {Wz : z 2 L \F} [ W1 is open being a union of open sets. Now

suppose that f : X! R is a continuous function with fjF � 0. Apply (v) for r ¼ �1.
The function f has infinitely many zeros on [�1, 0]� {0} and hence it has infinitely

many zeros on [0, 1] � {0} and the same on [1, 2] � {0}, on [2, 3] � {0}, etc. As a

consequence, for any n 2 N, there is x > n such that f(z) ¼ 0 for z ¼ (x, 0). This
implies p 2 Awhere A¼ f�1(0). Since {0} is closed inR, the set A is closed in X and

hence p 2 A. This proves that f(p)¼ 0, so the space X cannot be completely regular.

S.015. (Urysohn’s lemma). Let X be a normal space. Suppose that F and G are
non-empty closed subsets of X with F \ G ¼ ;. Prove that for any rational number
q 2 [0, 1] one can choose an open set Uq in such a way that the following properties
will hold:

(i) F � U0 and U1 ¼ X \G.
(ii) Ur � Us if r < s.

Show that the function f : X! R defined by the formula

f ðxÞ ¼ inffr : x 2 Urg; if x 2 XnG;
1; if x 2 G

�

is continuous and f(F) � {0}, f(G) � {1}. Deduce from this fact that any T4-space
is a Tychonoff space.
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Solution. Apply normality of the space X to find open sets U0 and W such that F �
U0, G � W and U0 \ W ¼ ;. The set X \W is closed and U0 � X \W which implies

U0 � X \W � U1. Take any faithful enumeration {qn : n 2 o} of the set Q \ [0, 1]

such that q0 ¼ 0 and q1 ¼ 1. We already have open sets U0 and U1 such that

U0 � U1. Suppose that k r 1 and, for any n b k, we have an open set Uqn such that

qn< qm impliesUqn � Uqm for allm, nb k. Consider the numbers r¼max{qi : ib k
and qi < qkþ1} and s ¼ min{qi : i b k and qkþ1 < qi}. It is clear that r < qkþ1 <
s and Ur � Us by the inductive hypothesis. By normality of X there exist open

sets Uqkþ1 andW such that Ur � Uqkþ1 , X \Us �W and Uqkþ1 \ W ¼ ;. Since the set
X \W is closed andUqkþ1 � X \W, we haveUqkþ1 � X \W�Us. We claim that the sets

{Uqn : n b k þ 1} satisfy the inductive hypothesis Uqn � Uqm for all m, n b k þ 1

such that qn < qm.

Indeed, if both numbers qn and qm are distinct from qnþ1 then the inclusion takes
place by the inductive hypothesis. If m ¼ k þ 1 then Uqn � Ur � Uqkþ1 by our

construction and the inductive hypothesis. If n ¼ k þ 1 then Uqkþ1 � Us � Uqm by

our construction and the inductive hypothesis. Thus, our inductive construction can

be fulfilled for all n 2 o and hence we will have open sets {Uq : q 2 Q \ [0, 1]}

with the properties (i) and (ii).

Note that x 2 U0 for any x 2 F and hence f(x) ¼ 0. By the definition of f
we have f(x) ¼ 1 for all x 2 G. Let us prove that f is continuous. Since the family

S ¼ {(r,þ1) : r 2R} [ {(�1, r) : r 2R} is a subbase ofR, it is sufficient to prove
that f�1(U) is open in X for any U 2 S (009(iii)).

Now, if r b 0 then f�1((�1, r)) ¼ ; and f�1((�1, r)) ¼ X if r > 1. If 0 < r b 1

then the set f�1((�1, r)) ¼S{Us : s 2 Q\ [0, 1] and s< r} is also open as a union
of open sets. If r< 0 then f�1((r,þ1))¼ X and f�1((r,þ1))¼ ; if rr 1. Finally,

if 0 b r < 1 we have f�1((r, þ1)) ¼ S{X \Us : s 2 Q \ [0, 1] and s > r} which

proves that f�1((r, þ1)) is an open set.

Suppose finally that X is a T4-space. Given x 2 X and a closed set F � X
with x =2 F, the sets {x} and F are closed and disjoint so by the Urysohn’s

lemma there is a continuous function f : X ! [0, 1] such that f({x}) ¼ {1} and

f(y) ¼ 0 for all y 2 F. Therefore f(x) ¼ 1, f(F) � {0} and this proves that X is a

Tychonoff space.

S.016. Prove that the space (Y, mY), constructed in Problem 014 is Tychonoff
but not normal.

Solution. It was proved in 014 that (Y, mY) is a Tychonoff space. To see that it

is not normal, consider the disjoint closed sets F ¼ {(t, 0) : t 2 (�1, 0]} and G ¼
{(t, 0) : t 2 (0, þ1)} of the space Y. Suppose that Y is normal. By Problem 015

there is a continuous function f : Y! R such that f(F) ¼ {0} and f(G) ¼ {1}. Now

apply 014(v) for r ¼ �1 to conclude that there are infinitely many points in

[0, 1] � {0} � G in which f is equal to zero. However, this is a contradiction

because f(x) ¼ 1 for every x 2 G.

S.017. Let X be a Ti-space for ib 31
2
. Prove that any subspace of X is a

Ti-space.
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Solution. Let X be a T0-space. If Y � X and x, y are distinct points of Y then there is

U 2 t(X) such that U \ {x, y} consists of exactly one point. Then U0 ¼ U \ Y 2
t(Y) and the set U0 \ {x, y} ¼ U \ {x, y} also consists of exactly one point.

Now, if X is a T1-space and Y � X then, for any y 2 Y, the set {y} is closed in X.
Therefore X \ {y} 2 t(X) and Y \ {y}¼ (X \ {y}) \ Y is open in Y. As a consequence,
{y} is closed in Y.

Assume that X is a Hausdorff space and Y � X. If x and y are distinct points of Y,
then there areU, V2 t(X) such that x2U, y2 V andU \ V¼ ;. Now, ifU0 ¼U \ Y
and V0 ¼ V \ Y then U0, V0 2 t(Y), x 2 U0, y 2 V0 and U0 \ V0 ¼ ;, which proves

that Y is Hausdorff.

If X is a T3-space and Y � X, then we already established that Y must be a

T1-space so we must only check that Y is regular. Take a point y 2 Y and a set F =2 y
which is closed in Y. The set Y \F is open in Y so there is U 2 t(X) with U \ Y ¼
Y \F. The set P ¼ X \U is closed and y =2 P. By regularity of X there are V,W 2 t(X)
such that y 2 V, P�W and V \ W¼ ;. If V0 ¼ V \ Y andW0 ¼W \ Y then V0,W0

2 t(Y), y 2 V0, F � W0 and V0 \ W0 ¼ ;.
Suppose finally that X is Tychonoff and Y � X. We already established that

Y must be a T1-space so we must only check that Y is completely regular. Take a

point y 2 Y and a set F =2 y which is closed in Y. The set Y \F is open in Y so there is

U 2 t(X) with U \ Y ¼ Y \F. The set P ¼ X \U is closed and y =2 P. By complete

regularity of X there exists a continuous f : X! [0, 1] such that f (y)¼ 1 and f (x)¼ 0

for all x 2 P. Let g(x) ¼ f(x) for all x 2 Y. Then g : Y! [0, 1], g(y) ¼ 1, g(F) � {0}

so the only thing left is to prove that g is continuous. But this follows immediately

from the equality g�1(U) ¼ f�1(U) \ Y for any U 2 t([0, 1]).

S.018. Show that a closed subspace of a T4-space is a T4-space. Give an example of
a T4-space X such that some Y � X is not normal.

Solution. Suppose that Z is a normal T1-space and P is a closed subspace of Z. By
017, the space P is T1 so it is sufficient to prove that P is normal. If F and G are

closed disjoint subsets of P then F and G are closed in Z (it is an easy exercise) so

there are U, V 2 t(Z) such that F � U, G � V and U \ V ¼ ;. Let U0 ¼ U \ P
and V0 ¼ V \ P. For the sets U0 and V0 we have U0, V0 2 t(P), F � U0, G � V0 and
U0 \ V0 ¼ ;. Hence the space P is normal.

To construct the promised space X, we must develop some technique for proving

normality of spaces. Given a space Z, say that U � Z is clopen if U 2 t(Z) and U is

closed in Z.

Claim 1. Suppose that a space Z is a finite union of its clopen normal subspaces.

Then Z is normal.

Proof of the claim. Suppose that Z ¼ C1 [ � � � Cn, where Ci is a clopen normal

subspace of Z for all i b n. We can assume that the sets Ci are disjoint, because if

not, then we can consider the sets C01 ¼ C1 and C0i ¼ Ci \ (C1 [ � � � [ Ci�1) for all
i 2 {2, . . . , n}. Every subspace C0i is closed in Ci and hence normal. Besides, each C0i
is clopen in Z and Z ¼ C01 [ � � � [ C0n. So, from now on we assume that the sets Ci
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are disjoint. Suppose that F and G are closed disjoint subspaces of Z. Then Fi ¼ F
\ Ci and Gi¼G \ Ci are closed disjoint subsets of Ci for each ib n. By normality

of Ci, there areUi, Vi 2 t(Ci) such that Fi�Ui,Gi� Vi andUi \ Vi¼ ;. For the sets
U ¼ U1 [ � � � [ Un and V ¼ V1 [ � � � [ Vn, we have U, V 2 t(X), F � U, G � V and

U \ V ¼ ;. Therefore Z is normal.

Claim 2. Let Z be any space with a unique non-isolated point z0. Then Z is normal.

Proof of the claim. Suppose that F and G are closed disjoint subspaces of Z. The
point z0 cannot belong to both of them; suppose, for example, that z0 =2 F. Then F
consists of isolated points of Z and hence F is open in Z. Let U ¼ F and V ¼ Z \F.
Then U, V 2 t(Z), F � U, G � V and U \ V ¼ ; so the space Z is normal.

For each n 2 N, let Pn ¼ [0, 1] � 1
n

� � � R2 and P0 ¼ [0, 1] � {0} � R2. Our

space X will be the set P ¼ S{Pn : n 2 o} with some topology we are going to

describe. Let p¼ (0,0), D¼ {(x, y) 2 P : x> 0 and y> 0} and Q¼ {(0, 1n) : n 2 N}.
If z 2 D then let Bz ¼ {{z}}. For any z ¼ (x, 0) 2 P0 \ {p}, we let Bz ¼ {O(x, k) :
k 2 N} where O(x, k)¼ {(x, 0)} [ {(x, 1n) : n 2 N and nr k} for each k 2 N. Now, if
z¼ (0, 1n) 2Q then Bz¼ {V(A, n) : A is a finite subset of [0, 1]}, where V(A, n)¼ {z}
[ (([0, 1] \A) � 1

n). Denote by Nk the set {0} [ {1n : n r k} for each k 2 N and let

Bp¼ {W(A, k)¼ ([0, 1] \A)� Nk : A is a finite subset of (0, 1] and k 2N}. We leave

to the reader the evident verification of the properties (LB1)–(LB3) (Problem 007)

for the families {Bz : z 2 P}. Let X ¼ (P, t), where t is the topology generated by

the families {Bz : z 2 P} as local bases. Observe also that every V 2 Bz is clopen for
any z 2 P.

The space X is normal. Indeed, suppose that F and G are closed disjoint

subspaces of X. The point p cannot belong to both of them; assume, for example,

that p =2 F. The set X \F is an open neighbourhood of p and therefore there is a finite
A � (0, 1] and k 2 N such thatW(A, k) \ F ¼ ;. Note that X \W(A, k) ¼ P1 [ � � � [
Pk�1 [ (

S
{{a} � N1 : a 2 A}). Each Pi is clopen in X as well as {a} � N1 for each

a 2 A. The subspaces Pi and {a} � N1 are normal (Claim 2) for all i 2 N and a 2 A
being spaces with a unique non-isolated point. They are also clopen subspaces of

X so Claim 1 is applicable to conclude that X \W(A, k) is a normal space.

The sets F and G0 ¼ G\ (X \W(A, k)) are closed and disjoint in X \W(A, k) so it is
possible to chooseU, V0 2 t(X \W(A, k)) with F�U,G0 � V0 andU \ V0 ¼ ;. Now,
if V ¼ V0 [ W(A, k) then U, V 2 t(X), F � U, G � V and U \ V ¼ ; whence the
space X is normal.

The last thing we have to prove is to find a non-normal subspace of X. Let Y ¼
X \ {p}. To see that Y is not normal, consider the sets F ¼ ({0} � N1) \ {p} and G ¼
P0 \ {p}. It is easy to verify that F and G are closed subspaces of Y and F \ G ¼ ;.
Suppose thatU, V 2 t(Y) are disjoint and F�U,G� V. Then U and V are also open

in X and hence, for each zk ¼ (0, 1k) 2 F there exists a finite set Ak � [0, 1] such that

V(Ak, k) � U. The set A ¼ S
{Ak : k 2 N} is countable and hence there is

x 2 (0, 1] \A. We have (x, 1
n) 2 U for any n 2 N and therefore O(x, n) \ U 6¼ ;

for all n 2 N. However, {O(x, n) : n 2 N} is a local base at (x, 0) which implies

O(x, n)� V for some n 2 N. As a consequence, U \ V� U \ O(x, n) 6¼ ; which is
a contradiction. Thus Y cannot be normal.
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S.019. Prove that R is a T4-space.

Solution. Observe that any open interval (a, b) � R is open in the natural topology

N R on R because, if x 2 (a, b) then, for the number e¼min{x� a, b� x}, we have
(x � e, x þ e) � (a, b). For any x 2 R, the set R \ {x} is open because it is easy to

represent it as a union of open intervals. Hence {x} is closed andR is a T1-space. To
prove the normality of R, we will need the following auxiliary function. Given

A � R, let dA(x) ¼ inf{jx � yj : y 2 A}.

Claim. The function dA is continuous for any A � R.
Proof of the claim. We use the condition 009(iv) which is equivalent to continuity.

Take any x0 2 R and suppose that r0 ¼ dA(x0) 2 U 2 N R. There is e > 0 such that

(r0 � e, r0 þ e)� U. The proof of the claim will be finished if we show that dA(V) �
(r0 � e, r0 þ e) � U, where V ¼ x0 � e

2
; x0 þ e

2

� �
. Pick any x 2 V. The infimum

condition in the definition of dA implies the existence of y 2 A such that

jx0�yj<dA(x0) þ e
2
. Then jx� yjb jx� x0j þ jx0� yj<e

2
þ dAðx0Þþ e

2
¼ dAðx0Þþ e.

Therefore dA(x) b jx � yj < r0 þ e. To prove that dA(x) > r0 � e suppose not.

Then dA(x) < r0 � e
2
and hence we can find z 2 A such that jx � zj < r0 � e

2
.

Now, jx0� zjb jx0� xj þ jx� zj<e
2
þ r0� e

2
¼ r0 and, as a consequence, dA(x0) <

jx � zj < r0 which is a contradiction. Thus dA(x) 2 (r0 � e, r0 þ e) and our claim is

proved.

To prove that R is normal, take disjoint closed sets F, G � R. The function ’ :

R! R defined by ’(x) ¼ dF(x) � dG(x) (see the claim) is continuous (it is a good

exercise that the difference of two continuous functions is a continuous function;

we leave its easy proof to the reader because a more general statement will be

established in subsequent material). Observe that the sets U ¼ ’�1((�1, 0)) and

V ¼ ’�1((0, þ1)) are open in R and disjoint being inverse images of disjoint open

sets under the continuous function ’. If x 2 F then dF(x) ¼ 0 and dG(x) > 0 and

hence ’(x) < 0 which implies x 2 U. This shows that F � U. Analogously, if x 2 G
then dG(x) ¼ 0 and dF(x) > 0. Therefore, ’(x) > 0 and x 2 V. Thus G � V and we

proved the normality of R.
S.020. Let U be a subspace of R. Given a function f : U ! R, prove that f
is continuous in the sense of Calculus (that is, for any x 2 U and e > 0 there is
d > 0 such that y 2 U and jy � xj < d implies jf(y) � f(x)j < e) if and only if it is
continuous as a map between the spaces U and R.
Solution. Suppose that f is continuous in the sense of calculus and fix x 2 U.
If W 3 f(x) is an open set then there is e > 0 such that ( f(x) � e, f(x) þ e) � W.

By the calculus definition of continuity at the point x, there is d > 0 such that

jy � xj < d, y 2 U implies j f(y) � f(x)j < e. But what the last statement says is that

f(V) � ( f(x) � e, f(x) þ e) � W for the open set V ¼ (x � d, x þ d) \ U 3 x. This
shows that f is continuous in the topological sense.

Now, suppose that f : U ! R is continuous and fix x 2 U and e > 0. The set

W ¼ ( f(x) � e, f(x) þ e) is open in R and contains the point f(x). By 009(iv)

there is V 2 t(U) with x 2 V such that f(V) � W. The set V is also open in R and
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therefore there is a d > 0 such that (x � d, x þ d) � V. Now we have f((x � d,
x þ d)) � ( f(x) � e, f(x) þ e) and this means precisely that jy � xj < d implies

jf(y) � f(x)j < e.

S.021. Let X, Y and Z be topological spaces. Suppose that f 2 C(X, Y) and g 2
C(Y, Z). Prove that h ¼ g 	 f 2 C(X, Z). In other words, the composition of
continuous maps is a continuous map.

Solution. Let U be an open subset of Z. Then g�1(U) is open in Y by continuity of g.
The set W ¼ f�1(g�1(U)) is open in X by continuity of f. Now observe that

h�1(U) ¼ W is also open in X and hence h is continuous.

S.022. Suppose that X and Z are topological spaces and f : X! Z. Given a subspace
Y � X, let ( f jY)(x) ¼ f(x) for any point x 2 Y; this defines a map f jY : Y! Z. Prove
that, if f is a continuous map, then f jY is also continuous. In other words, the
restriction of a continuous map to a subspace is a continuous map.

Solution. To prove continuity of the function g ¼ f jY observe that we have

g�1(U) ¼ f�1(U) \ Y for any U � Z. As a consequence, the set g�1(U) is open
in Y if U is open in Z.

S.023. Let X and Z be topological spaces. Suppose that, for a map f : X ! Z, we
have f(X) � T � Z. Prove that f is a continuous map if and only if f is continuous
considered as a mapping of X to T.

Solution. Denote by f0 the function f considered to map X to T. Suppose that f is
continuous. IfU 2 t(T) then there is V 2 t(X) such that V \ T¼U. Now, f�10 (U)¼
f�1(U) 2 t(X) and hence f0 is continuous.

On the other hand, if the map f0 is continuous and U 2 t(Z) then we have

f�1(U) ¼ f�10 (U \ T) 2 t(X) and hence f is continuous.

S.024. Prove that a composition of homeomorphisms is a homeomorphism.

Solution. Suppose that f : X ! Y and g : Y ! Z are homeomorphisms. The map

h ¼ g 	 f is clearly a bijection which is continuous by Problem 021. Now the map

h�1 ¼ f�1 	 g�1 is also continuous by Problem 021 applied to the continuous maps

f�1 and g�1.

S.025. Prove that, for any a, b 2 R with a < b, the interval (a, b) is homeomorphic
to R.
Solution. Define a function f : (a, b)! (�1, 1) by f(t) ¼ 2

b�a (t � a) � 1 for any t 2
(a, b). Then f is a homeomorphism as well as the map g : (�1, 1)! �p

2
; p
2

� �
defined

by g(t) ¼ p
2
t. Finally, the map h : �p

2
; p
2

� �! R for which h(t) ¼ arctan(t) is also a

homeomorphism and therefore, h 	 g 	 f is a homeomorphism between (a, b) and R
by Problem 024.

S.026. Prove that R is not homeomorphic to I.
Solution. If f : R ! I is a homeomorphism then g ¼ f�1 : [�1, 1] ! R is a

continuous surjective function which is also continuous in the sense of calculus by

66 2 Solutions of Problems 001–500



Problem 020. However, a standard theorem of any basic course of calculus says that

every continuous real-valued function on I is bounded and hence g cannot be

surjective, a contradiction.

S.027. Let X be a topological space. Given two mappings f, g : X! R and l 2 R,
show that

(i) If f, g 2 C(X) then f þ g 2 C(X) and f · g 2 C(X).
(ii) If f, g 2 C(X) and g(x) 6¼ 0 for any x 2 X then f

g 2 C(X).
(iii) If f 2 C(X) then lf 2 C(X) for any l 2 R.
Solution. To prove (i), fix a point x0 2 X and e > 0. By continuity of f, there
is U 2 t(X) such that x0 2 U and f ðUÞ � f ðx0Þ � e

2
; f ðx0Þ þ e

2

� �
. Since g is

also continuous, there is V 2 t(X) such that x0 2 V and gðVÞ � gðx0Þ�ð
e
2
; gðx0Þ þ e

2
Þ. Now, if x 2 W ¼ U\V then j( fþg)(x) � ( fþg)(x0)j ¼ jf(x)þg(x)�

f(x0)�g(x0)j b jf(x) � f(x0)j þ jg(x) � g(x0)j < e
2
þ e

2
¼ e which shows that ( f þ g)

(W) � (( f þ g)(x0) � e, ( f þ g)(x0) þ e) and hence the function f þ g is continuous.

To prove continuity of f · g at the point x0, fix U, V 2 t(X) such that x0 2
U \ V and jf(x) � f(x0)j < 1 for any x 2 U as well as jg(x) � g(x0)j < 1 for any

x 2 V. For the number K ¼ jf(x0)j þ jg(x0)j þ 1, find W, W0 2 t(X) for which x 2
W \ W0, jf(x) � f(x0)j < e

2K if x 2 W and jg(x) � g(x0)j < e
2K for all x 2 W0.

Observe that if x 2 U \ V then jf(x0)j < jf(x0)jþ1 b K and jg(x)j < jg(x0)j þ
1 b K. The set O ¼ U \ V \ W \ W0 is open in X and contains the point x0.
Given x 2 O, we have

jð f � gÞðxÞ � ð f � gÞðx0Þj ¼ j f ðxÞgðxÞ � f ðx0Þgðx0Þj
¼ j f ðxÞðgðxÞ � gðx0ÞÞ þ gðx0Þð f ðxÞ � f ðx0ÞÞj
b j f ðxÞjjgðxÞ � gðx0Þj þ jgðx0Þjj f ðxÞ � f ðx0Þj
<K � e

2K þ K � e
2K ¼ e:

Therefore ( f · g)(O)� (( f · g)(x0)� e, (( f · g)(x0)þ e) and continuity of f · g at the
point x0 is proved.

(ii) Let us prove first that 1g is continuous at the point x0. By continuity of g, there

is an open set U 3 x0 such that jg(x) � g(x0) <
jgðx0Þj

2
for all x 2 U. As a consequence,

jg(x)j > jgðx0Þj
2

and hence 1
jgðxÞj <

2
jgðx0Þj for all x 2 U. There is an open V 3 x0 such that

jg(x) � g(x0)j < e � ðgðx0ÞÞ2
2

for all x 2 V. The set W ¼ U \ V is open in X and

contains x0. If x 2 W then jð1gÞðxÞ� ð1gÞðx0Þj ¼ 1
jgðxÞjjgðx0Þj � jgðxÞ�gðx0Þj< 2

ðgðx0ÞÞ2�
jgðxÞ�gðx0Þj<e � ðgðx0ÞÞ2

2
� 2

ðgðx0ÞÞ2 ¼ e. This shows that the function 1
g is continuous at

the point x0 and hence the function f
g¼ f � 1g is also continuous by (i).

(iii) To prove continuity of lf at the point x0, suppose first that l ¼ 0. Then

the function lf is equal to zero at all points and its continuity is evident. If l 6¼ 0 let

U 3 x0 be an open set with jf(x)� f(x0)j< e
jlj for any x 2 U. Then, for any x 2 U, we

have jlf(x) � lf(x0)j ¼ jlj · jf(x) � f(x0)j < jlj ejlj ¼ e which proves continuity of lf
at the point x0.
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S.028. Let X be a topological space. Given two mappings f, g : X! R, show that, if
f, g 2 C(X), then max( f, g) 2 C(X) and min( f, g) 2 C(X).

Solution. Observe that we have max( f, g)(x) ¼ 1
2
( f(x) þ g(x) þ jf(x) þ g(x)j) and

min( f, g)(x) ¼ 1
2
( f(x) þ g(x) � jf(x) � g(x)j) for any x 2 X. The functions f þ g and

f � g are continuous by Problem 027. The function jf � gj is also continuous being

a composition of ’(t) ¼ jtj with the continuous function f � g (Problem 021).

Applying problem 027 once more, we can conclude that max( f, g) and min( f, g) are
continuous.

S.029. Suppose that X is a topological space and fn : X ! R for all n 2 o.
Prove that, if {fn : n 2 o} � C(X) and fn !! f, then f 2 C(X). In other words, the
limit of a uniformly convergent sequence of continuous functions is a continuous
function.

Solution. Fix x0 2 X and e r 0. There exists m 2 o such that j fn(x) � f(x)j < e
3
for

all n r m and x 2 X. The function fm is continuous at the point x0 so there is an

open U 3 x0 such that j fm(x) � fm(x0)j < e
3
for all x 2 U. If x 2 U then jf(x) �

f(x0)j ¼ j f(x) � fm(x) þ fm(x) � fm(x0) þ fm(x0) � f(x0)j b jf(x) � fm(x)j þ jfm(x) �
fm(x0)j þ j fm(x0) � f(x0)j < e

3
þ e

3
þ e

3
¼ e, which proves continuity of f at the

point x0.

S.030. Suppose that X is a set and we are given a function fn : X!R for each n 2o.
Let gn¼ f0þ � � � þ fn and assume that jfn(x)jb cn for every x 2 X and n 2o. Assume
additionally that the series

P1
n¼0 cn converges, i.e., there is c 2 R such that for

every e > 0 we can find a number m 2 o such that jPn
k¼0 ck � cj<e for all n r m.

Prove that the sequence {gn : n 2 o} converges uniformly on X, i.e., gn!! g for
some g : X! R.

Solution. It is clear that cn r 0 for all n 2 o. Fix x 2 X and consider the numeric

sequence {gn(x)}. Given e> 0 there exists m 2o such that jPn
k¼0 cn � cj< e

2
for all

n r m. As a consequence, for any natural p, q r m with p b q, we have

jgpðxÞ � gqðxÞj ¼ j fpþ1ðxÞ þ � � � þ fqðxÞjb cpþ1 þ � � � þ cq

¼
Xq

i¼1 ci � c
� �

�
Xp

i¼1 ci � c
� �

<
e
2
þ e
2
<e;

which proves that {gn(x)} is a Cauchy sequence. Denote its limit by g(x). Since g(x)
exists for every x 2 X, we obtain a function g : X! R. To see that gn!! g, let e> 0.

There exists a natural s such that, for all n r s we have jPn
k¼0 cn � cj<e

3
. Now,

if p, q r s then

jgpðxÞ � gqðxÞj ¼ jfpþ1ðxÞ þ � � � þ fqðxÞjb cpþ1 þ � � � þ cq

¼
Xq

i¼1 ci � c
� �

�
Xp

i¼1 ci � c
� �

<
e
3
þ e
3
¼ 2e

3

for all x 2 X.
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If q!1 in the inequality jgp(x) � gq(x)j b 2e
3
, we obtain jgp(x)�g(x)j b 2e

3
< e

for all x 2 X and p r s and this proves that gn!! g.

S.031. (The Tietze-Urysohn theorem) Let X be a normal space. Suppose that A is a
closed subspace of X and f : A ! [a, b] � R is a continuous function. Prove that
there exists a continuous function F : X! [a, b] such that FjA ¼ f, i.e., F(x) ¼ f(x)
for all x 2 A.

Solution. Observe that, if a ¼ b, our statement is trivially true, so from now on we

assume that a< b. Suppose first that a¼ �1 and b¼ 1. We will need the following

lemma.

Lemma. Let h : A! R be a continuous function with jh(x)j b c for all x 2 A. Then
there is a continuous function g : X!R such that jg(x)jb c

3
for all x 2 X and jg(x)�

h(x)j b 2c
3
for all x 2 A.

Proof of the Lemma. The disjoint sets P ¼ h�1 �c;�c
3

	 
� �
and Q ¼ h�1 c

3
; c
	 
� �

are closed in A and hence in X. Apply the Urysohn’s lemma (015) to find a

continuous function k : X ! [0, 1] such that k(P) � {0} and k(Q) � {1}.

The function gðxÞ ¼ 2
3
c kðxÞ � 1

2

� �
is as promised. Observe first that g is continuous

being obtained by arithmetical operations from the function k (Problem 027).

Now, k(x) 2 [0, 1] implies kðxÞ � 1
2
2 �1

2
; 1
2

	 

for all x 2 X. Thus

gðxÞ 2 �2
3
� c � 1

2
; 2
3
� c � 1

2

	 
 ¼ �c
3
; c
3

	 

for all x 2 X. To finish the proof of the

lemma, we must show that jg(x) � h(x)j b 2c
3
for all x 2 A. If x 2 P then

hðxÞ 2 �c;�c
3

	 

and gðxÞ ¼ �c

3
. As a consequence, hðxÞ � gðxÞ 2 �2

3
c; 0

	 

and

jhðxÞ � gðxÞjb 2
3
c. If x 2 Q then we must have hðxÞ 2 c

3
; c
	 


and gðxÞ ¼ c
3
. Thus

hðxÞ � gðxÞ 2 0; 2
3
c

	 

and jhðxÞ � gðxÞjb 2

3
c. Now, if x 2 A \ (P [ Q) then jh(x)j< c

3
.

It follows from the inequality jg(x)jb c
3
that jhðxÞ � gðxÞjb jhðxÞ þ gðxÞjb c

3
þ c

3
¼

2
3
c and our lemma is proved.

Remembering that j f(x)jb 1 for all x 2 A, we can apply the lemma for c¼ 1 and

h ¼ f. This gives us a continuous function g1 : X! R such that jg1(x)j b 1
3
for all

x 2 X and j f(x) � g1(x)jb 2
3
for all x 2 A. Proceeding by induction, suppose that we

have continuous functions g1, . . . gn on the space X such that, for all i b n, we have

(�) jgiðxÞjb 1
3

2
3

� �i�1
for all x 2 X and

(��) j f(x) � (g1(x) þ � � � þ gi(x))j < 2
3

� �i
for any x 2 A.

Apply the lemma to the function h(x) ¼ ( f(x) � (g1(x) þ � � � þ gi(x)))jA and

c ¼ 2
3

� �n
obtaining thus a continuous g : X ! R such that jgðxÞjb 1

3
2
3

� �n
for each

x 2 X and jhðxÞ � gðxÞjb 2
3

2
3

� �n¼ 2
3

� �nþ1
for any x 2 A. It is clear that the function

gnþ1 ¼ g satisfies (�) and (��) for all i b n þ 1 which means that our construction

is fulfilled for each n 2 N. Since the series
P1

i¼1
1
3

2
3

� �i�1
is convergent, the

property (�) implies that the series
P1

i¼1 giðxÞ converges uniformly to a function

F (030). The function F is continuous by Problem 029 so it suffices to show that

F : X ! I and F(x) ¼ f(x) for all x 2 A. Given x 2 X, apply (�) to see that

jFðxÞjb P1i¼1 1
3

2
3

� �i�1 ¼ 1 and hence F(x) 2 [�1, 1] for all x 2 X. Taking any
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x 2 A and considering the sumGnðxÞ ¼
Pn

i¼1 giðxÞ, we obtain from (��) that j f(x)�
Gn(x)j b 2

3

� �n
for each n 2 N. Now, if n!1, we obtain j f(x) � F(x)j ¼ 0 because

Gn(x) ! F(x) when n ! 1. Hence f(x) ¼ F(x) for all x 2 A and our statement is

proved for a ¼ �1 and b ¼ 1.

Let us prove it for an arbitrary closed interval [a, b]�Rwith a< b. Observe that
the function rðtÞ ¼ 2

b�aðt� aÞ � 1 is a homeomorphism between [a, b] and [�1, 1]
with the inverse function sðtÞ ¼ 1

2
ððb� aÞtþ aþ bÞ. Let h ¼ r 	 f. Then h is a

continuous function on A and h : A! I. Since we proved that for such functions the
relevant extension exists, we can take a continuousH : X! [�1, 1] such thatHjA¼ h.
The function F ¼ s 	 H is as promised because it is continuous, maps X into [a, b]
and F(x) ¼ s(H(x)) ¼ s(h(x)) ¼ s(r( f(x))) ¼ f(x) for all x 2 A.

S.032. Let X be a normal space. Suppose that A is a closed subspace of X and
f : A ! R is a continuous function. Prove that there exists a continuous function
F : X! R such that FjA ¼ f, i.e., F(x) ¼ f(x) for all x 2 A.

Solution. Let h(x) ¼ 2
p arctan( f(x)) for any x 2 A. Then h : A! R is a continuous

function and h(A) � (�1, 1) � I. Thus we can apply Problem 031 to conclude that

there exists a continuous function H : X ! I such that HjA ¼ h. The set B ¼
H�1(�1) [ H�1(1) is closed and disjoint from A because jH(x)j ¼ jh(x)j < 1 for all

x 2 A. The space X is normal so we can apply the Urysohn’s lemma (Problem 015)

to find a continuous function k : X ! [0, 1] such that k(x) ¼ 1 for all x 2 A and

k(y) ¼ 0 for any y 2 B. The function H1 ¼ k · H is continuous by Problem 027(i)

and, for all x 2 A, we have H1(x) ¼ k(x) · H(x) ¼ H(x) · 1 ¼ h(x). Now, if x 2 B
then H1(x) ¼ H(x) · k(x) ¼ 0 because k(x) ¼ 0 for any x 2 B. If x =2 B then jH1(x)j ¼
jH(x)j · jk(x)j< 1 because jk(x)jb 1 and jH(x)j< 1. It turns out thatH1(x)� (�1, 1)
for all x 2 X and the function FðxÞ ¼ tan p

2
� H1ðxÞ

� �
is well defined and con-

tinuous on X. If x 2 A then FðxÞ ¼ tan p
2
� H1ðxÞ

� � ¼ tan p
2
� HðxÞ � kðxÞ� � ¼

tan p
2
� HðxÞ � 1� � ¼ tan p

2
� 2p � arctanð f ðxÞÞ

� � ¼ tanðarctanð f ðxÞÞÞ ¼ f ðxÞ and there-

fore F(x) ¼ f(x) for all x 2 A.

S.033. Prove that X is a normal space if and only if for any closed F, G � X with
F \ G ¼ ; there exists a continuous function f : X! R such that f(F) � {0} and
f(G) � {1}.

Solution. Necessity is precisely the Urysohn’s lemma proved in Problem 015. To

establish sufficiency, suppose that F and G are disjoint closed subsets of X. Take a
continuous function f : X ! R with f (F) � {0} and f(G) � {1}. The sets

U ¼ f�1 �1
2
; 1
2

� �� �
and V ¼ f�1 1

2
; 3
2

� �� �
are open, disjoint and F � U, G � V

which proves the normality of X.

S.034. Prove that, for any Tychonoff space X, if we are given distinct points x1, . . . ,
xn 2 X and (not necessarily distinct) r1, . . . , rn 2R, then there exists a function f 2 C
(X) such that f(xi) ¼ ri for all i ¼ 1, . . . , n.

Solution. There is nothing to prove if n ¼ 1, so suppose that n 2 N and n r 2. If

Y¼ {x1, . . . , xn} then, for every ib n, the set Fi¼ Y \ {xi} is closed in X and does not
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contain xi. The Tychonoff property of X guarantees the existence of a continuous

function fi : X! R such that fi(xi) ¼ 1 and fi(Fi) � {0}. It is easy to check that the

function f ¼ r1 · f1 þ � � � þ rn · fn is as promised.

S.035. Let X be an arbitrary set. Suppose that fn, gn : X! R for each n 2 o. Prove
that, if fn !! f and gn !! g, then fn þ gn !! f þ g.

Solution. Let e > 0. As fn!! f, there is m 2 N such that j fn(x) � f(x)j < e
2
for all

nr m and x 2 X. Since gn!! g, there is k 2 N such that jgn(x)� g(x)j< e
2
for all nr

k and x 2 X. Now, if l ¼ k þ m then, for any n r l and any x 2 X, we have j fn(x) þ
gn(x) � f(x) � g(x)j b j fn(x) � f(x)j þ gn(x) � g(x)j < e

2
þ e

2
¼ e which shows that

fn þ gn!! f þ g.

S.036. Let fn, gn 2 C(X) for some topological space X. Assume that fn!! f and
gn!! g. Is it always true that

(i) max( fn, gn)!!max( f, g)?
(ii) fn · gn!! f · g?

Solution. (i) This is true. To prove it, we will need the (easy to prove) inequality

jjaj � jbjj b ja � bj for any a, b 2 R. Observe first that if fn!! f then j fnj!! j f j.
Indeed, let e > 0. Find m 2 N such that j fn(x) � f(x)j < e for all n r m and x 2 X.
Then jj fn(x)j � j f(x)jj b j fn(x) � f(x)j < e for all n r m and x 2 X. As a con-

sequence, j fnj!! j f j. Another easy observation is that (�fn)!! (�f ). Applying

Problem 035 we can conclude that maxð fn; gnÞ ¼ 1
2
ð fn þ gn þ j fn � gnjÞ!!

1
2
ð f þ gþ j f � gjÞ ¼ maxð f ; gÞ.
(ii) This is not necessarily true. Let fn ¼ x þ 1

n 2 C(R). It is trivial that fn!! f,
where f(x) ¼ x for all x 2 R. However, it is not true that f 2n !! f 2. To see this, let

n 2 N. Then f 2n ðxÞ� f ðxÞ ¼ xþ 1
n

� �2�x2 ¼ 2x � 1nþ 1
n2. Therefore f 2n ðnÞ� f ðnÞ�� ��¼

2þ 1
n2>2 which shows that the condition of the uniform convergence is not fulfilled

for e ¼ 2.

S.037. Call a function f : R! R increasing (decreasing) if xb y implies f(x)b f(y)
( f(x) r f(y) respectively), for all x, y 2 R. Prove that the set of all increasing
functions as well as the set of all decreasing functions is closed in Cp(R).
Solution. Let I � Cp(R) be the set of all increasing functions. If f =2 I then there are

x, y 2 R such that x < y and f(x) > f(y). If r ¼ f(x) � f(y) then the set

W ¼ x; y; f ðxÞ � r
3
; f ðxÞ þ r

3

� �
; f ðyÞ � r

3
; f ðyÞ þ r

3

� �	 

is open in Cp(X) and contains

the function f. If g 2W then gðyÞ< f ðyÞ þ r
3
< f ðxÞ � r

3
< gðxÞ and hence g(x)> g(y)

whence g is not increasing. This shows thatW \ I¼ ;. Since each f 2 Cp(X) \ I has a
neighbourhood contained in Cp(X) \ I, the set Cp(X) \ I is open.

Denote by D � Cp(R) be the set of all decreasing functions. If f =2 I then there

are x, y 2 R such that x < y and f(x) < f(y). If r ¼ f(y) � f(x) then the set

W ¼ x; y; f ðxÞ � r
3
; f ðxÞ þ r

3

� �
; f ðyÞ � r

3
; f ðyÞ þ r

3

� �	 

is open in Cp(X) and con-

tains the function f. If g 2 W then gðxÞ< f ðxÞ þ r
3
< f ðyÞ � r

3
< gðyÞ and hence g

(x) < g(y) whence g is not decreasing. This shows that W \ I ¼ ;. Since each

2 Solutions of Problems 001–500 71



f 2 Cp(X) \D has a neighbourhood contained in Cp(X) \D, the set Cp(X) \D is

also open.

S.038. Prove that there is a subspace of Cp(R) which is homeomorphic to Cp(I).
Solution. Define a function ’ : R! I as follows: ’(x) ¼ x if jxj < 1; if x > 1 then

’(x)¼ 1 and ’(x)¼�1 for all x<�1. For any f 2 Cp(I), let ’�( f)¼ f 	 ’. Thus we
have a map ’� : Cp(I) ! Cp(R). It is sufficient to prove that ’� is an embedding.

Observe first that ’ is an injection. Indeed, if f 6¼ g then f(x) 6¼ g(x) for some x 2 I.
Then ’�( f)(x)¼ f(x) 6¼ g(x)¼ ’�(g)(x) and therefore ’�( f ) 6¼ ’�(g). To see that ’ is

continuous, take any f0 2 Cp(I) and any U 3 ’�( f0) with U 2 t(Cp(R)). There are

x1, . . . , xn 2 R and O1, . . . , On 2 t(R) such that ’�( f0) 2 O� U, where O¼ [x1, . . . ,
xn; O1, . . . , On] (the standard open set is taken in Cp(R)). If we let O0 ¼ [’(x1), . . . ,
’(xn); O1, . . . , On] (the standard open set is taken in Cp(I)) then f0 2 O0 and
’�(O0) � O which proves continuity of ’� at the point f0. To see that (’�)�1 is

also continuous, consider the map p : Cp(R) ! Cp(I) defined by p( f) ¼ fI. It is
immediate that p restricted to ’�(Cp(I)) is the inverse map for ’� so it is sufficient to
prove that p is continuous.

Fix any f0 2 Cp(R) and let g0¼ p( f0). If g0 2U 2 t(Cp(I)) then there is a standard
open setO¼ [x1, . . . , xn;O1, . . . ,On] such that f 2O�U. Now, ifO0 ¼ {f 2 Cp(R) :
f(xi) 2 Oi for all i b n} then O0 is a standard open set in Cp(R) and f0 2 p(O0) � O
� U which proves continuity of p at the point f0.

S.039. Prove that C�ðRÞ ¼ CpðRÞ and Int(C�(R)) ¼ ;.
Solution. Given a topological space Z, it is an easy exercise to prove that A ¼ Z
for some A � Z if and only if there is a base B of Z such that A \ U 6¼ ; for all
U 2 B. Therefore to prove that C�ðRÞ ¼ CpðRÞ, it suffices to show that C�(R) \
O 6¼ ; for any standard open O � Cp(R). Let O ¼ [x1, . . . , xn; O1, . . . , On]. Since R
is a Tychonoff space (Problem 019), there exists a function f 2 Cp(R) such that

f(xi)¼ ri 2 Oi for all ib n. Let r¼ jx1j þ � � � þ jxnj þ 1. Define a function g 2 C(R)
in the following way: g(x)¼ f(x) if jxjb r; if x> r then g(x)¼ f(r) and g(x)¼ f(�r)
for all x < �r. The easy verification of the fact that g 2 C�(R) \ O, is left to the

reader.

S.040. Given n 2 o, denote by Pn � Cp(R) the set of all polynomials of degree b n.
Prove that Pn is a closed subset of Cp(R).
Solution. We will use the following well-known properties of polynomials (the

proofs can be found in any textbook of algebra):

(�) If x0, . . . , xn are distinct points of R and r0, . . . , rn 2 R then there exists a

polynomial p of degree b n such that p(xi) ¼ ri for all i b n.
(��) If x0, . . . , xn are distinct points of R and p is a polynomial with p(xi)¼ 0 for all

i b n, then p(x) ¼ 0 for all x 2 R.
Claim. Suppose that f 2 PnnPn. Then f þ p 2 PnnPn for any p 2 Pn and lf 2 PnnPn

for all l 2 R \ {0}.
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Proof of the claim. If f þ p ¼ q 2 Pn then f ¼ q � p 2 Pn which is a contradiction.

Thus f þ p =2 Pn. Suppose that f þ p =2 Pn. Then there is a standard open set W ¼
[x1, . . . , xk;O1, . . . ,Ok] such that fþ p 2W� Cp(R) \Pn. Making the setsOi smaller

if necessary, we can consider thatOi¼ (ai, bi) for all ib k. LetO0i ¼ (ai� p(xi), bi�
p(xi)) for all i b k. The standard set W0 ¼ x1; . . . ; xk;O

0
1; . . . ;O

0
k

	 

contains the

function f because f(xi)þp(xi) 2 (ai, bi) implies f(xi) 2 (ai � p(xi), bi � p(xi)) ¼ O0i
for all ib k. Since f 2 Pn, there is q 2 Pn with q 2W0. Therefore ai� p(xi)< q(xi)<
bi � p(xi) and hence ai < p(xi) þ q(xi) < bi for all i b k which implies r ¼ p þ q 2
W \ Pn, a contradiction showing that f þ p 2 PnnPn.

The proof of lf 2 PnnPn is much the same. If lf¼ q 2 Pn then f¼ 1
l q 2 Pn which

is false. Hence lf =2 Pn. Suppose that lf =2 Pn. Then there is a standard open setW ¼
[x1, . . . , xk; O1, . . . , Ok] such that lf 2 W � Cp (R) \Pn. Making the sets Oi smaller

if necessary, we can consider thatOi¼ (ai, bi) for all ib k. LetO0i ¼ 1
lai;

1
lbi

� �
for all

i b k if l > 0 and O0i ¼ 1
lbi;

1
lai

� �
for all i b k if l < 0.

The standard set W0 ¼ x1; . . . ; xk;O
0
1; . . . ;O

0
k

	 

contains the function f because

lf(xi) 2 Oi implies f(xi) 2 O0i for all i b k. Since f 2 Pn, there is q 2 Pn with q 2W0.
It is easy to see that r ¼ lq 2 W \ Pn which is a contradiction.

Suppose that Pn is not closed and hence there exists f 2 PnnPn. Let xi ¼ i for
i ¼ 0, . . . , n. Apply (�) to find p 2 Pn such that p(xi) ¼ f(xi) for all i b n. The claim
says that g ¼ f � p 2 PnnPn. The function g is not identically zero because g =2 Pn.

Hence there is y 2 R \ {x0, . . . , xn} such that g(y) 6¼ 0. The point y is not necessarily
smaller than all xi’s but we can assume this performing the following trick. Take y0¼
min{y, x0, . . . , xn}. If y ¼ y0 then there is nothing to do. If not, then there is r 2 Pn

such that g(x)¼ r(x) for all x 2 K¼ {y, x0, . . . , xn} \ {y0}. Again we have h¼ g� r 2
PnnPn and h(x)¼ 0 for all x2 K. Note that it is impossible that h(y0)¼ 0 because then

r(x)¼ 0 for all x from the set (K[{y0}) \ {y} which has n þ 1 elements. The property

(��) implies that r � 0 which contradicts r(y) ¼ g(y) 6¼ 0. As a consequence, h(y0) 6¼
0 and h(K)� {0}. Multiplying the function h by an appropriate number and applying

the claim once more, we can assume that h(y0) ¼ 1.

Enumerate K as y1 < � � � < ynþ1 and use (�) once more to find s 2 Pn such that

s(yi) ¼ (�1)i for all i ¼ 1, . . . , n þ 1. The function s is continuous and hence

bounded on the closed interval [y0, ynþ1] (we are applying here the relevant well-

known theorem of Calculus: any continuous s : [a, b]!R is bounded; continuity of

any polynomial is an easy exercise). Take any M 2 R such that js(x)j < M for any

x 2 [y0, ynþ1] Then t ¼ 1
2Ms is also a polynomial from Pn for which jt(x)j < 1

2
for all

x 2 [y0, ynþ1] and t(yi)¼ wi¼ (�1)i 1
2M for all i¼ 1, . . . , nþ 1. Finally, let u¼ h� t.

Still u 2 PnnPn and the number ui ¼ u(yi) is positive if i is even and negative

otherwise. Consider the open sets Oi ¼ wi

2
; 3wi

2

� �
if i is even and Oi ¼ 3wi

2
; wi

2

� �
otherwise. The standard open set O ¼ [y0, . . . , ynþ1; O0, . . . , Onþ1] contains u
and does not intersect Pn because any w 2 Pn \ O must have at least n þ 1 sign

changes on [y0, ynþ1] and hence at least n þ 1 roots which implies w � 0, a

contradiction which shows that u =2 Pn and this last contradiction finishes our

proof. Note that we used another well-known theorem of Calculus which says

that, if w : [a, b] ! R is a continuous function such that w(a) · w(b) < 0 then

w(x) ¼ 0 for some x 2 (a, b).
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S.041. Denote by P � Cp(R) the set of all polynomials. Prove that P ¼ Cp(R) and
Int(P) ¼ ;.
Solution. Let O ¼ [x1, . . . , xn; O1, . . . , On] be a standard non-empty open set.

Choose ri 2 Oi for all i b n and find a polynomial p such that p(xi) ¼ ri (see the

solution of Problem 040). It is clear that p 2 O \ P and therefore P ¼ Cp(R).
Now, if Int(P) 6¼ ; then O ¼ [x1, . . . , xn; O1, . . . , On] � P for some standard

non-empty open O � Cp(R). Take any interval [a, b] � {x1, . . . xn} and choose ri 2
Oi \ {0} for all i b n. It is easy to construct a function f 2 Cp(R) such that f(xi) ¼ ri
for all i b n and f(x) ¼ 0 for any x 2 R \ [a, b]. It is clear that f 2 O and f is not
identically zero having infinitely many zeros in R. Thus f cannot be a polynomial

which is a contradiction with the fact that O � P.

S.042. Let H(R) � Cp(R) be the set of all homeomorphisms of R onto R. Is it true
that HðRÞ ¼ CpðRÞ?
Solution. No, this is not true. Let O ¼ [1, 2, 3; (�2, �1), (1, 2), (�2, �1)]. Then O
is a non-empty open subset of Cp(R). If f 2 O then f has two sign changes and hence
it has at least two zeros: one on (1, 2) and another on (2, 3). As a consequence, the

function f cannot be injective. This proves that H(R) \ O ¼ ;.
S.043. Let U be the set of all uniformly continuous functions from C(R) (that is, f 2
U if and only if for any e > 0 there exists d > 0 such that j f(x) � f(y)j < e whenever
jx � yj < d). Is it true that U ¼ Cp(R)?
Solution.Wewill prove that this is true. LetO¼ [x1, . . . , xk;O1, . . . ,Ok] be any non-

empty standard open set. Choose a, b 2R in such a way that a< b and {x1, . . . , xk}�
[a, b]. Let p(x) be a polynomial such that p(xi) 2 Oi for each i b k. The polynomial

p is not necessarily uniformly continuous. To correct it, define a function f as follows:
f(x)¼ p(x) for all x 2 [a, b], f(x)¼ p(b) for all x> b and f(x)¼ p(a) for all x< a. It is
easy to see that f is continuous. It is a well-known fact of Calculus that f has to be

uniformly continuous on [a, b], i.e., for any e> 0 there is d> 0 such that, for any x, y
2 [a, b] we have j f(x) � f(y)j < e whenever jx � yj < d. It turns out that the same d
proves the uniform continuity of f on the whole R. Indeed, if jx � yj < d and x, y 2
[a, b] then j f(x) � f(y)j < e because f is uniformly continuous on [a, b]. If x < a then
ja � yj < d and therefore j f(x) � f(y)j ¼ j f(a) � f(y)j < e. Analogously, if x > b
then jb � yj < d and hence j f(x) � f(y)j ¼ j f(b) � f(y)j < e. The cases when y < a or
y> b are considered identically. Thus f is a uniformly continuous function and f 2 O.
This proves that U ¼ Cp(R).

S.044. Prove that, for every f 2 Cp(R), there exist open sets {Un : n 2 o} such that
{f} ¼ \ {Un : n 2 o}.

Solution. Let Q ¼ {qi : i 2 o} be some enumeration of the rationals. For each

number n 2 o, consider the standard open set Un ¼ r0; . . . ; rn;O
n
2; . . . ;O

n
n

	 

, where

ri ¼ f(qi) and On
i ¼ ri � 1

n; ri þ 1
n

� �
for all i 2 o. It is clear that f 2 Un for all n 2 o.

To prove that {f} ¼ \ {Un : n 2 o}, suppose that g 2 \ {Un : n 2 o}. Then g(qi)¼
f(qi) for all i 2 o. The function h ¼ g � f is continuous and h(q) ¼ 0 for all q 2 Q.
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SinceQ ¼ R, for any x 2R, we have hðxÞ 2 hðQÞ ¼ f0g ¼ f0g (Problem 009(vi)).

Thus h(x) ¼ 0 for all x 2 R and f ¼ g.

S.045. Prove that each of the spaces Cp(Q) and Cp(N) has a countable base.

Solution. Let U be the family of all open intervals in R with rational endpoints.

The family B of all sets [x1, . . . , xn; O1, . . . , On] where n 2 N, xi 2 Q (or x 2 N) and
Oi 2 U for all i b n, is a countable base in Cp(Q) (or Cp(N), respectively).
S.046. Is there a countable local base at some f 2 Cp(R)?
Solution. We will prove that there is no countable local base at any f 2 Cp(R).
Suppose that {Un : n 2 o} is such a base at f. For each n 2 o fix a standard open set

Wn such that f 2 Wn � Un. It is evident that B ¼ {Wn : n 2 o} is also a local

countable base at f. Let Wn ¼
	
xn1; . . . ; x

n
kn
;On

1; . . . ;O
n
kn



for all n 2 o. The set

P ¼ {xij : i 2 o, j 2 {1,. . . ki}} is countable and hence there exists x 2 R \P. The
set W ¼ [x, ( f(x) � 1, f(x)þ1)] is open in Cp(R) and f 2 W. Since B is a local base

at f, there is n 2 o such that Wn � W. Apply Problem 034 to find a function g 2
Cp(R) such that g(x)¼ f(x)þ 2 and gðxni Þ ¼ f ðxni Þ for all ib kn. It is immediate that

g 2 Wn \W which is a contradiction.

S.047. Prove that there is a countable set A � Cp(R) such that A ¼ Cp(R).
Solution. Let B ¼ {{O1, . . . , On} : n 2 N, Oi ¼ (ai, bi) is a rational open interval

for all i b n and [ai, bi] \ [aj, bj] ¼ ; if i 6¼ j}. Given O ¼ {O1, . . . , On} 2 B, let
m(O)¼ n. If q¼ (q1, . . . , qn) is an n-tuple of rational numbers, fix fO, q 2 Cp(R) such
that fO, q(Oi) ¼ {qi} for all i b n (the existence of such a function is an easy

exercise). The set A ¼ {fO, q : O 2 B and q is an m(O)-tuple of rationals} is

countable. Let us prove that we have A ¼ Cp(R). Given a standard open set W ¼
[x1, . . . , xn; U1, . . . , Un], choose qi 2 Ui \ Q for all i b n and let q ¼ (q1,. . . qn).
There exists O ¼ {O1, . . . , On} 2 B such that xi 2 Oi for all i b n (note that we are

not losing generality assuming that {x1, . . . , xn} are distinct points of R). Then fO, q
2 W \ A and hence A ¼ Cp(R).

S.048. Let hn : R ! R be a homeomorphism for every n 2 o and suppose that
hn!! h. Is it always true that h is a homeomorphism?

Solution. No, it is not always true. To see this, let us define a homeomorphism hn :

R ! R as follows: hn(x) ¼ x if x =2 [0, 1]; if x 2 0; 1
2

	 

then hn(x) ¼ 2

nþ1x and

hnðxÞ ¼ 2 1� 1
nþ1

� ��
x� 1

2

�
þ 1

nþ1 for x 2 1
2
; 1
	 


. Now, let h(x) ¼ x for all x =2 [0, 1],

h(x) ¼ 0 for x 2 0; 1
2

	 

and h(x) ¼ 2x � 1 if x 2 1

2
; 1
	 


. We leave to the reader the

routine verification of the fact that hn is a homeomorphism for each n. It is also easy
to see that hn!! h and h is not an injective map.

S.049. Let un : R! R be a uniformly continuous function for all n 2 o and suppose
that un!! u. Is it always true that u is a uniformly continuous function?

Solution. Yes, it is always true. Given e > 0, there is a number n 2 N such that

jun(x) � u(x)j < e
3
for all x 2 R. Since the function un is uniformly continuous, there
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exists d > 0 such that jun(x) � un(y)j < e
3
whenever jx � yj < d. For such x and y,

we have ju(x) � u(y)j b ju(x) � un(x)j þ jun(x) � un(y)j þ jun(y) � u(y)j <
e
3
þ e

3
þ e

3
¼ e and hence u is uniformly continuous.

S.050. Let {fn : n 2 o}� A� Cp(R). Suppose that fn!! f. Prove that f 2 A. Is it true
that, if A � Cp(R), f 2 Cp(R) and f 2 A, then fn!! f for some {fn : n 2 o} � A?

Solution. Suppose thatW ¼ [x1, . . . , xn; O1, . . . , On] is a standard open set with f 2
W. We have f(xi) 2 Oi for all i b n and hence there exists e > 0 such that ( f(xi) � e,
f(xi)þe)� Oi for all ib n. There is n 2 N such that j fn(x)� f(x)j< e for all x 2 R. It
is immediate that fn 2 W and hence f 2 f fn : n 2 og � A.

The second statement is not true. Define fn 2 Cp(R) as follows: fn(x) ¼ 0 if x =2
0; 2n
	 


; if x 2 0; 1n
	 


then fn(x) ¼ nx and fn(x) ¼ n(1n � x) þ 1 whenever x 2 1
n;

2
n

	 

. If

A ¼ {fn : n 2 N} then f 2 A if f(x) ¼ 0 for all x 2 R. However, no sequence of

elements of A can converge uniformly to f � 0 because every g 2 A is equal to 1 at

some point, namely, if g ¼ fn then g 1
n

� � ¼ 1.

S.051. Denote by D the set of all continuously differentiable functions f 2 Cp(R)
(that is, D consists of the functions f : R ! R such that the derivative f 0 of
f exists and is continuous). Give D the topology inherited from Cp(R) and
consider the map d : D ! Cp(R) defined by the formula d( f) ¼ f 0. Is the map
d continuous?

Solution. The map d is discontinuous. To see this, let fn ¼ sin nx
n for each n 2 N and

x 2 R. It is clear that A ¼ {fn : n 2 N} is contained in D. It is easy to prove that the

function f0 � 0 is in the closure of A. Observe that d(A) ¼ {cos nx : n 2 N} and

f(0) ¼ 1 for any f 2 d(A). Thus f0 2 W ¼ 0; �1
2
; 1
2

� �	 

while W \ d(A) ¼ ; and

therefore dðf0Þ ¼ f0 =2 dðAÞ. Now apply Problem 009(vi) to see that d is not

continuous.

S.052. Let P be the set of all polynomials in Cp(R). Give P the topology inherited
from Cp(R) and consider the map d : P! P defined by the formula d(p) ¼ p0 (i.e.,
a polynomial is mapped to its derivative). Is the map d : P! P continuous?

Solution. No, the map d : P! P is not continuous. To establish this, we will need

the theorem of Stone–Weierstrass proved in Calculus: suppose that [a, b] � R and

f : [a, b]! R is a continuous function. Then, for any e > 0, there is a polynomial

p such that jp(x) � f(x)j < e for all x 2 [a, b]. Anyway, we will prove this theorem
later (see Problem 193) as a consequence of a general topological result (191).

For each n 2 N, define a function ’n : [�n.n] ! R as follows: ’n(t) ¼ 1
t if

t 2 �n;�1
n

	 
 [ 1
n; n
	 


and ’n(t) ¼ n2t if t 2 �1
n;

1
n

	 

. Since ’n is continuous,

the Stone–Weierstrass theorem is applicable and we can find a polynomial pn
such that jpn(t) � ’n(t)j < 1

n3 for all t 2 [�n.n]. In particular, pnðtÞ � 1
t

�� ��< 1
n3

for all t 2 �n;�1
n

	 
 [ 1
n; n
	 


. Let qn(t) ¼ t � t2pn(t) for all n 2 N and t 2 R. Then
A ¼ {qn : n 2 N} � P and f0 2 A, where f0 � 0. To see this, take any e > 0

and x1, . . . , xk 2 R. There exists a number n 2 N such that 1
n< e and
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fx2; . . . ; xkgnf0g � �n;�1
n

	 
 [ 1
n; n
	 


. We will check that jqn(xi)j < e for all i b k

and therefore qn 2 [x1, . . . , xn; (�e, e), . . . , (�e, e)]. Since qn(0) ¼ 0, it suffices to

prove that jqn(xi)j < e for all xi 6¼ 0. All such xi’s belong to �n;�1
n

	 
 [ 1
n; n
	 


so it is

sufficient to show that jqn(t)j < e for all t 2 �n;�1
n

	 
 [ 1
n; n
	 


. We have

pnðtÞ � 1
t

�� ��< 1
n3 and hence qnðtÞj j ¼ t2 � pnðtÞ � 1

t

�� ��< n2 � 1n3 < 1
n< e. As a conse-

quence, f0 2 A. However, f0 ¼ dð f0Þ 62 dðAÞ because f(0) ¼ 1 for all f 2 d(A) and
hence W ¼ 0; �1

2
; 1
2

� �	 

is a neighbourhood of f0 such that W \ d(A) ¼ ;. Now

apply Problem 009(vi) to see that d is not continuous.

S.053. Assume that a, b 2R and a< b; give the set [a, b]�R the topology inherited
from the space R and define the map int : Cp([a, b]) ! R by the formula

intð f Þ ¼ R ba f ðtÞdt for each f 2 Cp([a, b]). Is the map int continuous?

Solution. The map int : Cp([0, 3])! R is not continuous. Given n 2 N, let fn(t) ¼ 0

for all t 2 2
n; 3
	 


. If t 2 0; 1n
	 


we let fn(t)¼ n2t and fn(t)¼�n2(t� 2
n) for all t 2 1

n;
2
n

	 

.

Then A¼ {fn : n 2 N}� Cp([0, 3]) and h� 0 belongs to the closure of A. However,

intð fnÞ ¼
R 3
0
fnðtÞdt ¼ 1 for all n 2 N and hence 0 ¼ intðhÞ =2 intðAÞ ¼ f1g ¼ f1g.

Now apply Problem 009(vi) to see that int is not continuous.

S.054. Assume that a, b 2R and a< b; give the set [a, b]�R the topology inherited
fromR. Let P� Cp([a, b]) be the set of all polynomials on [a, b].Define the map int:
P! R by the formula intðpÞ ¼ Ð bapðtÞdt for every polinomial p 2 P. Is the map int

continuous?

Solution. We will show that, for a ¼ 0 and b ¼ 3 the map int : P ! R is not

continuous. To establish this, we will need the theorem of Stone–Weierstrass

proved in Calculus: suppose that [a, b] � R and f : [a, b] ! R is a continuous

function. Then, for any e > 0, there is a polynomial p such that jp(x) � f(x)j < e
for all x 2 [a, b]. Anyway, we will prove this theorem later (see Problem 193) as

a consequence of a general topological result (Problem 191). Given n 2 N, let
fn(t)¼ 0 for all t 2 2

n; 3
	 


. If t 2 0; 1n
	 


we let fn(t) ¼ n2t and fn(t)¼ �n2(t � 2
n) for all

t 2 1
n;

2
n

	 

. Apply the theorem of Stone–Weierstrass to obtain a polynomial pn(t) such

that jpn(t) � fn(t)j < 1
6n for all n 2 N and t 2 [0, 3]. Then

intðpnÞ ¼
Z 3

0

pnðtÞdt

¼
Z 3

0

fnðtÞdtþ
Z 3

0

ðpnðtÞ � fnðtÞÞdt r 1�
Z 3

0

1
6ndt ¼ 1� 1

2n r
1
2
:

If f0 � 0 then f0 2 A for a ¼ {pn : n 2 N}. To see this, let x1, . . . , xk 2 [0, 3] and

e> 0. There exists n 2 N such that fn(xi)¼ 0 for all i< k and 1
6n < e. Then jpn(xi)j ¼

jpn(xi)� fn(xi)j< 1
6n< e. Hence pn 2 [x1, . . . , xk; O1, . . . , Ok], where Oi¼ (�e, e) for

all i < k. This proves that f0 2 A. However, intðf0Þ ¼ 0 =2 intðAÞ � 1
2
;þ1	 


. Now

apply Problem 009(vi) to see that int is not continuous.
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S.055. Assume that a, b 2R and a< b; give the set [a, b]�R the topology inherited
from R. Define the map prm : Cp([a, b]) ! Cp([a, b]) by the formula

prmðf ÞðxÞ ¼ R xa f ðtÞdt for every f 2 Cp([a, b]). Is the map prm continuous?

Solution. Let us prove that the function prm is not continuous for a ¼ 0 and b ¼ 3.

Given n 2 N, let fn(t) ¼ 0 for all t 2 2
n; 3
	 


. If t 2 0; 1n
	 


we let fn(t) ¼ n2t and fn(t) ¼
�n2(t � 2

n) for all t 2 1
n;

2
n

	 

. Then A ¼ {fn : n 2 N} � Cp([0, 3]) and h � 0 is in

the closure of A. Since
R 3
0
fnðtÞdt ¼ 1 for all n 2 N, we have prm( fn)(3) ¼ 1 for all

n 2 N. Hence h ¼ prm(h) =2 prmðAÞ because the standard open setW ¼ 3; �1
2
; 1
2

� �	 

contains h and W \ prm(A) ¼ ;. Now apply Problem 009(vi) to see that prm is

not continuous.

S.056. Given a space X, show that the family {[x1, . . . , xn; O1, . . . , On] : n 2 N,
x1, . . . , xn 2 X and Oi is a rational open interval for any ib n} is a base of the space
Cp(X).

Solution. Suppose that f 2 U 2 t(Cp(X)). Then there exists a standard open set

V¼ [x1, . . . , xn; V1, . . . , Vn] such that f 2 V � U. Since every set Vi is open in R and

f(xi) 2 Vi, there is ei> 0 such that ( f(xi)� ei, f(xi)þ ei)� Vi for each ib n. Since any
non-empty interval must contain a rational number, we can choose a point pi 2Q \
( f(xi) � ei, f(xi)) and qi 2 Q \ ( f(xi), f(xi) þ ei) for all i b n. As a consequence,

we have f(xi) 2 (pi, qi)¼Wi� Vi for all ib n. It is immediate that we have f 2W ¼
[x1, . . . , xn; W1, . . . , Wn] � V � U. Now apply Problem 002 to finish the proof.

S.057. Prove that, for any space X, the family {[x; O] : x 2 X and O is a rational
open interval} is a subbase of the space Cp(X).

Solution. Just note that \ {[xi; Vi] : i b n} ¼ [x1, . . . , xn; V1, . . . , Vn] and apply

Problem 056.

S.058. Let X be a topological space. Given f 2 Cp(X), points x1, . . . , xn 2 X and
e > 0, let O( f, x1, . . . , xn, e) ¼ {g 2 Cp(X) : jg(xi) � f(xi)j < e for all i b n}. Prove
that the family {O( f, x1, . . . , xn, e) : n 2 N, x1, . . . , xn 2 X, e > 0} is a local base of
Cp(X) at f.

Solution. Suppose that f 2 U 2 t(Cp(X)). Then there exists a standard open set

V¼ [x1, . . . , xn; V1, . . . , Vn] such that f 2 V� U. Since each Vi is open in R and f(xi)
2 Vi, there is ei > 0 such that ( f(xi) � ei, f(xi) þ ei) � Vi for each i b n. Now, if e ¼
min{ei : ib n} then f 2 O( f, x1, . . . , xn, e)� V � U. The last thing to observe is that
O( f, x1, . . . , xn, e) is an open set in Cp(X) because O( f, x1, . . . , xn, e) ¼ [x1, . . . , xn;
O1, . . . , On], where Oi ¼ ( f(xi) � e, f(xi) þ e) for all i b n.

S.059. For any sets A, B� Cp(X), let Aþ B¼ {aþ b : a 2 A and b 2 B}. Prove that,
if A is an open set and B is an arbitrary subset of Cp(X), then A þ B is an open set.

Solution.We will first establish that A þ b ¼ {a þ b : a 2 A} has to be an open set
for any b 2 B. Say that an open setW is standard of second type ifW ¼ O( f, x1, . . . ,
xn, e) for some function f 2 Cp(X), points x1, . . . , xn 2 X and e > 0. Observe that we

have O( f, x1, . . . , xn, e) þ g ¼ O( f þ g, x1, . . . , xn, e) for all n 2 N, f, g 2 Cp(X),
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x1. . . , xn 2 X and e > 0. An immediate consequence is that W þ g is open for any

open W which is standard of second type. It was proved in Problem 058 that the

standard open sets of second type form a local base at every element of Cp(X). Thus,
for any a 2 A there isWa such thatWa is standard open of second type and a 2Wa�
A. Therefore A ¼S{Wa : a 2 A}. Then A þ b ¼S{Wa þ b : a 2 A} for each b 2 B
and hence Aþ b is open. Note, finally, that Aþ B¼S{Aþ b : b2 B} is open being a
union of open sets.

S.060. For any A, B � Cp(X), prove that Aþ B � Aþ B.

Solution. Observe first that, for any n 2 N, x1, . . . , xn 2 X and e > 0 we have

O( f, x1, . . . , xn, e) þ O(g, x1, . . . , xn, e) � O( f þ g, x1, . . . , xn, 2e) for arbitrary
functions f, g 2 Cp(X). Here, as before, O( f, x1, . . . , xn, e) ¼ {g 2 Cp(X) : jg(xi) �
f (xi)j < e for all i b n}. It was proved in Problem 058 that, for any f 2 Cp(X), the
sets O( f, x1, . . . , xn, e) form a local base at f. Suppose that f 2 Aþ B and f belongs to
a set U 2 t(Cp(X)). Then O( f, x1, . . . , xn, e) � U for some n 2 N and x1, . . . , xn 2 X.
Now, f¼ aþ b for some a 2 A and b 2B. Take a0 2 O(a, x1, . . . , xn,

e
2
) \ A and b0 2

O(b, x1, . . . , xn,
e
2
) \ B. Then we have a0 þ b0 2 (Aþ B) \ O( f, x1, . . . , xn, e)�U \

(A þ B). It turned out that, for an arbitrary open U 3 f, we have U \ (A þ B) 6¼.
Now apply Problem 001 to conclude that f 2 Aþ B.

S.061. Let U be a non-empty open subset of Cp(X). Prove that there exists a
countable A � Cp(X) such that A þ U ¼ Cp(X).

Solution. Let f0(x) ¼ 0 for all x 2 X. It is easy to see that we have the equality

O( f, x1, . . . , xn, e)¼ O( f0, x1, . . . , xn, e)þ f for any f 2 Cp(X). Here O( f, x1, . . . , xn, e)
¼ {g 2 Cp(X) : jg(xi) � f(xi)j < e for all i b n}. It was proved in Problem 058 that,

for any f 2 Cp(X), the setsO( f, x1, . . . , xn, e) form a local base at f. Thus, given f 2U,
there exist n 2 N, x1, . . . , xn 2 X and e> 0 such that O( f, x1, . . . , xn, e)� U. For any
q¼ (q1, . . . , qn) 2Qn, fix a function fq 2 Cp(X) such that fq(xi)¼ qi for all ib n (see
Problem 034). The set A¼ { fq� f : q 2 Qn} is countable. Let us prove that A þ U ¼
Cp(X). Take an arbitrary g 2 Cp(X) and let ri ¼ g(xi) for all i b n. There exists q ¼
(q1, . . . , qn) 2 Qn such that jqi� rij < e for all ib n. Then g � fq 2 O( f0, x1, . . . , xn,
e) and hence g� fqþ f 2 O( f, x1, . . . , xn, e)� U. Therefore g 2 Uþ ( fq � f)� Uþ
A and our proof is complete.

S.062. Let f0 2 Cp(X) be equal to zero at all points of X. Suppose that B is a local
base at f0. Prove that, for any f 2 Cp(X), the family B þ f ¼ {U þ f : U 2 B} is a
local base at f. Here U þ f ¼ {u þ f : u 2 U}.

Solution. All elements of the family B þ f are open by Problem 059. Suppose that

f 2 V 2 t(Cp(X)). The set V � f ¼ {g � f : g 2 V} is open (Problem 059) and

contains f0. Thus, there is U 2 B such that U� V� f. It is immediate that Uþ f� V
and U þ f 2 B þ f whence B þ f is a local base at f.

S.063. Let f0 2 Cp(X) be equal to zero at all points of X. Suppose that U is an open
set of Cp(X) which contains f0. Prove that there exists an open set V of Cp(X) such
that f0 2 V and V þ V � U.
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Solution. The sets O( f0, x1, . . . , xn, e) constitute a local base at f0 (Problem 058).

As a consequence, we can find a number n 2 N, points x1, . . . , xn 2 X and e> 0 such

that O( f0, x1, . . . , xn, e) � U. Now, let V ¼ O( f0, x1, . . . , xn,
e
2
). It is straightforward

that V þ V � O( f0, x1, . . . , xn, e) � U.

S.064.Define f0 2 Cp(X) to be equal to zero at all points of X. Let U be an open set of
Cp(X) which contains f0. Suppose that V is an open set of Cp(X) such that f0 2 V and
V þ V � U. Prove that V � U.

Solution. The sets O( f0, x1, . . . , xn, e) constitute a local base at f0 (Problem 058). As

a consequence, it is possible to find n 2 N, x1, . . . , xn 2 X and e> 0 such thatW¼ O
( f0, x1, . . . , xn, e) � V. For any f 2V, the set W þ f is open (Problem 059) and

contains f. Therefore there is g 2 (W þ f ) \ V. This implies that g 2 V and g ¼ f þ
w for some w 2W. Note that (�w) 2W and hence f¼ g� w 2 VþW� Vþ V�U.
The function f 2 V being arbitrary, we proved that V � U.

S.065. Let f0 2 Cp(X) be equal to zero at all points of X. Take any local base B
of Cp(X) at the point f0. Prove that, for any set A � Cp(X), we have A ¼ \ {A þ U :

U 2 B}.
Solution. Take any f 2 A and U 2 B. It is possible to find n 2 N, x1, . . . , xn 2 X
and e > 0 such that O( f0, x1, . . . , xn, e) � U. For the set V ¼ O( f0, x1, . . . , xn,

e
2
) we

have V þ V � O( f0, x1, . . . , xn, e) � U. Since V þ f is open (Problem 059) and

contains f, we have (V þ f ) \ A 6¼;. Take any g 2 (V þ f ) \ A and observe that

there is n 2 V such that g¼ nþ f. Since (�n)2 V, we have f ¼ g� n 2 gþ V� Aþ
V � A þ U. The function f 2 A and U 2 B being arbitrary, we proved that A �
\ {A þ U : U 2 B}.

Now take any f =2 A. By Problem 062 there exist n 2 N, x1, . . . , xn 2 X and e > 0

such that U þ f � Cp(X) \ A where U ¼ O( f0, x1, . . . , xn, e). To finish the proof, it is
sufficient to establish that f =2 A þ U. Suppose not. Then f ¼ a þ u for some a 2 A
and u 2 U. As a consequence, we have (�u) þ f ¼ a 2 A and �u þ f 2 U þ f �
Cp(X) \ A which is a contradiction.

S.066. Given a set A � Cp(X), let A
n ¼ { f1 þ � � � þ fn : fi 2 A, i ¼ 1, . . . , n} for any

n 2 N. Denote by f0 the function which is equal to zero at all points of X. Prove that,
for any open set U 3 f0, we have [{Un : n 2 N} ¼ Cp(X).

Solution. Take any f 2 Cp(X). There exist k 2 N, x1, . . . , xk 2 X and e > 0 such

thatV¼O( f0, x1, . . . , xk, e)�U. Take n2N such that 1n jf(xi)j< e for all ib k. Now, if
fi¼ 1

n · f for all ib n, then f¼ f1þ � � � þ fn and fi 2 V� U for any ib n. Thus f 2 Un.

S.067. Let X be a topological space. For an arbitrary x 2 X, define the function ex :
Cp(X) ! R as follows: ex( f ) ¼ f(x) for any f 2 Cp(X). Show that the map ex is
continuous for any x 2 X.

Solution. Let f2Cp(X) and e> 0. ThenU¼O( f, x, e)¼ {g2Cp(X) : jg(x)� f(x)j< e}
is an open set such that f 2U and ex(U)� (ex( f )� e, ex( f )þ e) which proves that ex
is continuous at f.
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S.068. Prove that Cp(X) is a Tychonoff space for any topological space X.

Solution. If f, g 2 Cp(X) and f 6¼ g then there is x 2 X such that f(x) 6¼ g(x). For

e ¼ 1
2
j f ðxÞ � gðxÞj we have O( f,x,e) \ O(g,x,e) ¼ ; which proves that Cp(X) is

Hausdorff and hence T1.

To prove that Cp(X) is completely regular, take any f 2 Cp(X) and any closed F�
Cp(X) with f =2 F. Given r 2 R and e > 0, consider the function ’r,e defined as

follows: ’r,e(t)¼ 0 if t =2 [r� e, rþ e]; if t 2 [r� e, r] then ’r;eðtÞ ¼ 1
eðt� r þ eÞ and

’r;eðtÞ ¼ �1
eðt� r � eÞ for all t 2 [r, r þ e]. There are n 2 N, x1, . . . , xn 2 X and

e> 0 such thatO( f, x1, . . . , xn, e)� Cp(X) \F. Letting ri¼ f(xi) for all ib n, consider
the function ’ ¼ ð’r2;e 	 ex2Þ: . . . :ð’rn ;e 	 exnÞ. It is straightforward that ’( f) ¼ 1.

If g 2 F then g =2 O( f, x1, . . . , xn, e) and hence g(xi) =2 (ri� ei, ri þ e) for some ib n.
Thus ’ri;eðgðxiÞÞ ¼ ’ri;eðexiðgÞÞ ¼ 0. As a consequence, ’(g) ¼ 0 and the function

’ witnesses the fact that Cp(X) is completely regular.

S.069. Call a subset C � Cp(X) convex if, for any f, g 2 C and t 2 [0, 1], we have
tf þ (1 � t)g 2 C. Prove that, for an arbitrary X, the space Cp(X) has a base
consisting of convex sets.

Solution. Recall that we have established in Problem 056 that the family B ¼
{[x1, . . . , xn;O1, . . . ,On] : n 2N, x1, . . . , xn 2 X andOi is a rational open interval for

any i b n} forms a base of the space Cp(X). Let us show that every U ¼ [x1, . . . , xn;
O1, . . . , On] 2 B is convex. Suppose that f, g 2 U, t 2 [0, 1] and h ¼ tf þ (1 � t)g.
WriteOi as (ai, bi) where ai, bi 2Q for all ib n. We have ri¼ f(xi) 2 (ai, bi) and si¼
g(xi) 2 (ai, bi) for all ib n. Now, h(xi)¼ triþ (1� t)si 2 (taiþ (1� t)ai, tbiþ (1�
t)bi) ¼ (ai, bi) for all i b n. Thus h 2 U and hence U is convex.

S.070. Prove that the intersection of any family of convex subsets of Cp(X) is a
convex set. Show that the union of two convex sets is not necessarily a convex set.

Solution. If Ua is convex for each a 2 A then, for any f, g 2 U¼T{Ua : a 2 A} and
t 2 [0, 1] we have f, g 2 Ua for each a and hence tf þ (1 � t)g 2 Ua. Therefore, tf þ
(1 � t)g 2 U and U is convex.

Given x 2 X, the standard open sets U ¼ [x; (�1, 1)] and V ¼ [x; (2, 4)] are
convex (see the solution of Problem 069 for the proof). However, U [ V is not

convex because f � 0 2 U, f � 3 2 V while 1
2
f þ 1

2
g � 3

2
=2 U [ V.

S.071. Prove that, if A, B � Cp(X) are convex subsets of Cp(X) then the set Aþ B¼
{a þ b : a 2 A and b 2 B} is convex.

Solution. Suppose that f, g 2 Aþ B and t 2 [0, 1]. There exist a, a0 2 A and b, b0 2 B
such that f ¼ a þ b and g ¼ a0 þ b0. Letting a00 ¼ ta þ (1 � t)a0 2 A and b00 ¼ tb þ
(1 � t)b0 2 B, we have tf þ (1 � t)g ¼ t(a þ b) þ (1�t)(a0þb0) ¼ a00 þ b00 2 A þ B
and hence A þ B is convex.

S.072. Given a space X and a set A � Cp(X), let conv(A) ¼ {t1 f1 þ � � � þ tnfn : n 2
N, fi 2 A, ti 2 [0, 1] for all i b n and

Pn
i¼1 ti ¼ 1}. The set conv(A) is called the
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convex hull of A. Prove that the convex hull of A is a convex set and coincides with
the intersection of all convex subsets of Cp(X) which contain A.

Solution. Let f, g 2 conv(A). Then there are t1, . . . , tn, s1, . . . , lk 2 [0, 1] such thatPn
i¼1 ti ¼

Pk
i¼1 si ¼ 1 and f¼ t1 f1þ � � � tn fn, g¼ s1g1þ � � � skgk for some f1, . . . , fn,

g1, . . . , gk 2 A. Then tf þ ð1� tÞg ¼Pn
i¼1 tti fi þ

Pk
i¼1 ð1� tÞsigi, wherePn

i¼1 tti þ
Pk

i¼1 ð1� tÞsi ¼ t � 1þ ð1� tÞ � 1 ¼ 1 which shows that tf þ (1�t)g 2
conv(A) and hence conv(A) is convex.

Now, let g be the family of all convex subsets of Cp(X) which contain A. Since
A � conv(A) and conv(A) is convex, we have conv(A) 2 g and

T
g � conv(A). To

prove that
T

g ¼ conv(A) we must take an arbitrary convex U � A and prove that

conv(A) � U. We will prove by induction on n the following statement I(n): if
f1, . . . , fn 2 U then t1 f1 þ � � � þ tnfn 2 U whenever t1, . . . , tn 2 [0, 1] andPn

i¼1 ti ¼ 1. Since I(1) is evident and I(2) is true because U is convex, let us fix

nr 3 such that I(k) holds for all k< n. For each i 2 {2, . . . , n}, let si ¼ ti
t2þ���þtn. Then

si 2 [0, 1] for all i and
Pn

i¼2¼ 1. Since I (n � 1) holds, we have g1 ¼ s2 f2 þ � � � þ
sn fn 2U. It is easy to check that t1 f1þ � � � þ tn fn¼ t1 f1þ (1� t1)g1 2U because U
is convex and I(n) is proved.

S.073. Show that, for any open U � Cp(X), its convex hull conv(U) is also an
open set.

Solution. It follows from Problem 059 that, for any sets U1, . . . , Un 2 t(Cp(X)), the
set U1 þ � � � þ Un ¼ {f1 þ � � � þ fn : fi 2 Ui for all i b n} is open in Cp(X). Let us
prove first that tU¼ {tf : f 2U} is an open set for any t 6¼ 0 andU 2 t(Cp(X)). IfU is

empty, everything is clear so assume that U 6¼ ;. Given f 2 tU, there is g 2 U such

that f ¼ tg. There are n 2 N, x1, . . . , xn 2 X and e > 0 such that O(g, x1, . . . , xn, e)
�U. ThenO( f, x1, . . . , xn, jtj e)� tU. Indeed, suppose that jh(xi)� f(xi)j< jtj e for all
ib n. Then j1t h(xi)� g(xi)j< e for all ib n and therefore 1

t h 2O(g, x1, . . . , xn, e)�U
which implies h 2 tU. This proves that tU is also open.

Finally, if f¼ t1 f1þ � � � tn fn 2 conv(U) then the set Uf¼ t1Uþ � � � þ tnU is open

by the previous remarks and f 2Uf� conv(U). As an immediate consequence, conv

(U) ¼ S{Uf : f 2 conv(U)} is an open set.

S.074. Call a function ’: Cp(X) ! R a linear functional, if we have the equality
’(af þ bg) ¼ a’( f) þ b’(g) for any f, g 2 Cp(X) and a, b 2 R. Prove that a
linear functional ’ : Cp(X) ! R is continuous if and only if ’�1 (0) is closed
in Cp(X).

Solution. Since {0} is closed in R, the set ’�1(0) is closed in Cp(X) if ’ is

continuous (Problem 009(v)). Now, suppose that ’�1(0) is closed. If ’�1(0) ¼
Cp(X) then ’ � 0 is continuous. If not, fix f 2 Cp(X) \’

�1(0). If f0 � 0 then

f 6¼ f0 because ’( f0) ¼ 0. Letting r ¼ ’( f ) 6¼ 0, observe that ’�1(r) ¼ ’�1(0) þ f.
Indeed, if g 2 ’�1(r) then ’(g � f ) ¼ ’(g) � ’( f ) ¼ r � r ¼ 0 and hence h ¼ g �
f 2 ’�1(0) whence g ¼ f þ h 2 ’�1(0) þ f. This proves the inclusion ’�1(r) �
’�1(0) þ f. Now, if g 2 ’�1(0) þ f then g ¼ h þ f for some h 2 ’�1(0) and hence
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’(g) ¼ ’(h) þ ’( f) ¼ 0 þ r ¼ r. Another important observation is that

Cp(X) \’
�1(r) ¼ Cp(X) \ (’

�1(0) þ f ) ¼ (Cp(X) \’
�1(0)) þ f is an open set by

Problem 059. Thus ’�1(r) is closed and f0 =2 ’�1(r). There exist n 2 N, x1, . . . , xn
2 X and e > 0 such that U ¼ O( f0, x1, . . . , xn, e) � Cp(X) \’

�1(r). If there is some

function g2Uwith s¼ ’(g)> r then h¼ r
s g 2U and ’(h)¼ r, a contradiction. This

proves that ’(U)� (�r, r). Now, given g 2 Cp(X) and d> 0, the setW¼ d
r ·Uþ g is

an open neighbourhood of g (see Problem 059 and the solution of Problem 073). It

is easy to check that ’(W) � (’(g) � d, ’(g) þ d) and hence ’ is continuous at g.

S.075. Let ’ : Cp(X)! R be a discontinuous linear functional. Prove that ’�1ð0Þ
¼ Cp(X).

Solution. Assume the contrary and fix an open non-empty U � Cp(X) \’
�1(0). It is

possible to find f 2 U, n 2 N, e > 0 and points x1, . . . , xn 2 X such that O( f, x1, . . . ,
xn, e) � U. If f0 � 0 and r ¼ ’( f) then W \ ’�1(r) ¼ ; where W ¼ O( f0, x1, . . . ,
xn, e). Indeed, if ’(h)¼ r and jh(xi)j< e for all ib n then f� h 2U \ ’�1(0) which
is a contradiction. Now, if there is some g 2 W with s ¼ ’(g) > r then h ¼ r

s g 2 W
and ’(h) ¼ r, a contradiction. This proves that ’(W) � (�r, r). Now, given a

function g 2 Cp(X) and d > 0, the set V ¼ d
r · W þ g is an open neighbourhood of g

(see Problem 059) It is easy to check that ’(V) � (’(g) � d, ’(g) þ d) and hence ’
is continuous at g. The point g being arbitrary, we proved continuity of ’ which is

again a contradiction.

S.076. Let X be an arbitrary space. Suppose that ’ : Cp(X) ! R is a continuous
linear functional such that ’( f ) 6¼ 0 for some f 2 Cp(X). Prove that ’(U) is open in
R for any U 2 t(Cp(X)).

Solution. If the set U is empty there is nothing to prove. If not, take any number

r 2 f(U) and any g 2 U with ’(g) ¼ r. The set U þ (�g) is open (see Problem

059 and the solution of Problem 073) and contains the function f0 � 0. Therefore

there exist n 2 N, x1, . . . , xn 2 X and e> 0 such that f0 2 V¼ O ( f0, x1, . . . , xn, e)�
U þ (�g). For each h 2 Cp(X) \V and Mh ¼ max{jh(xi)j : i b n} 6¼ 0, note that

h0 ¼ e
Mh

· h 2 V. As a consequence, we have’(h)¼ Mh

e ’(h0) which shows that’ � 0 if

’(V)¼ {0}. Since ’ is not identically zero, there is f 0 2 V such that d ¼ j’( f 0)j > 0.

Observe that t · V ¼ {tv : v 2 V} � V for any t 2 [�1, 1]. Thus, for any m 2 (�d, d),
we have g0 ¼ m

d f
0 2 V and ’(g0) ¼ m. This proves that ’(V) � (�d, d). For the set

W ¼ V þ g we have W � U and ’(U) � ’(W) � (r � d, r þ d) whence ’(U) is an
open set in R.
S.077. Let X be an arbitrary space. Suppose that f, g 2 Cp(X) and f 6¼ g. Prove that
there exists a continuous linear functional ’ : Cp(X)! R such that ’( f ) 6¼ ’(g).

Solution. Since f and g are distinct, there is x 2 X with f(x) 6¼ g(x). The map ex :
Cp(X)! R, defined by ex(h) ¼ h(x) for all h 2 Cp(X), is continuous (Problem 067)

and it is easy to verify that ex is linear. Hence the linear functional ’¼ ex is what we
are looking for, because ’( f ) ¼ f (x) 6¼ g(x) ¼ ’(g).
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S.078. Let X be an arbitrary space. Denote by Lp(X) the set of continuous linear
functionals on Cp(X). Prove that Lp(X) is closed in Cp(Cp(X)).

Solution. Take any function ’ 2 LpðXÞ and any f, g 2 Cp(X), a, b 2 R. For the
numbers A¼ ’(afþ bg), B¼ a’( f ) and C¼ b’(g), we must prove that A¼ Bþ C.
Fix an arbitrary e > 0. For e0 ¼ e

aþbþ1, there exists ’
0 2 Lp(X) such that j’( f ) � ’0

( f )j < e0, j’(g) � ’0 (g)j < e0 and j’(af þ bg) � ’0 (af þ bg)j < e0. Observe that, if
A0 ¼ ’0 (afþ bg),B0 ¼ a’0 ( f ) andC0 ¼ b’0 (g) then A0 ¼ B0 þ C0 and jA� B� Cjb
jA � A0j þ jB � B0j þ jC � C0j þ jA0 � B0 � C0j < e0 þ ae0 þ be0 ¼ e. This proves
that, for any e > 0, we have jA � B � Cj < e and hence A � B � C ¼ 0.

S.079. For a topological space X and a function f 2 Cp(X), consider the map Tf :
Cp(X)! Cp(X) defined by the formula Tf(g)¼ f þ g for every g 2 Cp(X). Prove that
Tf is a homeomorphism for any f 2 Cp(X).

Solution. It is evident that T�f is the inverse map for Tf and hence Tf is a

bijection. If we prove that, for any f 2 Cp(X), the map Tf is continuous then, in

particular, the map T�f is continuous and hence Tf is a homeomorphism. Now,

if U 2 t(Cp(X)) then T�1f (U) ¼ U þ (�f ) is an open set by Problem 059 and

hence Tf is continuous.

S.080. For a topological space X and a function f 2 Cp(X), consider the map
Mf : Cp(X)! Cp(X) defined by the formula Mf(g) ¼ f · g for every g 2 Cp(X). Prove
that Mf is a continuous map for any f 2 Cp(X).

Solution. Let us fix g 2 Cp(X) and an open U 3 Mf(g) ¼ g · f. There exist

n 2 N, x1, . . . , xn 2 X and e > 0 such that O( f · g, x1, . . . , xn, e) � U. Take any

d > 0 such that dj f(xi)j < e for all i b n. Is suffices to prove that, for the set V ¼
O(g, x1, . . . , xn, d), we haveMf(V)� U. For any h 2 V and any ib n, we have jMf(h)
(xi) � Mf(g)(xi)j ¼ j f(xi)jjg(xi) � h(xi)j < dj f(xi)j < e which shows that Mf(h) 2
O( f · g, x1, . . . , xn, e) � U.

S.081. Let X be a topological space. For an arbitrary f 2 Cp(X), consider the
map Mf : Cp(X)! Cp(X) defined by the formula Mf(g) ¼ f · g. Prove that the map
Mf : Cp(X)! Cp(X) is a homeomorphism if f(x) 6¼ 0 for all x 2 X.

Solution. For g ¼1
f , apply Problem 080 to see that Mf and Mg are continuous. Is it

immediate that the maps are mutually inverse and hence Mf is a homeomorphism.

S.082. Given a topological space X and a function f 2 Cp(X), consider the
maps Uf, Df : Cp(X)! Cp(X) defined by Uf(g) ¼ max( f,g) and Df (g) ¼ min( f,g)
for any g 2 Cp(X). Prove that the maps Uf and Df are continuous for any f 2
Cp(X).

Solution. Let us prove that the map Uf is continuous at any point g 2 Cp(X).
Given any set U 2 t(Cp(X)) with Uf(g) 2 U, we can find n 2 N, x1, . . . , xn 2 X
and e > 0 such that V ¼ O(Uf(g), x1, . . . , xn, e) � U. We are going to prove that

Uf(W) � U where W ¼ O(g, x1, . . . , xn, e). Indeed, take an arbitrary h 2 W. Then

jh(xi)� g(xi)j< e for each ib n. Let us see the possibilities for the value of each one
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of the numbers Uf(h)(xi) and Uf(g)(xi). If f(xi) b g(xi) and f(xi) b h(xi) then jUf(h)
(xi)� Uf(g)(xi)j ¼ jh(xi)� g(xi)j. If g(xi)< f(xi)b h(xi) then jUf(h)(xi)� Uf(g)(xi)j ¼
jh(xi) � f(xi)j b jh(xi) � g(xi)j.

Analogously, if we have h(xi)< f(xi)b g(xi) then jUf(h)(xi)� Uf(g)(xi)j ¼ j f(xi)�
g(xi)j b jh(xi) � g(xi)j. Finally, if f(xi) r g(xi) and f(xi) r h(xi) then jUf(h)(xi) �
Uf(g)(xi)j ¼ j f(xi) � f(xi)j ¼ 0 b jg(xi) � h(xi)j. This proves that, for any h 2W, we

have jUf(h)(xi) � Uf(g)(xi)j b jh(xi) � g(xi)j < e. Thus Uf(W) � V � U and Uf is

continuous at g. The proof of continuity of Df is identical.

S.083. Given a topological space X, let CI(X) ¼ {f 2 C(X) : f(x) 6¼ 0 for
any x 2 X}. Considering that the set CI(X) carries the topology inherited
from Cp(X), define the map i : CI(X) ! CI(X) by the formula i( f ) ¼ 1

f . Is the
map i continuous?

Solution. Let us prove that i is continuous at any f 2 CI(X). Given an arbitrary open
setU 3 1

f there are n 2N, x1, . . . , xn 2 X and e> 0 such that V¼O(1f , x1, . . . , xn, e) \
CI(X) � U. Making e smaller if necessary, we can assume that j f(xi)j > 2e for any
i b n. Take any d > 0 such that d < e and d < 2e3. It suffices to prove that i(W) �
U forW ¼ O( f, x1, . . . , xn, d) \ CI(X). Take any h 2W. Then ji(h)(xi) � i( f)(xi)j ¼
j 1
f ðxiÞ � 1

hðxiÞ j ¼ j 1
hðxiÞf ðxiÞ j · j f(xi)� h(xi)j. Since j f(xi)j> 2e and jh(xi)� f(xi)j< d< e,

we have jh(xi)j > e and hence ji(h)(xi) � i( f )(xi)j < 1
e ·

1
2e · d < 2e3

2e2 ¼ e which shows

that i(h) 2 V � U.

S.084. For an arbitrary space X and any A � C(X) denote by Au the set {f 2
C(X) : there exists a sequence {fn : n 2 o} � A such that fn !! f}. Prove that
the operator A ! Au has the properties (C1)–(C4) listed in Problem 004. There-
fore there exists a topology tu called the uniform convergence topology on C(X) such
that Au ¼ cltu (A) for every A � C(X). The space (C(X), tu) will be denoted Cu(X).

Solution. The property (C1) is evident. Given f 2 Cp(X) we have fn !! f if fn¼ f for
all n. This shows that (C3) also holds. Another evident observation is that fn !! f
implies gk¼ fnk !! f for any subsequence {fnk}� {fn}. If f 2 A [ B

u
then fn !! f for

some sequence {fn} � A [ B. Clearly, there is a subsequence {fnk} � {fn} which is

contained in one of the sets A, B. Since fnk !! f, we have f 2 Au [ B
u
which proves

the inclusion A [ B
u � Au [ B

u
. The reverse inclusion is obvious because any

sequence in A or in B is also a sequence in A [ B.

Finally, to see that (C4) is also true, take any f 2 A
uu

and fix a sequence {fn} � Au

with fn !! f. For each n2o, there is a sequence {fnk}� A such that fnk!! fn. Thus, for
each n 2 o, there is kn 2 o such that j fnkn (x) � fn(x)j < 1

nþ1 for all x 2 X. We have

{gn} � A, where gn ¼ fnkn for all n 2 o. Let us prove that gn!! f. Given e > 0, there

exists m 2 o such that 1
mþ1 <

e
2
and j fn(x) � f(x)j < e

2
for all x 2 X and n r m. Then

jgn(x) � f(x)j b j fnkn (x) � fn(x)j þ j fn(x) � f(x)j < 1
nþ1 þ e

2
< e

for all x 2 X and hence f 2 Au.

S.085. Prove that, for any space X, the space Cu(X) has a countable local base at
any point.
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Solution. Fix any function f 2 Cu(X) and define, for every number n 2 N, the
set Un ¼ {g 2 Cu(X) : jg(x) � f(x)j < 1

n for all x 2 X}. Observe that f =2 Fn where

Fn ¼ Cu(X) \Un. Indeed, if not, then there is a sequence {fk} � Fn such that fk!! f.
As a consequence, there is k 2 o such that j f(x) � fk(x)j < 1

n for all x 2 X. Then fk 2
Un ¼ Cu(X) \Fn which is a contradiction. This shows that Wn ¼ Int(Un) is an open

set which contains f. To see that B ¼ {Wn : n 2 N} is a local base at f, take any open
U � Cu(X) with f 2 U. If Wn \U 6¼ ; for all n 2 N, pick fn 2 Wn \U for each n 2 N.
Since jfn(x) � f(x)j < 1

n for all n 2 N and x 2 X, it is evident that fn!! f. Thus,
f 2 CuðXÞnU ¼ Cu(X) \U which is a contradiction. Therefore, Wn � U for some

n and B is a countable local base at f.

S.086. Define the identity map id : C(X)! C(X) by id( f )¼ f for all f 2 C(X). Prove
that id : Cu(X)! Cp(X) is continuous for any space X.

Solution. Since id�1(U) ¼ U for any U � Cp(X), it is sufficient to prove that there

is a subbase S of Cp(X) such that every U 2 S is open in Cu(X) (Problem 009(iii)).

By Problem 057 it suffices to prove that the setW ¼ [x, O] is open in Cu(X) for any
x 2 X and any rational interval O � R. Assume that O ¼ (a, b) and take any f 2W.

Take d¼min{f(x)� a, b� f(x)}> 0 and consider the setUd¼ {g 2 Cu(X) : jg(y)�
f(y)j < d for any y 2 X}. It is clear that f 2 Ud �W. If f 2 CuðXÞnUd

u
then there is a

sequence {fn : n 2 o} � Cu(X) \Ud with fn!! f. This means that, for some k 2 o we

have j fk (y)� f(y)j< d for all y 2 X and hence fk 2Ud which is a contradiction. As a

consequence, there is Vf 2 tu such that f 2 Vf � Ud � W. Therefore W ¼ [{Vf : f 2
W} is open in Cu(X) and our proof is complete.

S.087. For any X 2 T312 prove that the identity map id : Cu(X) ! Cp(X) is a
homeomorphism if and only if the space X is finite.

Solution. Take any finite space X ¼ {x1, . . . , xk}. By Problem 086 the map

id is continuous, so it suffices to show that i ¼ id�1 is also continuous. Since

i�1(F) ¼ F for any F � Cu(X), it suffices to establish that F is closed in Cp(X) for
every closed F � Cu(X) (Problem 009)(v)). Suppose that F is closed in Cu(X) and
non-closed in Cp(X). Take any f 2 F \F (the bar will denote the closure in Cp(X)).
Then, for every n 2 N there exists fn 2 F \ Wn whereWn ¼ [x1, . . . ,xn; O1, . . . ,On]

with Om ¼ ð f ðxmÞ � 1
n; f ðxmÞ þ 1

nÞ for each m b k. It is immediate that fn!! f and

hence f 2 Fu ¼ F, a contradiction. This shows that id is a homeomorphism if X is

finite. Note that we did not use the Tychonoff property of X.

Assume now that X is an infinite Tychonoff space and id is a homeomorphism.

Take f0 � 0 and consider the set W ¼ {f 2 Cu(X) : j f(x)j < 1 for all x 2 X}. In
S.085, we proved that f0 belongs to the set U ¼ Int(W) (the interior is taken

in Cu(X)). Since U is open in Cu(X) and (id�1)�1(U) ¼ U, the set U must be open

in Cp(X). Therefore, there exist n 2 N, x1, . . . ,xn 2 X and e > 0 such that V ¼ O
( f0, x1, . . . ,xn, e)� U (058). Since the space X is Tychonoff and the set F¼ {x1, . . . ,
xn} is closed and finite, we can take x 2 X \F and h 2 Cp(X) such that hjF � 0 and

h(x)¼ 1. It is evident that h 2 V \Wwhich contradicts the fact that V�U�W. Thus

X has to be finite.
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S.088. Prove that the space Cu(N) does not have countable base.
Solution. We proved in S.085 that, for any space X and any f 2 Cu(X), the sets

{Wn( f ) : n 2 N} form a local base of Cu(X) at f. HereWn( f ) is the interior of the set
{g 2 Cu(X) : for any x 2 X, we have jg(x) � f(x)j < 1

n} for each n 2 N. As a

consequence, the family {Wn( f) : f 2 C(X), n 2 N} is a base in Cu(X).

Claim. Let Z be a space which has a countable base B. If C is any other base of Z
then there is a countable C0 � C such that C0 is a base in Z. In other words, if there is
a countable base in a space then any base of this space contains a countable base.

Proof of the claim. Let B ¼ {Un : n 2 o}. Call a pair m ¼ (m, n) of elements of o
admissible, if there is C 2 C such that Um � C � Un. If a pair m ¼ (m, n) is
admissible then fix some C ¼ C(m)2 C such that Um � C � Un. The family C0 ¼
{C(m) : m is an admissible pair} � C is countable. Let us prove that C0 is a base in Z.
Indeed, if x 2U 2 t(Z) then there is m 2 o such that x 2 Un� U because B is a base

in Z (Problem 002). By the same reason, there is C0 2 C with x 2 C0 � Un. Applying

Problem 002 once more, we can find Um 2 B such that x 2 Um � C0. Since Um � C0

� Un, the pair m ¼ (m, n) is admissible and therefore C ¼ C(m)2 C0 and x 2 C � Un

� U. Applying Problem 002 once again, we see that C 0 is a base in Z and our claim

is proved.

Applying our claim we can observe that, if there is a countable base in the space

Cu(N) then there exists a countable set A¼ {fn : n2N}�Cu (X) such that the family

B¼ {Wn( f) : f2 A, n2N} is a base inCu(N). To bring this to a contradiction, let g(n)
¼ fn(n)þ 2 for each n 2N. Since B is a base, we have g 2Wk( fn) for some k, n 2 N.
As a consequence, j fn(x)� g(x)j< 1

kb 1 for any x 2N. However, j fn(n)� g(n)j ¼ 2

which is a contradiction. Hence the space Cu(N) cannot have a countable base.
S.089. Let X and Y be topological spaces. Given Z� Y, each f 2 C(X, Z) can also be
considered a function from X to Y. Thus, C(X,Z) � C(X,Y). Prove that the topology
of Cp(X, Z) coincides with the topology on C(X, Z) induced from Cp(X, Y) and hence
Cp(X, Z) � Cp(X,Y).

Solution. For an arbitrary standard open set

H¼ [x1, . . . , xn; O1, . . . ,On]¼ {f 2 Cp(X, Y) : f(xi) 2 Oi for all ib n} in the space
Cp(X, Y), it is immediate that

H \ Cp(X, Z)¼ {f 2 Cp (X, Z) : f(xi) 2Oi \ Z for all ib n} is a standard open set
in Cp(X, Z). Now, if a set U is open in the space Cp(X,Y) then U ¼ Sg where all

elements of the family g are standard open sets. Since U \ Cp(X, Z) ¼
S
{H \

Cp(X, Z) : H 2 g} is a union of standard open sets of Cp(X, Z), it is open in Cp(X, Z).
This shows that the subspace topology of Cp(X, Z) is contained in t(Cp(X, Z)).

Now let

W ¼ [x1, . . . ,xn; U1, . . . ,Un] ¼ {f 2 Cp (X, Z) : f (xi) 2 Ui for all i b n} be a

standard open set in the space Cp(X, Z). For each ib n, take a set Oi 2 t(Y) such that
Ui ¼ Oi \ Z. Then W0 ¼ W \ Cp(X, Z) where

W0 ¼ [x1, . . . , xn; O1, . . . ,On] ¼ {f 2 Cp (X, Y) : f (xi) 2 Oi for all i b n} is a

standard open set in the space Cp(X, Y). Finally, if U 2 t(Cp(X, Z)) then U ¼ Sg
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where g consists of standard open sets in Cp(X, Z). We proved that eachW 2 g is the
intersection of a standard open set in Cp(X, Y) with Cp(X, Z) and hence everyW 2 g
belongs to the subspace topology on Cp(X, Z). As a consequence, U ¼ Sg also

belongs to the subspace topology on Cp(X, Z). This proves that the subspace

topology of Cp(X, Z) coincides with t(Cp(X, Z)).

S.090. Let X and Y be topological spaces. Given a closed Z� Y, prove that Cp(X, Z)
is a closed subspace of Cp(X, Y).

Solution. If f 2 H ¼ Cp(X, Y) \Cp(X, Z) then there is a point x 2 X such that f(x) 2
O¼ Y \ Z. Hence Uf¼ {g 2 Cp(X, Y) : f(x) 2 O} is an open set in Cp(X, Y) such that
f 2 Uf � H. Therefore H ¼ S{Uf : f 2 H} is an open set.

S.091. Let X and Y be topological spaces. If w : Y! Z is a continuous map, define a
map hw : Cp(X, Y)! Cp(X, Z) in the following way: for any f 2 Cp(X, Y) let hw( f )¼
w 	 f. Show that the map hw is continuous.

Solution. Take any function f 2 Cp(X, Y) and any set U 2 t(Cp(X, Z)) such that g ¼
hw( f ) 2U. There is a standard open set V¼ [x1, . . . , xn;O1, . . . ,On] in Cp(X, Z) such
that g 2 V�U. ThenW¼ {h 2 Cp(X, Y) : h(xi) 2 w�1(Oi) for all ib n} is a standard
open set in Cp(X, Y) such that f 2 W and hw(W) � V � U. Therefore, the map hw is

continuous at f.

S.092. Show that, for an arbitrary space X, there exists a continuous mapping
r : Cp(X)! Cp(X, I) such that r( f) ¼ f whenever f 2 Cp(X, I).
Solution. Define a function w : R! I as follows: w(t) ¼ �1 for all t < �1; if t 2 I
then w(t) ¼ t and if t > 1 then w(t) ¼ 1. It is clear that w is continuous and

hence r ¼ hw : Cp(X) ! Cp(X,I) defined by r( f) ¼ w 	 f, is a continuous map

(Problem 091). It is also immediate that r( f) ¼ f for any f 2 Cp(X, I) so our proof is
complete.

S.093. Let ’ : Cp(X)! Cp(Y) be an isomorphism. Prove that

(i) If f, g 2 Cp(X) and f(x) b g(x) for any x 2 X then ’( f )(y) b ’(g)(y) for
any y 2 Y.

(ii) If f, g 2 Cp(X) then ’(max( f, g)) ¼ max(’( f ), ’(g)).
(iii) If f, g 2 Cp(X) then ’(min( f, g)) ¼ min(’( f ), ’(g)).

Solution. (i) Suppose that h 2 Cp(X) and h(x)r 0 for all x2 X. Then, we have’(h)(y)
r 0 for all y2 Y. Indeed, the function h1 ¼

ffiffiffi
h
p

for which h1ðxÞ ¼
ffiffiffiffiffiffiffiffiffi
hðxÞp

for all x2 X,
is well defined and continuous and therefore ’ðhÞ ¼ ’ðh21Þ ¼ ’ðh1ÞÞ2 and hence

’(h)( y) r 0 for all y 2 Y. Now, if f(x) b g(x) for all x 2 X then h(x) r 0 for all x,
where h¼ g� f. As a consequence,’(h)(y)¼’(g� f )(y)¼’(g)(y)�’( f )(y)r 0 for

all y 2 Y.
(ii) Given any h 2 Cp(X), define jhj(x)¼ jh(x)j for all x 2 X. We have (’(jhj))2¼

’(jhj2) ¼ ’(h2) ¼ (’(h))2 and hence ’(jhj) ¼ j’(h)j for any function h 2 Cp(X).
Observing that max( f, g) ¼ 1

2
( f þ g þ j f � gj), we conclude that ’(max( f,g)) ¼

1
2
(’( f) þ ’(g) þ j’( f) � ’(g)j) ¼ max(’( f ), ’(g)).
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(iii) Observing that min( f, g)¼ 1
2
( fþ g� j f� gj), we conclude that we have the

equalities ’(min( f,g)) ¼ 1
2
(’( f ) þ ’(g) � j’( f ) � ’(g)j) ¼ min(’( f ), ’(g)).

S.094. Prove that, if ’ : Cp(X) ! Cp(Y) is an isomorphism, then we have the
equality ’(C�(X)) ¼ C�(Y).

Solution. Given r 2 R, let pr(x) ¼ r for all x 2 X. Now, p1 ¼ p21 and hence

’(p1) ¼ (’(p1))
2 whence ’(p1)(y) can only be equal to 0 or 1. Therefore, for any

n 2 N, we have ’(pn) ¼ n’(p1) so pn can only take values 0 or n. If f 2 C�(X) then
j f j b pn for some n 2 N which implies j’( f )j ¼ ’(j f j) b ’(pn) (see Problem 093

and it solution). Since j’(pn)(y)j b n for any y 2 Y, the function ’( f ) is bounded.
This proves that ’(C�(X)) � C�(Y). The same proof gives ’�1(C�(Y)) � C� (X) and
hence ’(C�(X)) ¼ C�(Y).

S.095. Let ’ : Cp(X)! Cp(Y) be an isomorphism. Suppose that c 2 R and f (x) ¼ c
for every x 2 X. Prove that ’( f )(y) ¼ c for any y 2 Y.

Solution. Given r 2 R, let pr(x) ¼ r for all x 2 X and qr(y) ¼ r for all y 2 Y. We

must prove that ’(pc)¼ qc for all c 2R. Note first that ’(p0)þ ’(p0)¼ ’(p0þ p0)¼
’(p0) and hence ’(p0) ¼ q0. Since ’ is an isomorphism, there is some function f
with ’( f )¼ q1. Then ’(p1)¼ ’(p1) · ’( f )¼ ’(p1 · f )¼ ’( f )¼ q1. Since qn¼ q1þ
� � � þ q1 (the sum is of n summands), we obtain the equality ’(pn) ¼ ’(p1 þ � � � þ
p1) ¼ q1 þ � � � þ q1 ¼ qn (all sums have n summands) for each n 2 N. Now, ’(�f )
þ ’( f) ¼ ’(p0) ¼ q0 which implies ’(�f) ¼ �’( f) for any f 2 C(X). Therefore
’(pn)¼ qn for any integer n. If r is a rational number then r ¼ a

b for some integers a
and b. Therefore, b’(pr) ¼ ’(bpr) ¼ ’(pa) ¼ qa and we have ’ðprÞ ¼ 1

bqa ¼ qn.

Finally, take any c 2 R and any e > 0. Pick any rational numbers r and s with
r 2 ðc� e

2
; cÞ and s 2 ðc; cþ e

2
Þ. Then j’(pc)� qcjb j’(ps)� ’(pr)j ¼ jqs� qrj< e

(see Problem 093(i)). Since e > 0 was taken arbitrarily, we proved that ’(pc) ¼ qc.

S.096. Prove that there is no isomorphism between Cp(R) and Cp(I).
Solution. All continuous functions on I are bounded so if ’ : C(I) ! C(R) is an
isomorphism then C�(R) ¼ ’(C�(I)) ¼ ’(C(I)) ¼ C(R) by Problem 094, which is

a contradiction because the identity function is not bounded on R.
S.097. Suppose that X is a set and (Y, t) is a topological space. Given a map
f : X! Y, denote the family {f�1(U) : U 2 t} by f�1(t). Prove that

(i) m ¼ f�1(t) is a topology on X such that f is continuous considered as a map
from (X, m) to (Y, t);

(ii) If n is any topology on X, such that the map f : (X, n)! (Y, t) is continuous,
then m � n.

Solution. (i) Since ; ¼ f�1(;) and X ¼ f�1(Y), the axiom (TS1) holds for the family

m. If U, V 2 m then U¼ f�1(U0) and V¼ f�1(V0) for some U0, V0 2 t. Then U \ V¼
f�1(U0 \ V0) 2 m so (TS2) also holds. Finally, if g� m then, for any U 2 g fix U0 2 t
with U¼ f�1(U0). Then

S
g¼ f�1(

S
{U0 : U 2 g}) 2 m and (TS3) is also proved. The

map f : (X, m)! (Y, t) is continuous because f�1(U) 2 m for each U 2 t.
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(ii) Let n be a topology on X such that f : (X, n)! (Y, t) is continuous. For any U
2 mwe haveU¼ f�1(U0) 2 n for someU0 2 t. The map f is continuous and therefore
U ¼ f�1(U0) 2 n whence m � n.

S.098. Let X be a set and let f : X! R be a map. Prove that the space (X, f�1(N R))

is completely regular.

Solution.Denote the topology f�1(N R) by t and take any x 2 X. If F is t-closed and
x =2 F then X \F ¼ f�1(U) for some open U � R. Since y ¼ f(x) 2 U and R is

completely regular, there is a continuous function h : R! [0, 1] such that h(y) ¼ 1

and hj(R \U) � 0. The function g ¼ h 	 f : X! [0, 1] is continuous and f(x) ¼ 1,

f(F) � {0} so X is completely regular.

S.099. Let T be a non-empty family of topologies on a set X. Show that the familyST satisfies the condition of Problem 008 for generating a topology as a subbase.
The topology thus generated is called the supremum or the least upper bound of the
family of topologies from T . Prove that the least upper bound of Ti-topologies is
always a Ti-topology for i b 31

2
.

Solution. Fix any topology n0 2 T and note that
S
(
ST ) � S n0 ¼ X so

ST
generates a topology t as a subbase. Suppose that any n 2 T is T0 and take any

distinct x, y 2 X. There exists U 2 n0 such that U \ {x, y} has exactly one element.

Since U 2 t, this proves that t is T0. Suppose that any n 2 T is T1 and take any point
x 2 X. Since {x} is closed in (X, n0), we have X \ {x} 2 n0� t. Thus, X \ {x} is open
in (X, t) and hence {x} is closed in (X, t).

If all elements of T are Hausdorff then, for any distinct x, y 2 X, there exist sets
U, V 2 n0 such that x 2 U, y 2 V and U \ V¼ ;. Since U, V 2 t, we proved that the
space (X, t) is also Hausdorff. Assume that all elements of T are T3. Then t is T1 so
we only have to show that t is regular. Given a t-closed F� X and x 2 X \ F, the set
V ¼ X \ F is t-open and x 2 V. Since T is a subbase of t, there are n1, . . . , nn 2 T
such that x 2 U ¼ U1 \ � � � \ Un � V for some U1 2 n1, . . . , Un 2 nn. As ni is
regular, there are disjoint Wi, Hi 2 ni such that x 2 Wi and X \ Ui � Hi for all i b n.

The sets W ¼ W1 \ � � � \ Wn and H ¼ H1 [ � � � [ Hn are t-open, disjoint and
x 2 W, F � H which proves that X is regular. Suppose, finally, that each n 2 T
is Tychonoff. Then (X, t) is T1 so we must only prove complete regularity of

(X, t).
Given a t-closed set F� X and a point x 2 X \ F, observe that the set V¼ X \ F is

t-open and x 2 V. Since T is a subbase of t, there exist sets n1, . . . , nn 2 T such that

x 2 U ¼ U1 \ � � � \ Un � V for some U1 2 n1, . . . , Un 2 nn. As ni is completely

regular, there are ni-continuous functions fi : X ! [0, 1] such that fi(x) ¼ 1 and

fi(X \ Ui) � {0} for all i b n. Each fi is also t-continuous because f�1i ðHÞ 2 vi � t
for each open H � [0, 1]. Therefore f ¼ f1 � � � fn is t-continuous, f : X! [0, 1] and f
(x) ¼ 1, f(F) � {0} whence (X, t) is a Tychonoff space.

S.100. (Tychonoff spaces capture all of Cp-theory). Let X be a topological space.
Given x, y 2 X, define x� y to mean that f(x)¼ f(y) for every f 2 C(X). Observe that
this is an equivalence relation. Let Xc be the set of all equivalence classes. For each
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f 2 C(X), let us define ’f : Xc! R in the following way: ’f (y) ¼ f(x), where x is an
arbitrary point of y (remember that y � X is an equivalence class). Given x 2 X, let
p(x) ¼ y where y is the equivalence class containing x.

(i) Observe that the map ’f is well defined for each f 2 C(X).
(ii) Denote by tf the topology ’

�1
f ðN RÞ. Prove that the least upper bound t of the

topologies {tf : f 2 C(X)} is a Tychonoff topology on Xc.

(iii) Show that the mapping p : X! Y ¼ (Xc, t) is continuous.
(iv) Prove that the spaces Cp(X) and Cp(Y) are topologically isomorphic.

Solution. Clearly, x � x and x � y implies y � x for all x, y 2 X. If x � y and y � z
then, for any f 2 C(X), we have f(x)¼ f(y) and f(y)¼ f(z) whence f(x)¼ f(z). Thus,�
is an equivalence relation. Now, Xc ¼ {[x] : x 2 X}, where [x] ¼ {y 2 X : y � x} for
all x 2 X. Thus p(x) ¼ [x] for any x 2 X.

(i) The map ’f is well defined if the value of ’f (y) is well defined for every y 2 Xc.

This happens if and only if f(z)¼ f(x) for any x, z 2 y. But x, z 2 y implies x� z
and hence f(x) ¼ f(z) so the value of ’f (y) is well defined.

(ii) The topology tf is completely regular for each f 2 C(X) (Problem 098) and

hence t is completely regular by Problem 099. Observe also that ’f is

t-continuous on Xc for each f 2 C(X) (Problem 097). Now take any y 2 Xc.

Then y ¼ [x] for any x 2 y so fix such x. If y0 2 Xc \ {y} then y
0 ¼ [x0] for some

x0 2 X such that x0 ò x. This implies that there is f 2 C(X) such that f(x) 6¼ f(x0).
As a consequence, ’f (y) 6¼ ’f (y

0). Take any open U, U0 � R such that

f(x) 2 U, f(x0) 2 U0 and U \ U0 ¼ ; (they exist because R is Hausdorff

(Problem 019)). Then y 2 ’�1f ðUÞ, y0 2 ’�1f ðU0Þ, the sets ’�1f ðUÞ, ’�1f ðU0Þ
are open in (Xc, t) and disjoint. This shows that (Xc, t) is Hausdorff and hence
Tychonoff.

(iii) Let us prove continuity of p at an arbitrary point x 2 X. Suppose that y¼ [x]¼
p(x) 2 U 2 t. Since

S
{tf : f 2 C(X)} is a subbase of t, there are f1, . . . , fn

2 C(X) and O1, . . . , On 2 N R such that y 2 V � U where V ¼Tf’�1fi
ðOiÞ : ib ng. It suffices to prove that x 2 W and p(W) � U for the

open set W ¼ Tff�1
i
ðOiÞ : ib ng. Note first that fiðxÞ ¼ ’fiðyÞ 2 Oi for all

ib n and hence x 2W. Now, if x0 2W and y0 ¼ p(x0) then ’fi
ðy0Þ ¼ fiðx0Þ 2 Oi.

As a consequence y0 2 ’�1fi
ðOiÞ for each i b n and hence p(x0) ¼ y0 2 V � U.

(iv) Given f 2 Cp(X), let ’( f) ¼ ’f 2 Cp(Xc). It suffices to show that ’ is a

topological isomorphism. If f 6¼ g then take any x 2 X with f(x) 6¼ g(x). Then
’f ([x]) ¼ f(x) 6¼ g(x) ¼ ’g([x]) and hence ’( f) 6¼ ’(g). Therefore, ’ is an

injection. Given any x 2 C(Xc), let f¼ x 	 p. Then f 2 C(X) and ’( f)¼ x so ’ is

a bijection. Assume that f, g 2 Cp(X) and h ¼ f þ g. Then ’(h)([x]) ¼ h(x) ¼
f(x) þ g(x) ¼ ’( f)([x]) þ ’(g)([x]) for all x 2 X which proves that ’( f þ g) ¼
’( f)þ ’(g). The proof of the equality ’( f · g)¼ ’( f) · ’(g) is identical. Let us
finally prove that ’ is a homeomorphism. The family B ¼ {[y, O] : y 2 Xc and

O is a rational open interval} is a subbase in Cp(Xc) (Problem 057) so,

to prove continuity of ’, it suffices to establish that ’�1(U) is open in Cp(X)
for any U ¼ [y, O] 2 B (Problem 009(iii)). Pick any x 2 y and note that
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’�1(U)¼ V ¼ {f 2 Cp(X) : f(x) 2 O}. Indeed, f 2 U iff ’f (y)¼ f(x) 2 O which

happens if and only if f 2 V. Thus ’ is continuous. The family C ¼ {[x, O] : x 2
X and O is a rational open interval} is a subbase in Cp(X) (057) so, to prove

continuity of ’�1, it is sufficient to show that (’�1)�1 (U) ¼ ’(U) is open in

Cp(Xc) for any U ¼ [x, O] 2 C. This will follow from the fact that ’(U) ¼ V ¼
{x 2 Cp(Xc) : x([x]) 2 O} because V is a standard open subset of Cp(Xc). Now,

x ¼ ’( f) 2 V iff x([x]) ¼ f(x) 2 O which happens iff f 2 U and our proof is

complete.

S.101. Suppose that Xt is a space for each index t 2 T. Prove that the family
B ¼ {

Q
t2T Ut :Ut 2 t(Xt) for all t, and the set {t 2 T :Ut 6¼ Xt} is finite} is a base for

the space X ¼Qt2T Xt. It is called the canonical (or standard) base of the productQ
t2TXt.

Solution. Let tt ¼ p�1t ðtðXtÞÞ for each t 2 T. Since n ¼ [{tt : t 2 T} generates the
topology of X as a subbase, the family B0 ¼ {U1 \ � � � \ Un : n 2 N, Ui 2 n for all
i b n} is a base of X. If U ¼ U1 \ � � � \ Un 2 B0 then Ui 2 tti for each i b n.
Choose some faithful (� without repetitions) enumeration {s1, . . . , sk} of the set

A ¼ {t1, . . . , tn} and, for each i b k, denote by fti1; . . . ; timi
g the set of all t 2 A such

that t¼ si. If Vi ¼ Uti
2
\ � � � \ Utimi

for all ib k then Vi 2 tsi andU¼ V1 \ � � � \ Vk,

where si 6¼ sj if i 6¼ j. This shows that we may assume without loss of generality that

B0 ¼ {U1 \ � � � \ Un : n 2 N, Ui 2 tti for all i b n and ti 6¼ tj if i 6¼ j}. In what

follows, this is assumed for all elements of B0.
For any U ¼ U1 \ � � � \ Un 2 B0 pick Vi 2 tðXtiÞ such that p�1ti

ðViÞvi and
observe that U ¼Qt2T Ut where Ut ¼ Xt if t =2 {t1, . . . , tn} and Ut ¼ Vi if t ¼ ti. As
a consequence, every element of B0 belongs to B. Given a set U ¼Qt2T Ut 2 B, let
supp(U) ¼ {t 2 T : Ut 6¼ Xt}. The set supp(U) can be empty; in this case U ¼ X and

the set U is trivially open. If {t1, . . . , tn} is a faithful enumeration of supp (U) 6¼ ;
then U ¼ U1 \ � � � \ Un where Ui ¼ p�1ti

ðUtiÞ for all i b n. Therefore, U 2 B0 and
hence B ¼ B0 is a base of X.
S.102. Suppose Xt is a space for any t 2 T and we are given a space Y together with
a map f : Y!Q

t2T Xt. Prove that f is continuous if and only if pt 	 f is continuous
for any t 2 T.

Solution. If the map f is continuous then so is pt 	 f for each t 2 T because pt is
continuous. Now suppose that pt 	 f is continuous for all t 2 T. To show that f is
continuous, it suffices to find a subbase S in X such that f�1(U) 2 t(Y) for any set

U 2 S. By definition of the product topology, the family S ¼ [fp�1t ðtðXtÞÞ : t 2 Tg
is a subbase of X. If U 2 S then U ¼ p�1t ðVÞ for some t 2 T and V 2 t(Xt). Thus

f�1(U) ¼ (pt 	 f)�1(V) is open in Y because pt 	 f is continuous.
S.103. Let {Xt : t 2 T} be a family of topological spaces and suppose that T ¼S
{Ts : s 2 S}, where Ts 6¼ ; for all s 2 S, and Ts \ Ts0 ¼ ; if s 6¼ s0. Prove that

the spaces
Q

t2T Xt and
Q

s2S ð
Q

t2Ts XtÞ are homeomorphic, i.e., the topological
product is associative.
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Solution. Let X ¼Qt2T Xt and Y ¼
Q

s2S ð
Q

t2Ts XtÞ. Given x 2 X, define ’(x)(s) ¼
ys(x) ¼ xjTs for each s 2 S. It is immediate that ysðxÞ 2

Q
t2Ts Xt for every s 2 S

and therefore ’(x) 2 Y. Let us prove that the map ’ : X! Y is a homeomorphism. If

x 6¼ x0 then there is t 2 T such that x(t) 6¼ x0(t). Now, there exists s 2 S with t 2 Ts
because T ¼ S{Ts : s 2 S}.

As a consequence, ’(x)(s)¼ ys(x) 6¼ ys(x
0)¼ ’(x0)(s) and ’(x) 6¼ ’(x0) whence ’

is an injection. Given y 2 Y, define x 2 X as follows: if t 2 T, find the unique s 2 S
with t 2 Ts (such s is unique because the sets Ts are disjoint) and let x(t) ¼ y(s)(t). It
is immediate that ’(x) ¼ y and hence ’ is a bijection. The last thing we must prove

is continuity of ’ and ’�1. Let pt : X! Xt be the natural projection. Denote by qs
the natural projection of Y onto Ys ¼

Q
t2Ts Xt for each s 2 S and let rst : Ys! Xt also

be the natural projection for all s 2 S and t 2 Ts.
The map ’ is continuous if and only if the composition qs 	 ’ : X ! Ys is

continuous for all s 2 S (Problem 102). Since Ys is also a product, the map qs 	 ’ is

continuous if and only if rst 	 qs 	 ’ is continuous for each t 2 Ts. Note that rst 	 qs 	
’(x) ¼ rst(xjTs) ¼ (xjTs)(t) ¼ x(t) for any x 2 X and hence the map rst 	 qs 	 ’ is

continuous because it coincides with the continuous map pt. As a consequence, the
map ’ is continuous. Given t 2 T, there is a unique s 2 S such that t 2 Ts. It is
immediate that pt 	 ’�1 : Y ! Xt coincides with the continuous map rst 	 qs and
hence ’�1 is also continuous.

S.104. Let {Xt : t 2 T} be a family of spaces. Suppose that ’ : T! T is a bijection.
Prove that the spaces

Q
t2T Xt and

Q
t2T X’(t) are homeomorphic, i.e., the topologi-

cal product is commutative.

Solution. Let Yt¼ X’(t) for each t 2 T. Our aim is to prove that the spaces X¼Qt2T
Xt and Y ¼ Qt2T Yt are homeomorphic. Denote by pt : X ! Xt and qt : Y ! Yt
the respective natural projections. Given x 2 X, for the function d(x) ¼ x 	 ’ we

have d(x)(t) ¼ x(’(t)) 2 Yt for each t 2 T and therefore d(x) 2 Y, i.e., d : X ! Y.
Given any y 2 Y, for the function m(y) ¼ y 	 ’�1 we have mðyÞðtÞ ¼
yð’�1ðtÞÞ 2 Y’�1ðtÞ ¼ Xt. This shows that m : Y ! X and it is clear that m is the

inverse function for d and vice versa. To see that d is continuous, note that qt 	 d is

continuous for each t 2 T because qt 	 d¼ p’(t). Analogously, m¼ d�1 is continuous
because pt 	 m ¼ q’�1ðtÞ is a continuous map for each t 2 T. Therefore d : X! Y is a

homeomorphism.

S.105. Show that, for every i 2 {0, 1, 2, 3, 31
2
}, the Tychonoff product of any family

of Ti-spaces is a Ti-space.

Solution. Let X ¼ Qt2T Xt. (i) Suppose that Xt is a T0-space for each t 2 T. Given
distinct x, y 2 X, fix any t 2 T with x(t) 6¼ y(t). There exists U 2 t(Xt) such that U \
{(x(t), y(t)} consists of exactly one point. Then V ¼ p�1t ðUÞ is open in X and V \
{x, y} consists of exactly one point. Therefore X is a T0-space.

(ii) Assume that Xt is a T1-space for all t 2 T. Take any point x 2 X. For any point
y 2 X \ {x} find t 2 T with x(t) 6¼ y(t). Since the space Xt is T1, the set U¼ Xt \ {x(t)}
is open and y(t) 2 U. Therefore Vy ¼ p�1t ðUÞ is an open set in X and y 2 Vy � X
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\ {x}. Thus X \ {x} ¼ [{Vy : y 2 X \ {x}} is an open set. As a consequence, {x} is

closed in X.
(iii) If all Xt’s are Hausdorff, take distinct x, y 2 X. Pick any t 2 Twith x(t) 6¼ y(t).

There are U0, V0 2 t(Xt) such that x(t) 2 U0, y(t) 2 V0 and U0 \ V0 ¼ ;. If
U ¼ p�1t ðU0Þ and V ¼ p�1t ðV 0Þ then U, V 2 t (X), x 2 U, y 2 V and U \ V ¼ ;.
This means X is a Hausdorff space.

(iv) Let Xt be a T3-space for each t 2 T. By (ii), the space X is T1 so we only

must prove regularity of X. Take any x 2 X and any closed F � X such that x =2 F.
There exist t1, . . . , tn 2 T and Oi 2 tðXtiÞ such that x 2 U � X \F where

U ¼ Tfp�1ti
ðOiÞ : ib ng. Let xi ¼ ptiðxÞ for each i b n. Then xi 2 Oi and by

regularity of Xti there are Vi, Wi 2 tðXtiÞ such that xi 2 Vi, XtinOi � Wi and Vi \
Wi ¼ ; for all i b n. The sets G ¼ Tfp�1ti

ðViÞ : ib ng and H ¼ [fp�1ti
ðWiÞ : ib ng

are open in X and G \ H ¼;. Since xi 2 Vi for all i b n, we have x 2 G. If y 2 F
then y =2 U and therefore y =2 p�1ti

for some ib n. This implies ptiðyÞ 2 Wi and hence

y 2 H. This proves that F � H and X is regular.

(v) Let us tackle the case when Xt is a Tychonoff space for each t 2 T. By (ii) the
space X is T1 so we must only prove complete regularity of X. Take any x 2 X and

any closed F� X such that x =2 F. There exist t1, . . . , tn 2 T andOi 2 tðXtiÞ such that
x 2 U � X \F where U ¼ \fp�1ti

ðOiÞ : ib ng. Let xi ¼ ptiðxÞ for each i b n. Then xi
2Oi and by complete regularity of Xti there are continuous functions fi : Xti ! ½0; 1

such that fi(xi)¼ 1 and fiðXtinOiÞ � f0g for all ib n. Now, let gi ¼ fi 	 pti for all ib n.
Then gi : X ! [0, 1] is a continuous function and gi(x) ¼ 1 for each i b n. As
a consequence, f ¼ g1 . . . . . gn : X ! [0, 1] is a continuous function on X and

f(x) ¼ 1. If y 2 F then y =2 U which implies ptiðyÞ 2 XtinOi for some i b n. By the

choice of fi, we have giðyÞ ¼ fiðptiðyÞÞ ¼ 0 and therefore f(y) ¼ 0. This proves that

f(F) � {0} and hence the space X is Tychonoff.

S.106. Show that, for any non-empty topological product X ¼ Qt2T Xt and any
s 2 T, the space X has a closed subspace homeomorphic to Xs.

Solution. Pick a point at 2 Xt for any t 2 T. Given x 2 Xs, let ’(x)(t) ¼ at if t 6¼ s
and ’(x)(s) ¼ x. It is clear that ’ : Xs! X. Denote the set ’(Xs) by Y. Let us prove
that the map ’ : Xs ! Y is a homeomorphism. If x 6¼ y then ’(x)(s) ¼ x 6¼ y ¼
’(y)(s) which shows that ’ : Xs! Y is a bijection. If t 6¼ s then pt 	 ’(x) ¼ at for
each x 2 Xs. As a consequence pt 	 ’ is continuous. Now ps 	 ’ is also continuous

because ps 	 ’(x)¼ x for any x 2 Xs. This shows that ’ is continuous (Problem 102).

It is easy to see that ’�1 is also continuous because it coincides with the function

psjY. This proves that ’ is a homeomorphism. To prove that Y is closed in X, take
any f 2 X \Y. If f(t) 6¼ at for some t 2 T \ {s} then Uf ¼ p�1t ðXtnfatgÞ is an open

set in X with f 2 Uf� X \Y. If f(t)¼ at for all t 2 T \ {s} then f(s)¼ x 2 Xs and hence

f¼ ’(x) 2 Y, a contradiction. Thus, for every f 2 X \ Y, there is an open Uf such that

f 2 Uf � X \Y. Therefore X \Y ¼ [{Uf : f 2 X \ Y} is an open subset of X.

S.107. Given a topological product X ¼Q{Xt : t 2 T} and S � T, define the S-face
of X to be the product XS¼

Q
{Xt : t 2 S}. Let pS : X! XS be defined by the formula

pS(x) ¼ xjS for every x 2 X. The map pS is called a natural projection of X onto its
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face XS. Prove that the natural projection onto any face is a continuous open map. In
particular, the projections to the factors of any product are continuous open maps.

Solution. We will use the following easy observation. If f : T! Z is a continuous

onto map then f is open if and only if T has a base T such that f(U) is open for each
U 2 T . It was proved in Problem 101 that the family B ¼ {

Q
t2T Ut : Ut 2 t(Xt) for

all t, and the set {t 2 T : Ut 6¼ Xt} is finite} is a base for the space X so it suffices to

show that pS(U) is open in XS for any U 2 B. GivenU¼
Q

t2T Ut 2 B, let supp(U)¼
{t 2 T : Ut 6¼ Xt}. Observe that pS(U) ¼

Q
t2S Ut where Ut 2 t(Xt) for all t 2 S and

Ut 6¼ Xt only for t 2 supp(U) \ S which is a finite set. Therefore pS(U) is open in XS

(101) and we established that the map pS is open.

Let qt : XS! Xt be the natural projection for any t 2 S. The map pt : X! Xt is the

respective natural projection in X. To see that pS is continuous observe that qt 	 pS¼
pt is a continuous map for every t 2 S and hence pS is continuous (Problem 102).

It is evident that pS is onto so our solution is complete.

S.108. (The Hewitt–Marczewski–Pondiczery theorem) Given an infinite cardinal
k, suppose that jTjb 2k and Xt is a space such that d(Xt)b k for all t 2 T. Prove that
d(
Q

t2T Xt) b k. In particular, the product of at most 2o-many separable spaces is
separable.

Solution. Observe that if Y is a continuous image of X then d(Y) b d(X). If Z is a

dense subspace of X then d(X) b d(Z); this follows from the fact that any dense

subspace of Z is also dense in X. Fix a set At � Xt ¼ At with jAtj b k for each t 2 T.
Take a surjection ft : D(k)! At for each t 2 T. Since any map defined on a discrete

space is continuous, ft is continuous for all t 2 T. Given x 2 D(k)T, let ’(x)(t) ¼
ft(x(t)) for all t 2 T. Then ’ : D(k)T! X ¼ Qt2T Xt.

We leave to the reader the boring verification of the fact that ’ is a continuous

map and ’(D(k)T)¼ A¼Qt2T At. It is another easy exercise for the reader to check

that A is dense in X and therefore d(X) b d(A) b d(D(k)T). As a consequence, it

suffices to prove that D(k)T has density b k. The space D ¼ D(2) is Tychonoff and
hence Dk is also Tychonoff by Problem 105. The family B ¼ {

Q
t2k Ut : Ut 2 t(D)

for all t, and the set {t 2 T : Ut 6¼ D} is finite} is a base for the space Dk. Since there

are only k-many finite subsets of k and t(D) is finite, we have jBj ¼ k and hence

w(Dk)b k. It is trivial that w(Y)b w(Dk) for any Y�Dk. Now, jDkj ¼ 2k and hence

there exists an injection i : T! Dk.

We have a topology m ¼ i�1(t(Dk)) on the set T which is Tychonoff and has

weightb k (see Problem 097). Fix any base C of (T, m) of cardinality b k. Consider
the set B ¼ {x 2 D(k)T : there exists a finite disjoint family g� C such that x(U) has
at most one element for all U 2 g and the same is true for x(T \

S
g)}. In other words,

B consists of functions on T which are constant on the elements of some disjoint

finite g � C as well as on the set T \
S
g. It takes some routine cardinal arithmetic to

prove that jBj b k. Let us show that B is dense in D(k)T.
Take any non-empty basic open set U ¼Qt2T Ut where supp(U) ¼ {t 2 T : Ut 6¼

D(k)} is a finite set. If supp(U) ¼ ; then, evidently, U \ B 6¼ ;, so suppose that
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supp(U)¼ {t1, . . . , tn}. For each ib n, choose ui 2 Uti and fix some a 2D(k). Since
(T, m) is a Tychonoff space, there is a disjoint g¼ {C1, . . . , Cn}� C such that ti 2 Ci

for each i b n. Given t 2 T, let x(t) ¼ ui if t 2 Ci for some i b n and x(t) ¼ a for all

indices t 2 D(k) \ [g. It is clear that x 2 B \ U and hence U \ B 6¼ ; for every
basic open set U. Therefore, B is dense in D(k)T and hence d(D(k)T) b jBj b k.

S.109. Prove that any product of separable spaces has the Souslin property. In
particular, the space RA has the Souslin property for any set A.

Solution. Let Xt be a separable space for each t 2 T. Assume that the space

X ¼ Qt2T Xt does not have the Souslin property and fix a family {Ua : a < o1}

of non-empty disjoint open subsets of X. We may assume (taking smaller sets if

necessary) that every Ua is an element of the standard open base of X, namely

Ua ¼
QfUa

t : t 2 Tg where suppðUaÞ ¼ ft 2 T : Ua
t 6¼ Xtg is finite for all a < o1.

The set S ¼ S{supp(Ua) : a < o1} has cardinality b o1 b 2o. The set Va ¼ pS(Ua)

is non-empty and open in XS ¼
Q
{Xt : t 2 S} (Problem 107) and the family

{Va : a < o1} is disjoint.

Indeed, if a 6¼ b and x 2 Va \ Vb then take any xt 2 Xt for all t 2 T \ S and

consider a function y 2 X defined by y(t)¼ x(t) if t 2 S and y(t)¼ xt for all t 2 T \ S.
Note that supp(Ua) [ supp(Ub) � S and we have yðtÞ ¼ xðtÞ 2 Ua

t and

yðtÞ ¼ xðtÞ 2 Ub
t for all t 2 S. But we also have yðtÞ 2 Ua

t and yðtÞ 2 Ub
t for all

t 2 T \ S becauseUa
t ¼ Ub

t ¼ Xt for all t 2 T \ S. This shows that y 2Ua \ Ub which

is a contradiction.

Now apply Problem 108 to see that the space XS is separable. If A is a countable

dense subset of XS then, for each a<o1, choose aa 2 Va \ A. If a 6¼ b then Va \ Vb

¼ ; which implies aa 6¼ ab. Thus {aa : a < o1} is an uncountable subset of a

countable set A which is a contradiction. Finally, to see that RA has the Souslin

property, note that R is separable because the countable set Q is dense in R.
S.110. Suppose that X is a space and Y is a dense subspace X. Prove that
c(X) ¼ c(Y).

Solution. Suppose that g is a disjoint family of non-empty open subsets of X. Then
m ¼ {U \ Y : U 2 g} is also a disjoint family of non-empty open subsets of Y with

jmj ¼ jgj. Thus c(X) b c(Y). On the other hand, if m a disjoint family of non-empty

open subsets of Y then, for each U 2 m, take W(U) 2 t(X) with W(U) \ Y ¼ U.
Observe that any non-empty open set of X has to meet Y because Y is dense in X.
Now, if W(U) \ W(U0) 6¼ ; then the non-empty open set W(U) \ W(U0) has to
intersect Y and therefore ; 6¼ W(U) \ W(U0) \ Y ¼ U \ U0 which is a contradic-

tion which proves that the family g¼ {W(U) :U 2 m} is disjoint. Since jmj ¼ jgj, this
shows that c(Y) b c(X).

S.111. Given spaces X and Y, note that C(X, Y) � YX. Prove that the topology of
Cp(X, Y) coincides with the topology induced in C(X, Y) from the Tychonoff
product YX. In particular, Cp(X) is a subspace of RX. Prove that Cp(X) dense in
RX. Hence, for any space X, the space Cp(X) has the Souslin property.
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Solution. By the definition of the product, the set YX consists of all mappings

from X to Y. Thus C(X, Y) � YX. To see that the topology induced on C(X, Y) from
YX is precisely the topology of Cp(X, Y), we will use the following evident fact.

Suppose that Z is a space and T � Z has a topology t. Then t is the subspace

topology on T if and only if there exists a base C of Z such that the family CjT ¼
{U \ T : U 2 C} is a base for (T, t). We leave to the reader the simple proof of

this fact. Now if we take an element U ¼ Qx2X Ux of the standard base B in YX

(Problem 101) then U \ C(X, Y) ¼ [x1, . . . , xn; U1, . . . , Un] where {x1, . . . , xn} is

some enumeration of the finite set {x 2 X : Ux 6¼ Y} and Ui ¼ Uxi for all ib n. If we
denote by B0 the standard base of Cp(X, Y) then BjC(X, Y) � B0. On the other hand,

if V¼ [x1, . . . , xn; O1, . . . , On] 2 B0 then U¼
Q

x2X Ux 2 B and U \ C(X, Y)¼ V if

we take Uxi ¼ Oi for all i b n and Ux ¼ Y otherwise. Therefore BjC(X, Y) ¼ B0 and
we proved that the topology of Cp(X, Y) is the topology of subspace of YX and, in

particular, Cp(X) is a subspace of RX.

To prove that Cp(X) is dense in RX, take any non-empty standard open subset

U ¼ Qx2X Ux of the space RX. The set A ¼ {x 2 X : Ux 6¼ R} is finite and it is

possible to choose rx 2 Ux for each x 2 A. Apply Problem 034 to find a function

f 2 Cp(X) such that f(x) ¼ rx for any x 2 A. Then f 2 U \ Cp(X) and therefore

Cp(X) \ U 6¼ ; for any standard open U � RX which shows that Cp(X) is dense
in RX. The last part of the assertion of this problem follows from Problems 109

and 110.

S.112. Let Yt be a space for every t 2 T. Show that, for any space X, the space
Cp(X,

Q
t2T Yt) is homeomorphic to

Q
{Cp(X, Yt) : t 2 T}.

Solution. Let us establish first the following general fact (�). Given spaces Z andW,

take any z2 Z and define pz :WZ!W to be the natural projection, i.e., pz( f)¼ f(z) for
all f 2 WZ. Since Cp(Z, W) � WZ (Problem 111), the map pzjCp(Z, W) is continuous.

For the spaces Y¼Qt2T Yt and C¼
Q
{Cp(X, Yt) : t 2 T}, let pt : Y! Yt and qt : C!

Cp(X, Yt) be the respective natural projections. Given x 2 X, we will also need the

natural projection rx : Y
X! Y defined by rx( f) ¼ f(x) for all f 2 YX.

For any f 2 Cp(X, Y), define ’( f) 2 C letting ’( f)(t)¼ pt 	 f for each t 2 T. We are

going to prove that the map ’ : Cp(X, Y)! C is a homeomorphism. Fix any t 2 T
and let (pt) � ( f) ¼ pt 	 f. The mapping (pt)� : Cp(X, Y)! Cp(X, Yt) is continuous by
Problem 091. Since qt 	 ’ ¼ (pt)� for each t, the mapping ’ is also continuous (see

Problem 102). If f, g 2 Cp(X, Y) and f 6¼ g then f(x) 6¼ g(x) for some point x 2 X.
Furthermore, there is an index t 2 T such that f(x)(t) 6¼ g(x)(t). Therefore, ’( f)(t)(x)¼
pt( f(x)) ¼ f(x)(t) 6¼ g(x)(t) ¼ pt(g(x)) ¼ ’(g)(t)(x) and hence pt 	 f 6¼ pt 	 g which

implies ’( f) 6¼ ’(g).
To see that’ is surjective, take any g2C. Then g(t)2Cp(X, Yt) for each t sowe can

let f(x)(t) ¼ g(t)(x) for each x 2 X. We have f 2 Cp(X, Y) by Problem 102 and ’( f )
¼ g whence ’ is a continuous bijection. To establish that ’�1 is continuous, observe
that ’�1 is also a map from C in YX (Problem 111) so it suffices to prove that ’�1 : C
! YX is continuous (Problem 023). Continuity of ’�1 is equivalent to continuity of

all compositions rx 	 ’�1 for x 2 X (Problem 102). Observe that rx 	 ’�1 : C! Y
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and Y is also a product so continuity of rx 	 ’�1 is equivalent to continuity of pt 	 rx 	
’�1 for each t 2 T. For any f 2 C, we have pt 	 rx 	 ’�1( f)¼ f(t)(x) and therefore the
map pt 	 rx 	 ’�1 coincides with px 	 qt :C! Ytwhere px(h)¼ h(x) for any h2 Cp(X,
Yt). The map qt is continuous and so is pt by (�) which proves continuity of ’�1.

S.113. Suppose that Xt is a space for each t 2 T and let X¼S{Xt� {t} : t 2 T}. For
every t 2 T, define the map qt : Xt� {t}! Xt by the formula qt (x, t)¼ x for each x 2
Xt. If U� X, let U 2 t if qt(U \ (Xt� {t})) is open in Xt for all t 2 T. Prove that t is
a topology on X. The space (X, t) is denoted by

L
{Xt : t 2 T} and is called the

discrete (or free) union of the spaces Xt. Show that

(i) If Xt� {t} is given the topology of subspace of
L

{Xt : t 2 T} then the map qt is
a homeomorphism for each t. Thus Xt � {t} is a copy of Xt.

(ii) Each Xt � {t} is a clopen (� closed-and-open) subset of
L

{Xt : t 2 T}.
(iii) If a space X can be represented as a union of a family {Xt : t 2 T} of pairwise

disjoint open subsets of X, then X is homeomorphic to
L

{Xt : t 2 T}.

Solution. If U ¼ ; then qt(U \ (Xt � {t})) ¼ ; 2 t(Xt) for each t 2 T and hence

; 2t. If U¼ X then qt(U \ (Xt� {t}))¼ Xt 2 t(Xt) for each t 2 T which shows that

X 2 t. Given U, V 2 t, we have

qt(U \ V \ (Xt � {t})) ¼ qt(U \ (Xt � {t})) \ qt(V \ (Xt � {t})) 2 t(Xt)

because each one of the sets of the intersection belongs to t(Xt). As a consequence,

U \ V 2 t. Finally, if g � t then

qt((
S
g) \ (Xt � {t})) ¼ S{qt(U \ (Xt � {t})) : U 2 g} 2 t(Xt)

for each t 2 T because every element of the union belongs to t. Therefore [g 2 t
and we proved that t is a topology on X. Denote by Yt the set Xt� {t} for each t 2 T.
(i) It is clear that qt is a bijection. If U 2 t(Xt) then W ¼ q�1t (U) [ (X \ Yt) is an

open set in X with W \ Yt ¼ q�1t (U). Therefore q�1t (U) 2 t(Yt) and qt is
continuous. If U is open in Yt then there is W 2 t such that W \ Yt ¼ U. By
definition of t, we have ðq�1t Þ�1(U) ¼ qt(U) ¼ qt(W \ Yt) is an open set in Xt

and hence qt is a homeomorphism.

(ii) Each U ¼ Yt is open because, for any s 6¼ t, we have qs(U \ Ys) ¼ ; 2 t(Xs)

and qt(U \ Yt) ¼ qt(Yt) ¼ Xt 2 t(Xt). The set U is also closed being a

complement of an open set X \ U ¼ S{Ys : s 2 T \ {t}}.
(iii) Define a map q : Y¼L{Xt : t 2 T}! X by the equality q(x)¼ qt(x) if x 2 Yt¼

Xt � {t}. It is evident that q is a well-defined bijection. If U is open in Y then

q(U) ¼ [{qt(U \ Yt) : t 2 T}. The set qt(U \ Yt) is open in Xt and hence in X
whence q(U) is open in X and therefore q�1 is continuous. Finally, if V is open

in X then qt(q
�1(V) \ Yt) ¼ V \ Xt is open in Xt for each t 2 T and hence the

set q�1(V) is open in Y. This proves that q is also continuous.

S.114. Suppose that X ¼ L{Xt : t 2 T}. Prove that, for any space Y, the space
Cp(X, Y) is homeomorphic to the space

Q
{Cp(Xt, Y) : t 2 T}.

Solution. Let us consider the restriction map pt : Cp(X, Y) ! Cp(Xt, Y) defined
by pt( f) ¼ f jXt for all t 2 T and f 2 Cp(X, Y). Given an element U ¼ [x1, . . . , xn;
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O1, . . . , On] of the standard base of the space Cp(Xt, Y), it is easy to convince

ourselves that p�1t (U) ¼ {f 2 Cp(X, Y) : f(xi) 2 Oi, for all i b n} 2 t(Cp(X, Y)) and
hence pt is continuous. For any f 2 Cp(X, Y), define ’( f) 2 C¼Q{Cp(Xt, Y) : t 2 T}
by the equality ’( f)(t) ¼ pt( f) ¼ fjXt. If qt : C! Cp(Xt, Y) is the respective natural
projection then qt 	 ’ ¼ pt is a continuous map for any t 2 T and therefore the map

’ : Cp(X, Y)! C is continuous. If f, g 2 Cp(X, Y), f 6¼ g then pick any point x 2 X
with f (x) 6¼ g(x) and t 2 T such that x 2 Xt. Then f jXt 6¼ gjXt, i.e., pt( f) 6¼ pt(g) which
implies ’( f) 6¼ ’(g) and hence ’ is an injection. Given any g 2 C define a function

f 2 Cp(X, Y) as follows: for any x 2 X find the unique t 2 T with x 2 Xt and let f(x)¼
g(t)(x). We omit the simple verification of the fact that f is continuous and ’( f) ¼ g
which shows that ’ is a bijection. To prove that ’ is a homeomorphism, we must

show that ’�1 is continuous. Let us consider ’�1 as a map from C to YX (Problem

111). By Problem 102, continuity of ’�1 is equivalent to continuity of the map rx 	
’�1 for all x 2 Xwhere rx(h)¼ h(x) for all h 2 YX. So take any x 2 X and t 2 Twith x
2 Xt. Then rx 	 ’�1( f) ¼ f(t)(x) ¼ qt( f)(x) ¼ sx 	 qt( f) where sx : Cp(Xt, Y)! Y is

defined by sx(h) ¼ h(x) for all h 2 Cp(Xt, Y). The map sx is continuous being the

restriction of the respective natural projection of YXt to Cp(Xt, Y). Therefore rx 	 ’�1
¼ sx 	 qt is also continuous which proves continuity of ’�1.

S.115. Given a space X, define the map sm : Cp(X)� Cp(X)! Cp(X) by the equality
sm( f, g) ¼ f þ g for any f, g 2 Cp(X). Prove that the map sm is continuous.

Solution. Take any functions f0, g0 2 Cp(X). If h0 ¼ f0 þ g0 2 U 2 t(Cp(X))
then there exist x1, . . . , xn 2 X and e > 0 such that O(h0, x1, . . . , xn, e) � U. The sets
V¼ O( f0, x1, . . . , xn,

e
2
) andW¼ O(g0, x1, . . . , xn,

e
2
) are open in Cp(X) and therefore

( f0, g0) 2 V � W 2 t(Cp(X) � Cp(X)). Given f 2 V and g 2 W, we have jf(xi) þ
g(xi) � h0(xi)j b jf(xi) � f0(xi)j þ jg(xi) � g0(xi)j < e

2
þ e

2
¼ e for all i b n.

As a consequence, fþ g 2 O(h0, x1, . . . , xn, e) and we established that sm(V�W)¼
V þ W � O(h0, x1, . . . , xn, e) � U and hence the map sm is continuous at the

point ( f0, g0).

S.116. Given a space X, define the map pr : Cp(X) � Cp(X)! Cp(X) by the equality
pr( f, g) ¼ f · g for any f, g 2 Cp(X). Prove that the map pr is continuous.

Solution. Take any functions f0, g0 2 Cp(X). If h0¼ f0 · g0 2U 2 t(Cp(X)) then there
exist x1, . . . , xn 2 X and e > 0 such that O(h0, x1, . . . , xn, e) � U. Let

M ¼Pn
i¼1 jf0ðxiÞjþ

Pn
i¼1 jg0ðxiÞjþ2 and d ¼ min{ e

2M, 1}. Observe that the sets

V¼O( f0, x1, . . . , xn, d) andW¼O(g0, x1, . . . , xn, d) are open in Cp(X) and therefore
( f0, g0) 2 V � W 2 t(Cp(X) � Cp(X)). If we are given f 2 V and g 2 W, we have

jg(xi)j < 1 þ jg0(xi)j < M for each i ¼ 1, . . . , n and hence jf(xi) · g(xi) � h0(xi)j ¼
jg(xi) · ( f(xi)� f0(xi))þ f0(xi) · (g(xi)� g0(xi))jb jg(xi)jjf(xi)� f0(xi)j þ jf0(xi)jjg(xi)
� g0(xi)j < M · d þ M · d b e

2
þ e

2
¼ e for all i b n. As a consequence, f · g 2 O(h0,

x1, . . ., xn, e) and we established that pr(V � W) ¼ V ·W � O(h0, x1, . . . , xn, e) � U
and hence the map pr is continuous at the point ( f0, g0).
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S.117. Let X be an arbitrary set. Given a family F � exp(X) with a property P, we
say that F is a maximal family with the property P, if F has P and for any g � exp

(X) with the property P, we have g ¼ F whenever F � g. Prove that

(i) Any filter is a filter base and any filter base is a centered family.
(ii) For any centered family C on X, there is a filter F on X such that C � F .
(iii) If F is a filter on X then there is a maximal filter U on X such that F � U .

A maximal filter is called ultrafilter, so applying (ii), this statement could
be formulated as follows: every centered family on X is contained in an
ultrafilter on X.

(iv) A family U � exp(X) is an ultrafilter if and only if it is a maximal centered
family. As a consequence, any centered family on X is contained in a maximal
centered family on X.

(v) A family U � exp(X) is an ultrafilter if and only if it is a centered family and,
for any A � X, we have A 2 U or X \A 2 U.

(vi) If X is a topological space and g � t�(X) is disjoint then there is a maximal
disjoint m � t�(X) such that g � m.

(vii) There are no maximal point-finite families of non-empty open subsets of R.
Solution. (i) To see that any filter F is a filter base observe that, for any sets

A, B 2 F , the set C ¼ A \ B � A \ B belongs to F . Now, if B is a filter base and

B1, . . . , Bn 2 B then it is easy to prove by induction on n that there is C 2 B such that

C � B1 \ � � � \ Bn. Since C 6¼ ;, this proves that B is centered.

(ii) Consider the family F ¼ {F� X : there exist n 2 N and C1, . . . , Cn 2 C with
C1 \ � � � \ Cn � F}. It is immediate that C � F and F is a filter.

(iii) We will apply the Zorn’s Lemma which says that any partially ordered set in

which every chain has an upper bound, has a maximal element. Consider the family

U ¼ {g � exp(X) : g is a filter and F � g}. The partial order on U is the inclusion. If

U 2U is a maximal element, thenF � U and U is an ultrafilter, so by Zorn’s Lemma,

it suffices to prove that every chain in U has an upper bound. Take an arbitrary non-

empty chain C � U. Then m ¼ S C � exp(X) and g � m for any g 2 C. This shows

that m is an upper bound forC so the last thing we must prove is that m 2U, i.e., that m
is a filter. SinceC 6¼ ;, we have m 6¼ ;. Given A, B2 m, there are g1, g2 2C such that A
2 g1 and B 2 g2. The family C being a chain, we have g1 � g2 or g2 � g1. In both

cases, A, B 2 gi for some i 2 {1, 2} and hence A \ B 2 gi because gi is a filter.

Therefore A \ B 2 m. Now, if A 2 m and A � B then there is g 2 C such that A 2 g.
Since g is a filter, we have B 2 g and hence B 2 m. Therefore m is a filter. To finish the

proof observe that any centered family is contained in a filter by (ii) and any filter is

contained in an ultrafilter. Therefore any centered family is contained in an ultrafilter.

(iv) Suppose that U is an ultrafilter on X. Then U is a centered family by (i). To

see that U is maximal centered observe that if U � U0 and U0 is centered then, by

(ii), there is a filter F � U0 � U. By the maximality of U as a filter, we have F ¼ U
and hence U ¼ U0 which shows that U is a maximal centered family. Now, if U is

maximal centered then apply (iii) to find an ultrafilter x � U. Since x is also

centered, by the maximality of U as a centered family, we have U ¼ x and hence

U is an ultrafilter.
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(v) Suppose first that U is an ultrafilter. Then it is maximal centered and, given

any A � X with A =2 U, the family U [ {A} is not centered by maximality of U as a

centered family. Therefore there are U1, . . . , Un 2 U with U1 \ � � � \Un \ A ¼;.
Then U ¼ U1 \ � � � \ Un 2 U and U � X \ A. Now it is easy to see that U0 ¼ U [
{X \ A} is centered and hence U0 ¼ U by the maximality of U as a centered family.

As a consequence, X \A 2 U. Assume finally that U is a centered family such that

A 2 U or X \ A 2 U for any A� X. By (iv), it is sufficient to show that U is maximal

centered. So take any A =2 U. We have B ¼ X \ A 2 U, so for U0 ¼ U [ {A} we have
A, B 2 U0 and A \ B ¼ ; and therefore U0 is not centered. This proves that U is

maximal centered and hence an ultrafilter.

(vi) Let U ¼ {d � t�(X) : d is disjoint and g � d}. The partial order on U is the

inclusion. If m 2 U is a maximal element, then g � m and m is a maximal disjoint

family, so by Zorn’s Lemma, it suffices to prove that every chain in U has an upper

bound. Take an arbitrary non-empty chain C � U . Then n ¼S C � t�(X) and d � n
for any d 2 C. This shows that n is an upper bound for C so the last thing we must

prove is that n 2 U , i.e., that n is a disjoint family. Given A, B 2 n, there are d1, d2 2 C
such that A 2 d1 and B 2 d2. The family C being a chain, we have d1� d2 or d2� d1.
In both cases, A, B 2 di for some i 2 {1, 2} and hence A \ B ¼ ; because di is a
disjoint family. Therefore n is a disjoint family.

(vii) Suppose that g � t�(R) is a point-finite family. Observe that t�(R) is not
point-finite so there is U 2 t�(R) \ g. It is clear that g [ {U} is point-finite and hence
g is not maximal.

S.118. Prove that the following properties are equivalent for any (not necessarily
Tychonoff) space X:

(i) X is compact.
(ii) There is a base B in X such that every cover of X with the elements of B has a

finite subcover.
(iii) There is a subbase S in X such that every cover of X with the elements of S

has a finite subcover.
(iv) If P is a filter base in X then

T
{P : P 2 P} 6¼ ;.

(v) If F is a filter on X then
T
{F : F 2 F} 6¼ ;.

(vi) Given an ultrafilter U on the set X we have
T
{U : U 2 U} 6¼ ;.

(vii) If C is a centered family of subsets of X then
T
{C : C 2 C} 6¼ ;.

(viii) If D is a centered family of closed subsets of X then
T
{D : D 2 D} 6¼ ;.

(ix) If G is a filter base of closed subsets of X then
T
{G : G 2 G} 6¼ ;.

(x) For any infinite A� X there is a point x 2 X such that jU \ Aj ¼ jAj for any
neighbourhood U of the point x (such a point x is called a complete
accumulation point of A). Thus, this criterion could be formulated as
follows: a space X is compact iff any infinite subset of X has a complete
accumulation point.

Solution. (i) ) (ii) because B ¼ t(X) is a base of X. Since every base of X is a

subbase of X, taking S ¼ B, we obtain (ii)) (iii). Since any filter is a filterbase and

any ultrafilter is a filter, we have (iv)) (v)) (vi). Suppose that (vi) is fulfilled and
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take any centered family C of subsets of X. By Problem 117(iii) there exists an

ultrafilter U � C. Then T{C : C 2 C} � T{C : C 2 U} 6¼ ; by (vi) and this proves

that (vi)) (vii). If (vii) holds and C is a centered family of closed subsets of X then

by (vii) we have
T
{F : F 2 C} ¼ T{F : F 2 B} 6¼ ; which proves (vii)) (viii).

Since any filter base is centered, we have (viii)) (ix). Now, suppose that (ix) holds

and P is a filter base on X. It is easily checked that G ¼ {P : P 2 P} is also a filter

base, so by (ix), we have
T
{P : P 2 P}¼T G 6¼ ;which proves that (ix)) (iv) and

hence the conditions (iv)–(ix) are equivalent.

If the space X is compact and A� X is an infinite set suppose that, for every point

x 2 X, there is Ux 2 t(x, X) such that jUx \ Aj < jAj. There are x1, . . . , xn 2 X such

that X ¼ [{Uxi : i b n}. Therefore A ¼ [{A \ Uxi : i b n} and jAj ¼ S{jA \ Uxi j :
i b n} < jAj because every summand has cardinality less than jAj. The obtained

contradiction shows that (i)) (x).

Assume that (x) holds for the space X. If X is not compact choose a family g ¼
{Ua : a < k} � t(X) of minimal cardinality k such that [g ¼ X and g has no finite

subcover. For each a< k, letVa¼
S
{Ub : bb a}. Note first thatVa 6¼X for any a< k

for otherwise the family ga ¼ {Ub : b b a} is an open cover of X of cardinality < k
which has, by the choice of k, a finite subcover, a contradiction. The second

observation is that k ¼ jgj is a regular cardinal, i.e., k has no cofinal subset of

cardinality less than k. To prove it, assume the contrary and take a cofinal B� kwith
jBj< k. By cofinality ofB the family m¼ {Va : a2B} is an open cover ofX. Since jmj
< k, there are a1, . . . , an 2 B such that [{Vai : ib n}¼ X. If aj is the biggest one from
the ordinals {a1, . . . , an} we have X ¼ Vaj which is a contradiction with the first

observation. The third observation is that the cardinality of Pa ¼ X \ Va cannot be

less than k. Indeed, if jPaj < k for some a < k then for each x 2 Pa, fix ax < k such

that x 2 Uax � Vax . The set {ax : x 2 Pa} cannot be cofinal in k by the second

observation so there is b< k such that b> a and ax< b for all x2 Pa. It is easy to see

that this implies X ¼ Vb which is a contradiction with the first observation.

By the first observation, we can choose a point x0 2 X \V0. Suppose that we have

chosen xa 2 X \ Va for each a < b. The set X \ Vb has cardinality at least k by the

third observation so there exists xb 2 (X \Vb) \ {xa : a< b} which shows that we can
construct the set A ¼ {xa : a < k} � X. Clearly, xa 6¼ xb if a 6¼ b and hence jAj ¼ k.
Now, for any x 2 X there is a< kwith x 2Ua� Va. Since xb =2 Va for each b> a, we
have jA \ Uaj < k and therefore A has no complete accumulation point in X, a
contradiction. This establishes that (i), (x).

Now, suppose that X is compact and D is a centered family of closed subsets of X
such that

T D ¼;. The family g ¼ {X \ C : C 2 C} is an open cover of X and, by

compactness of X, there are C1, . . . , Cn 2 C such that (X \ C1) [ � � � [ (X \ Cn) ¼ X
whence C1 \ � � � \ Cn ¼ ; which is a contradiction with the fact that C is centered.
This proves (i)) (viii). Now, if (viii) holds, take any open cover g of the space X. If g
has no finite subcover then the family G ¼ {X \ U : U 2 g} is centered and consists

of closed subsets of X. By (viii) we have
T G 6¼ ; and, as an immediate consequence,S

g 6¼ X which is a contradiction which proves the implication (viii)) (i).
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The last implication left is (iii))(i). The following technical definition will be

useful in this proof: an open cover of X will be called marked if it has no finite

subcover. It is clear that any subcover of a marked cover is also marked.

Fix a subbase S like in (iii) and assume that there exists an open cover g of X
which does not have a finite subcover, i.e., g is marked. A routine application of

Zorn’s Lemma shows that there exists a family m � t(X) such that g � m and m is a

maximal marked cover of X. If n¼ m \ S is a cover of X then it is marked which is a

contradiction with the choice of S. Therefore there is x2 X \ (
S
n). Since g is a cover

of X, there exists U 2 g with x 2 U. The family S being a subbase, there are U1, . . . ,
Un2S such that x2U1 \ � � � \ Un�U. Now,Ui =2 m for each ib n for otherwiseUi

2 m \ S ¼ n and x 2S n which is a contradiction. Since m is maximal marked, the

family m [ {Ui} is not marked, i.e., there is a finite mi� m such that (
S

mi) [ Ui¼ X
for each i b n. Observe that d ¼ m1 [ � � � [ mn [ {U} is a finite subfamily of m.
Given y 2 X, if y 2 Tibn Ui then y 2 U � S d. If y =2 Tibn Ui then y =2 Ui for some

ib n and therefore y 2 [ mi�
S

d. Thus y 2S d and
S
d¼ Xwhich is contradiction

with the fact that m has no finite subcover. Hence X is compact and our proof is

complete.

S.119. Prove that a continuous image of a compact space is a compact space.

Solution.Assume that X is a compact space and f : X! Y is a continuous onto map.

If g is an open cover of Y then m ¼ {f�1 (U) : U 2 g} is an open cover of X. By
compactness of X there are U1, . . . , Un 2 g with X ¼ f�1 (U1) [ � � � [ f�1 (Un). As a

consequence, Y ¼ f(X)¼ f( f�1 (U1)) [ � � � [ f( f�1 (Un))¼ U1 [ � � � [ Un and hence

Y is compact.

S.120. Prove that a closed subspace of a compact space is a compact space.

Solution. If X is compact and Y is a closed subspace of X take any centered familyD
of closed subsets of Y. Then the elements of D are also closed in X and hence

T D
6¼ ;. Apply Problem 118(viii) to conclude that Y is compact.

S.121. Prove that, if X is a Hausdorff space and Y is a compact subspace of X, then
Y is closed in X. Show that this is not true if X is not Hausdorff.

Solution. Take any x 2 X \Y. For any y 2 Y fix open sets Uy, Vy such that x 2 Uy,

y 2 Vy and Uy \ Vy ¼ ;. The family {Uy \ Y : y 2 Y} is an open cover of the

compact space Y. Thus there are y1, . . . , yn 2 Ywith Y�Uy1 [ � � � [Uyn . The setWx¼
Vy1 \ � � � \ Vyn is open in X and contains x. Now, if z2 Y then z 2 Uyi for some ib n
and hence z =2 Vyi �Wx. This shows thatWx \ Y¼ ; and hence X \ Y ¼S{Wx : x 2
X \ Y} is an open set.

To show that our statement may be false when X is not Hausdorff, define a

topology n on R as follows: a set A � R belongs to n if A ¼ ; or R \ A is finite. We

leave to the reader the simple verification that X ¼ (R, n) is compact as well as any

Y� X. Thus the set Y¼ [0, 1] is compact but not closed inX because any x2R \ [0, 1]

belongs to the closure of Y.
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S.122. Let X be a compact space. Show that, for any Hausdorff space Y, any
continuous surjective mapping f : X! Y is closed.

Solution. Let F be a closed subset of X. The subspace F is compact by Problem 120

and hence f(F) is a compact subset of Y by 119. Now apply Problem 121 to conclude

that f(F) is closed in Y.

S.123. Show that, if X is a compact space and f : X! Y is a condensation then f is a
homeomorphism.

Solution.We must only prove that f�1 is continuous. Given a closed F � X, the set
( f�1)�1(F) ¼ f(F) is closed in Y by Problem 122 and hence f�1 is continuous by
009(v).

S.124. Show that any Lindel€of T3-space is normal as well as any Hausdorff compact
space.

Solution. For possible future references we will prove a little more, namely, that

(i) Any Lindel€of T3-space is normal and hence Tychonoff.

(ii) Any Hausdorff compact space is normal and hence Tychonoff.

Let X be a Lindel€of T3-space. The first observation is that, for any closed F � X
and any g� t(X) with F�S g, there is a countable g0 � g with F�Sg0. Indeed, the
family G ¼ g [ {X \F} is an open cover of the space X and therefore there is a

countable g0 � g such that X ¼ (X \F) [ (
S
g0). It is immediate that F � S g0. The

second observation is that, given a closed F � X and x 2 X \F, there is U 2 t(x, X)
such that U \ F ¼ ;. This is true because, by regularity of X, there are U, V 2 t(X)
such that x 2 U, F � V and U \ V ¼;. It is clear that U \ F ¼ ;. Now, take any
disjoint closed non-empty sets F, G � X. For any x 2 F, apply the second

observation to find an open set Ux with x 2 Ux and Ux \ G ¼ ;. Analogously,
for any y 2 G there is Vy 2 t(y, X) such that Vy \ F ¼ ;. Now, F ¼ {Ux : x 2 F} is
an open cover of the closed set F so by the first observation, we can find a family

{Ui : i 2o}�F with F� [{Ui : i 2o}. Since G ¼ {Vy : y 2G} is an open cover of
the closed set G, by the first observation, there is a family {Vi : i 2 o}� G such that
G � S{Vi : i 2 o}. Note that Ui \ G ¼ ; and Vi \ F ¼ ; for any i 2 o. Consider
the sets U0i ¼ UinðV0 [ � � � [ ViÞ and V0i ¼ VinðU0 [ � � � [ UiÞ for all i 2 o and let

U ¼ Si2o U0i and V ¼ [i2oV0i . It is evident that U and V are open sets. We claim

that F�U,G� V andU \ V¼ ;. For any x 2 F and i 2o such that x 2Uiwe have

x 2 U0i because V0 [ � � � [ Vi does not meet F. Therefore F � U. Analogously, if
y 2 G and y 2 Vi then y 2 V0i and hence G� V. To see that U and V are disjoint, take

any x 2 U \ V. Then x 2 U0i \ V0j for some i, j 2 o. If i b j then x 2 V0j implies

x =2 Uk for any k b j and, in particular, x =2 Ui � U0i, a contradiction. The case j < i
gives us a contradiction in the same way and hence U \ V ¼ ;. The proof of the
normality of any Lindel€of T3-space is complete.

Now, assume that X is compact Hausdorff space. Since any compact space is

Lindel€of, by the previous statement it is sufficient to establish regularity of the space

X. Take any closed F � X and any x 2 X \ F. For any y 2 F there are Uy, Vy 2 t(X)
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such that x 2 Uy, y 2 Vy and Uy \ Vy ¼;. The space F is compact, so the

cover {Uy \ F : y 2 F} has a finite subcover. Choose y1, . . . , yn 2 F such that

F � Vy1 [ � � � [ Vyn . Consider the sets U ¼
T

ibn Uyi and V ¼ Sibn Vyi . It is clear

that U 2 t(x, X) and V 2 t(F, X) so it is sufficient to show that U \ V ¼;. Indeed,
if z 2 U \ V then z 2 Uyi for all i b n and z 2 Vyj for some number j b n. This
implies z 2 Uyj \ Vyj ¼ ; which is a contradiction. We proved (i) and (ii) so our

solution is complete.

S.125. (The Tychonoff theorem) Show that any product of compact spaces is a
compact space.

Solution. Suppose that the space Xt is compact for any t 2 T. We will prove that

X ¼ Q
{Xt : t 2 T} is compact using the criterion given in Problem 118(iii).

Consider the family S ¼ St2T St, where St ¼ {p�1t (U) : U 2 t(Xt)} for each

index t 2 T. It is easy to see that the family of all finite intersections of the elements

of S is precisely the standard base (see Problem 101) of the product
Q
{Xt : t 2 T}

which shows that S is a subbase of X. Let us prove that g � S and
S

g ¼ X implies

that g has a finite subcover. Note that g ¼ S{gt : t 2 T} where gt ¼ g \ St for each
t 2 T. Fix a family mt � t(Xt) such that gt ¼ {p�1t (U) : U 2 mt}. We claim that there

is t0 2 T such that
S
gt0 ¼ X. Indeed, if this were not the case, then, for each t 2 T,

there is yt 2 X \ ([gt). Now let y(t)¼ yt(t) for each t 2 T. It is evident that y 2 X. If t 2
T then y(t) ¼ yt(t) =2

S
mt for otherwise yt 2 p�1t (U) 2 gt for some U 2 mt which

contradicts the fact that yt 2 X \ (
S

gt). As a consequence, y =2
S

gt for each t 2 T and

therefore y =2 Sg, a contradiction. So we can fix t0 2 T with X ¼ S gt0 and hence

Xt0 ¼
S
mt0 . Remembering that Xt0 is compact, we can choose a finite n � mt0 such

that Xt0 ¼
S
n and hence X¼S{p�1t0

(U) :U 2 n} which shows that {p�1t0
(U) :U 2 n}

is a finite subcover of g and the compactness of X is proved.

S.126. Prove that a space X is compact if and only if X is homeomorphic to a closed
subspace of IA for some A with jAj b w(X).

Solution. Let us prove first that the space I is compact. Consider the families S1 ¼
{[�1, a) : 0 < a b 1} and S2 ¼ {(b, 1] : �1 b b < 1}. It is easy to see that S ¼ S1S S2 is a subbase of I. By Problem 118(iii) it suffices to prove that every cover of I
with the elements of S has a finite subcover. So assume that g � S and

S
g ¼ I.

Let gi¼ g \ Si, i ¼ 1, 2. We will need the numbers p¼ sup{a : [�1, a) 2 g1} and q
¼ inf{b : (b, 1] 2 g2}. It is easy to see that [0, p) ¼

S
g1 and (q, 1] ¼

S
g2 and hence

p> q for otherwise r ¼ pþq
2

=2S g. Since q< r< p, there are [�1, a) 2 g1 and (b, 1]
2 g2 such that b < r < a. As a consequence, I ¼ [�1, a) [ (b, 1] and therefore

{[�1, a), (b, 1]} is a finite subcover of g. Since I is compact, the space IA is also

compact for any A by Problem 125. Any closed subspace of IA is also compact by

Problem 120 so, if X is homeomorphic to a closed subspace of some IA then X is

compact.

Now suppose that X is compact and k ¼ w(X). If k is finite then X is also finite, so

any subspace of Iwith k points is closed in openI and homeomorphic toX. In this case
IA is homeomorphic to I for A¼ {0} so jAj ¼ 1b k. If k is infinite fix a baseB in X of
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cardinality k. Call a pair (U, V) 2 B �B special ifU � V. Denote by A the set of all

special pairs. Then jAj b jB � Bj ¼ k. The space X is normal by Problem 124, so

given a special pair p ¼ (U, V), we can choose a continuous function hp : X ! I
such that hp(U) ¼ {0} and hp(X \V) ¼ {1}. For an arbitrary x 2 X, let ’(x)(p) ¼
hp(x) for any p 2 A. Then ’(x) 2 IA. We will prove that ’ : X! Y ¼ ’(X) � IA is a
homeomorphism. For any p 2 A, denote by pp the pth projection of IA onto I.
Recall that pp( f) ¼ f(p) for any f 2 IA. Note that ’ is continuous because, for any

p 2 A, we have pp 	’¼ hp and the map hp is continuous (see Problem 102). If x 6¼ y
then take any V 2 B such that x 2 V � X \ {y}. By regularity of X there is U0 2 t(X)
such that x 2 U0 � U0 � V. Take any set U 2 B such that x 2 U � U0. Then the pair
p¼ (U, V) is special and hp(x)¼ 0, hp(y)¼ 1. As a consequence, ’(x)(p)¼ hp(x) 6¼
hp(y) ¼ ’(y)(p) which proves that ’(x) 6¼ ’(y) and hence ’ is a condensation.

Apply Problem 123 to conclude that ’ is a homeomorphism. By Problem 121 the

subspace Y is closed in IA.
S.127. Prove that the following properties are equivalent for any (not necessarily
Tychonoff) space:

(i) X is homeomorphic to a subspace of a compact Tychonoff space.
(ii) X is homeomorphic to a subspace of a compact Hausdorff space.
(iii) X is homeomorphic to a subspace of IA for some A.
(iv) X is homeomorphic to a subspace of a T4-space.
(v) X is a Tychonoff space.

Solution. It is evident that (i) ) (ii). Applying Problem 126 we can see that if X
embeds in a compact space then it embeds in IA for some A so (ii)) (iii). The space

IA is compact Hausdorff and hence normal by Problem 124. This shows that (iii))
(iv). Now, every T4-space is Tychonoff and every subspace of a Tychonoff space is
a Tychonoff space by Problem 017. This proves (iv)) (v).

To establish that (v) ) (i) take any Tychonoff space X and let A ¼ C(X, I).
For an arbitrary x 2 X, let ’(x)( f) ¼ f(x) for each f 2 A. Then ’(x) 2 IA. We will

prove that ’ : X ! Y ¼ ’(X) � IA is a homeomorphism. For any h 2 A, denote
by ph the hth projection of IA onto I. Recall that ph(y) ¼ y(h) for any y 2 IA. Note
that ’ is continuous because, for any h 2 A, we have ph 	 ’ ¼ h and the map

h is continuous (see Problem 102). If x 6¼ y then by complete regularity of X there

is a continuous function h : X ! I such that h(x) ¼ 1 and h(y) ¼ 0. We have

’(x)(h)¼ h(x)¼ 1 6¼ 0¼ h(y)¼ ’(y)(h) which shows that ’(x) 6¼ ’(y) and hence ’
is a condensation. To finish the proof it suffices to establish that ’�1 : Y ! X is

continuous.

Take any y 2 Y and any U 2 t(x, X) where x¼ ’�1(y). By complete regularity of

X there is a continuous function h : X! I such that h(x) ¼ 1 and hj(X \U) � 0. The

setW¼ {z 2 IA : z(h)2 (0, 1]} is open in IA and y 2W because y(h)¼ h(x)¼ 1. Now

take any z 2W. If x0 ¼ ’�1(z) then ’(x0) ¼ z and ’(x0)(h) ¼ h(x0) > 0 which shows

that x0 =2 X \U and therefore x0 2 U. We proved that ’�1(W) � U and hence ’�1 is
continuous at the point y. Thus X is homeomorphic to the subspace Y of the compact

space IA and the implication (v)) (i) is proved.
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S.128. Denote by A the set of numeric sequences a¼ {ai : i 2 N} such that ai¼ 0 or

ai¼ 2 for all i. Given a¼ {ai : i 2N} 2 A, let x(a)¼ P1
i¼1

3�i · ai. The setK¼ {x(a) :

a 2 A} is called the Cantor perfect set. Prove that

(i) the set K is a compact subset of the segment I ¼ [0, 1].

(ii) K is uncountable and the interior of K is empty.
(iii) K is homeomorphic to {0, 1}N.
(iv) If F is a non-empty closed subspace ofK then there exists a continuous map r :

K! F such that r(x) ¼ x for all x 2 F.
(v) K maps continuously onto any second countable compact space.

Solution. Note first that, for any a 2 A, we have 0 b x(a) b
P1

i¼1 2 · 3�i ¼ 1 and

hence K � [0, 1]. To finish the proof of (i) we must establish that K is compact

which is an easy consequence of (iii). So let us prove that K is homeomorphic to

K ¼ {0, 1}N. Note that K is compact by Problem 125.

Given f 2 K, let ’( f)¼ P1i¼1 2 · f(i) · 3�i. It is clear that ’(K)¼K. If f, g 2 K and

f 6¼ g let n ¼ min{i 2 N : f(i) 6¼ g(i)}. Then j’( f) � ’(g)j ¼ j2 · 3�n þ P1i¼nþ1 2 ·

(( f(i) � g(i)) · 3�ij r 2 · 3�n � P1i¼nþ1 2 · 3�i ¼ 3�n > 0 and hence ’( f) 6¼ ’(g)
which proves that ’ is a bijection. To see that ’ is a continuous map, take any f0 2 K
and e > 0. There exists n 2 N such that 3�n < e. The set U ¼ {f 2 K : f(i) ¼ f0(i)
for all i b n} is open in K and f0 2 U. For any f 2 U, we have j’( f) � ’( f0)j bP1

i¼nþ1 2 · 3
�i ¼ 3�n < e and hence ’ is continuous at the point f0. Apply Problem

123 to conclude that ’ is a homeomorphism and the properties (iii) and (i) hold.

SinceK is homeomorphic to K, it is uncountable so to settle (ii) we must only prove

that K has empty interior. Given distinct f, g 2 K, let n ¼ min{i : f(i) 6¼ g(i)}.
Without loss of generality suppose that f(n)¼ 0 and g(n)¼ 1. The sets P¼ {h 2 K :

h(n) ¼ 0} and Q ¼ {h 2 K : h(n) ¼ 1} are clopen in K and disjoint. Note also that

P [ Q ¼ K and f 2 P, g 2 Q. Being closed in the compact space K the sets P and Q
are compact.

Now assume that 0b a< bb 1 and [a, b]� K. There are f, g 2 K with ’( f)¼ a
and ’(g)¼ b. Apply the preceding observation to find disjoint compact sets P andQ
such that f 2 P, g 2Q and P [Q¼ K. The sets P0 ¼ ’(P) \ [a, b] andQ0 ¼ ’(Q) \
[a, b] are compact, disjoint, their union is [a, b] and a 2 P0, b 2 Q0. Let x ¼ inf Q0.
The set Q0 � [a, b] is bounded and non-empty so x 2 [a, b]. The point x has to

belong to P0 or to Q0. Observe that P0 and Q0 are complementary closed sets in [a, b]
and hence they are both open in [a, b]. Now, if x 2 P0 then, by openness of P0, there
is e > 0 such that [x, x þ e) � P0 and hence there are no points of Q0 in [x, x þ e)
which shows that inf Q0 r x þ e, a contradiction. If x 2 Q0 then, by openness of Q0,
we have (x � e, x] 2 Q0 for some e > 0. Therefore all points of (x � e, x] belong to
Q0 and hence inf Q0 b x � e and we again obtained a contradiction which proves

that no non-trivial interval can be contained in K. Hence K has empty interior and

we established (ii).
Observe that the family {{f 2 K : f(i) ¼ j} : i 2 N, j 2 {0, 1}} is a countable

subbase of K and consists of clopen subsets of K. Since any finite intersection of
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clopen sets is a clopen set, the space K (and hence K) has a countable base B
consisting of clopen sets. Given x2K, let d(x)¼ inf{jx� yj : y2 F}. The function d :
K! R is continuous (see the claim of S.019). For any x 2 K \F, we have d(x) > 0

so there exists Ux 2 B such that x 2 Ux �
�
x� dðxÞ

4
, x þ dðxÞ

4

�
. Note that Ux � K \F

for each x 2 K \F and hence K \F ¼ S{Ux : x 2 K \F}. Since B is countable, there

are only countably many distinct Ux’s so we can choose a set {xn : n 2 N} � K \F
such thatK \F¼S{Uxn : n 2N}. LetWn ¼ Uxn n

Sn�1
i¼1 Uxi . It is clear that {Wn} is a

disjoint family of clopen sets and K \F ¼ Sn2N Wn.
Choosing an appropriate subfamily and enumeration, we can assume, without loss

of generality, thatWn 6¼ ; for all n2N. Given n2N, choose yn2 F for which jxn� ynj
b 5

4
d(xn). Define the map r :K! F as follows: r(x)¼ x for all x 2 F and if x 2 K \F

choose the unique n2N such that x2Wn and let r(x)¼ yn. The map r is continuous at
all points ofK \F because, for any x2Wn, we have r(Wn)¼ {yn}� (yn� e, ynþ e) for
any e> 0. If x 2 F and e> 0, consider the open set V¼ (x� e

3
, xþ e

3
) \ K. It suffices

to show that r(V) � (x � e, x þ e) so pick any y 2 V. If y 2 F then r(y) ¼ y � (x �e
3
,

x þe
3
) � (x � e, x þ e). Now take any y 2 V \ (K \F) and n 2 N with y 2 Wn.

Observe first that jx� xnjb jx� yj þ jy� xnj< e
3
þ dðxnÞ

4
due to the fact thatWn�

Uxn � (xn � dðxnÞ
4
, xn þdðxnÞ

4
). Therefore d(xn) b jx � xnj < e

3
þ dðxnÞ

4
which implies

d(xn) <
4
9
e and jx � xnj < e

3
þ dðxnÞ

4
< e

3
þ e

9
¼ 4

9
e. By the choice of yn we have jxn �

ynj b 5
4
d(xn) <

5
9
e and therefore jx � ynj b jx � xnj þ jxn � ynj < 4

9
e þ 5

9
e ¼ e and

this proves that jr(x) � r(y)j ¼ jx � ynj < e for any y 2 V so the map r is continuous
at the point x and we settled (iv).

To prove (v), note first that the map c : K! [0, 1] defined by the formula c( f)¼P1
i¼1 f (i) ·2�i, is continuous (the proof is identical to the proof of continuity for ’).

Let us show that c(K) ¼ [0, 1]. Take an arbitrary point t 2 [0, 1] and let i1 ¼ max{i
2 {0, 1} : i

2
b t}. Suppose that we have i1, . . . , in 2 {0, 1} such that, for each k b n

we have ik ¼ max{i 2 {0, 1} :
Pk�1

m¼1 im · 2�m þ i · 2�k b t}. Let inþ1 ¼ max{i 2
{0, 1} :

Pn
m¼1 im · 2�m þ i · 2�n�1 b t}. It is clear that we obtain a sequence {im :

m2N} such that jPn
m¼1 im · 2�m� tjb 2�n for each n2N and hence t¼ P1m¼1 im ·

2�m. For the function f 2 K defined by f(m)¼ im, we have c( f)¼ t finishing the proof
that c is an onto map.

Let pn : [0, 1]
o! [0, 1] and pn : K

o! K be the relevant nth projections. Given f
2 Ko, let e( f )(n)¼ c( f(n)) for every n 2 o. Then e( f ) 2 [0, 1]o and the map e : Ko

! [0, 1]o is continuous. To see this, it is sufficient to show that pn 	 e : Ko! [0, 1]

is continuous for each n 2 N. But it is immediate that pn 	 e ¼ c 	 pn and the last

map is continuous. Next we show that e is surjective. Indeed, if f 2 [0, 1]o then

choose any gn 2 K such that c(gn) ¼ f(n) for each n 2 o. If g(n) ¼ gn for all n 2 o
then g 2 Ko and e(g) ¼ f.

Let us observe now that there is a homeomorphism h : K! Ko. Indeed, Ko ¼
({0, 1}N)o is homeomorphic to {0, 1}N�o by Problem 103. Since there exists

a bijection between N and N � o, we can apply Problem 104 to conclude that

{0, 1}N�o is homeomorphic to {0, 1}o ¼ K. As a consequence, the map w ¼ e 	
h is a continuous surjection of K onto [0, 1]o which in turn is homeomorphic to Io
because [0, 1] is homeomorphic to I. Thus there exists a continuous onto map
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u : K ! Io. Now take any second countable compact space X. By Problem 126

there exists Y� Io and a homeomorphism v : Y! X. The set F¼ u�1(Y) is closed in
K because Y is compact. Apply (iv) to find a continuous onto map r : K! F. Then
v 	 u 	 r maps K continuously onto X and the proof of (v) is over.

S.129. Prove that, for any cardinal k, the space A(k) is a compact Fréchet–
Urysohn space of uncountable weight if k > o.

Solution. Take any B � A(k) and x 2 B. If x is an isolated point then x 2 B and

letting xn¼ x for all n we get a sequence {xn}� B which converges to x. Now if x¼
a and x 2 Bwe get the respective convergent sequence in the same way. Now, if a 2
B \ B then B cannot be finite and hence we can find an infinite C¼ {xn : n 2 o}� B.
The sequence {xn} converges to a because, for anyU 2 t(a, A(k)), the set A(k) \U is

finite and hence there exists m 2 N such that all xn 2 U for all n r m. This proves
that A(k) is a Fréchet–Urysohn space for each k. Suppose that k > o. If B is a

countable base of A(k) then B0 ¼ {U 2 B : a 2 U} is a local base at a. Since A(k) \U
is finite for all U 2 B0, the set S{A(k) \U : U 2 B0} cannot cover k. Hence there is
x 2 k such that U 3 x for all U 2 B. However, W ¼ A(k) \ {x} is an open set which

contains a and hence U � W for some U 2 B0 which gives a contradiction with the

fact that x 2 U. Thus, weight of A(k) is uncountable. To see that A(k) is compact,

take any open cover g of the space A(k). There is U0 2 g with a 2 U0. Since A(k) \U
is finite, there are U1, . . . , Un 2 g with A(k) \U � U1 [ � � � [ Un. Therefore the

family {U0 , . . . , Un} is a finite subcover of g and A(k) is compact.

S.130. Given a point x ¼ (x1 , . . . , xn) 2 Rn and a real number r > 0, define

Bn(x, r) ¼ {y ¼ (y1, . . . , yn) 2 Rn :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðxi � yiÞ2

q
< r}. The set Bn(x, r) will

be called the n-dimensional open ball of radius r centered at x. Prove that

(i) The family B of all open balls in Rn satisfies the conditions (B1) and (B2) of
Problem 006 and hence it can be considered a base for some topology N n

R

which is called the natural (or usual) topology on Rn;

(ii) The space (Rn; N n
R) is homeomorphic to the topological product of n copies of

(R, N R).

Solution. (i) Since x 2 Bn(x, 1) for any x 2 Rn, we have
SB ¼ Rn, i.e., the property

(B1) holds for B. Given x, y 2 Rn, x ¼ (x1, . . . , xn), y ¼ (y1, . . . , yn) let dn(x, y) ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðxi � yiÞ2

q
. Then dn(x, y) r 0 and dn(x, y) ¼ 0 if and only if x ¼ y. The first

part of this statement is evident and it is it clear that dn(x, x) ¼ 0. Now if dn(x, y) ¼
0 then

Pn
i¼1 ðxi � yiÞ2 ¼ 0 and hence xi � yi ¼ 0 for all i b n. Therefore xi ¼ yi for

all i b n and x ¼ y. It is immediate that dn(x, y) ¼ dn(y, x) for any x, y 2 Rn.

It is easy to check that

Xn
i¼1

aibi

 !2
¼

Xn
i¼1

a2i

 !
�
Xn
i¼1

b2i

 !
� 1

2
�
Xn
i¼1

Xn
j¼1
ðaibj � ajbiÞ2
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for any ai, bi 2 IR, i b n. An immediate consequence is the famous inequality of

Cauchy–Buniakovsky:

ð�Þ
Xn
i¼1

aibi

 !2

b
Xn
i¼1

a2i

 !
�
Xn
i¼1

b2i

 !
:

We claim that dn(x, y) þ dn(y, z) r dn(x, z) for any points x, y, z 2 Rn. This

inequality is called the triangle inequality. Given any x, y, z 2 IRn with x¼ (x1, . . . ,
xn), y ¼ (y1, . . . , yn), z ¼ (z1, . . . , zn) the triangle inequality for x, y y z has the

following form:

ð��Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1
ðzi � xiÞ2

s
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1
ðyi � xiÞ2

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1
ðzi � yiÞ2

s
:

If yi � xi¼ ai, zi� yi¼ bi, we obtain zi� xi¼ aiþ bi, and (��) can be written as

ð� � �Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1
ðai þ biÞ2

s
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

a2i

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

b2i

s
:

Applying (�), we can see that

Xn
i¼1
ðaiþ biÞ2 ¼

Xn
i¼1

a2i þ
Xn
i¼1

b2i þ 2 �
Xn
i¼1

aibi

b
Xn
i¼1

a2i þ
Xn
i¼1

b2i þ 2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

a2i �
Xn
i¼1

b2i

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

a2i

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

b2i

s !2

;

so (���) is proved together with (��).
Now we can show that (B2) is also fulfilled, take any point x 2 Rn and assume

that x 2 Bn(y, r) \ Bn(z, s). If t ¼ min{r � dn(x, y), s � dn(x, z)} then Bn(x, t) 2 B
and x 2 Bn(x, t) � Bn(y, r) \ Bn(z, s). Indeed, if x

0 2 Bn(x, t) is an arbitrary point

then dn(x
0, x) < t b r � dn(x, y) and hence dn(x

0, y)b dn(x
0, x) þ dn(x, y) < r, which

implies x0 2 Bn(y, r), i.e., Bn(x, t) � Bn(y, r). The proof of the inclusion Bn(x, t) �
Bn(z, s) is analogous.

(ii) Denote by n the topology on Rn which is the topology of the product of n
copies of the space (R,N R). It suffices to show that n¼N n

R. Take any U 2 n. Given
any x¼ (x1, . . . , xn) 2 U, there are Ui 2 N R, ib n such that x 2 U1� � � � � Un� U.
Thus, xi 2 Ui for each i and hence there is e > 0 for which (xi � e, xi þ e) � Ui for

all i b n. We claim that Wx ¼ Bn(x, e) � U. Indeed, if y ¼ (y1, . . . , yn) 2 Wx then

jyi� xijb dn(x, y)< e for each ib n and therefore yi 2 (xi� e, xiþ e)� Ui. Thus, y
2 U1 � � � � � Un � U and we proved that Wx � U. Since Wx 2 N n

R for each x 2 U,
we have U ¼ S{Wx : x 2 U} 2 N n

R which proves that n � N n
R.
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Now take any U 2 N n
R and any x ¼ (x1, . . . ,xn) 2 U. Since the open balls form a

base of N n
R, there is y 2 U such that x 2 Bn(y, r) � U for some r > 0. If s ¼ r �

dn(x, y) then Bn(x, s)� Bn(y, r)�U. For d ¼ sffiffi
n
p consider the set Vx¼U1� � � � �Un

where Ui¼ (xi� d, xiþ d) for all ib n. Since Ui 2N R, we have Vx 2 n. Now, if z¼
(z1, . . . , zn) 2 Vx then zi 2 (xi � d, xi þ d) and therefore jxi � zij < d for each i b n.

As a consequence, dn(x, z) <
ffiffiffiffiffiffiffiffiffiffiffi
n � d2

p
¼ s which shows that Vx � Bn(x, s) � U for

each x 2 U. Therefore, U ¼S{Vx : x 2 U} 2 n and henceN n
R � n. This proves that

n ¼ N n
R and we are done.

S.131. Given a subset A of the space Rn, we say that A is bounded if there is x 2 Rn

and r> 0 such that A� Bn(x, r). Prove that a subspace K of the spaceRn is compact
if and only if K is a closed and bounded subset of Rn.

Solution. Suppose that K � Rn is compact. The space Rn is Hausdorff by

Problems 019 and 105 so K is closed in Rn by Problem 121. Now, let x be the

point of Rn with all its coordinates equal to zero. It is clear that Rn ¼ S{Bn(x, r) :
r> 0} and hence K¼S{Bn(x, r) \ K : r> 0}. The setUr¼ Bn(x, r) \ K is open in

K so the open cover g ¼ {Ur : r > 0} has a finite subcover {Uri : i 2 {1, . . . , m}}.
Now, it is evident that K � Bn(x, r) where r ¼ r1 þ � � � þ rm so necessity is proved.

Now suppose that K is a closed subspace of Rn and K � Bn(y, s) for some y ¼
(y1, . . . ,yn) 2 Rn and s > 0. If z ¼ (z1, . . . , zn) 2 K then z 2 Bn(y, s) and jzi � yij b
dn(z, y) < s for each i b n. Thus zi 2 [ai, bi] where ai ¼ yi � s and bi ¼ yi þ s for
all i b n. We proved in Problem 126 that I is compact and hence so is [ai, bi]
being homeomorphic to I. Therefore J ¼ [a1, b1] � � � � � [an, bn] is a compact set

and K� J. Now, K is closed in Rn� J and hence K is closed in J which implies that

K is compact by Problem 120.

S.132. Prove that the following conditions are equivalent for any space X:

(i) X is countably compact.
(ii) Any closed discrete subspace of X is finite.
(iii) Any infinite subset of X has an accumulation point.
(iv) If {Fn : n 2o} is a sequence of closed non-empty subsets of X such that Fnþ1�

Fn for every n 2 o, then
T
{Fn : n 2 o} 6¼ ;.

(v) If g is an open cover of the space X then there exists a finite set A� X such thatS
{U 2 g : U \ A 6¼ ;} ¼ X.

Solution. (i)) (ii). Suppose that D is an infinite closed discrete subspace of X. We

can assume without loss of generality that D ¼ {dn : n 2 o}, where di 6¼ dj if i 6¼ j.
The setUn¼ X \ {dk : kr n} is open in X for each n and

S
{Un : n 2o}¼ X, i.e., g¼

{Un : n 2 o} is a countable open cover of X. If m ¼ {Un2 , . . . ,Unk} is a finite

subfamily of g then dm =2 Sm for any m r n1 þ � � � þ nk. Therefore g has no finite

subcover which is a contradiction.

(ii) ) (iii). Take any infinite A � X. If A is not closed then any x 2 A \A is an

accumulation point for A. If A is closed then it cannot be discrete and hence {x} is

not open in A for some x 2 A. Thus, for any U 2 t(x, X), we have U \ A 6¼ {x} and
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therefore U \ (A \ {x}) 6¼ ;. As a consequence, x 2 Anfxg and x is an accumulation

point of A.
(iii) ) (iv). Let {Fn : n 2 o} be a sequence of closed non-empty subsets of

X such that Fnþ1 � Fn for every n 2 o. Assume that
T
{Fn : n 2 o} ¼ ; and

choose a point xn 2 Fn for each n 2 o. The set A ¼ {xn : n 2 o} cannot be finite

because, for each n 2 o, the point xn can belong only to finitely many sets Fk

and hence can coincide with at most finitely many points xk. However, no x 2 X
can be an accumulation point for A. Indeed, there is k 2 o such that x =2 Fk and

hence U \ A � {x1, . . . , xk�1} where U ¼ X \Fk 2 t(x, X). Since X is a T1-space,
the setW ¼ X \ ({x1, . . . ,xk�1} \ {x}) is open andW \ U is an open neighbourhood

of x which does not meet A \ {x}. Hence x =2 Anfxg, i.e., x is not an accumulation

point of A.
(iv) ) (i). Let g ¼ {Un : n 2 o} be an open cover of X. Consider the set

Fn¼ X \ (U1 [ � � � [Un) for all n 2o. It is clear that Fnþ1� Fn for all n and
T
{Fn : n

2o}¼ ;. Since all Fn’s are closed, one of them, say Fn, has to be empty by (iv). But

this implies U1 [ � � � [ Un ¼ X and hence {U1, . . . , Un} is a finite subcover of g
which proves that X is countably compact.

(i)) (v). Let X be countably compact. If g is an arbitrary open cover of X, denote
by gx the family {U 2 g : x 2 U} for every x 2 X. Let us call a set A � X marked ifS
{U 2 g : U \ A 6¼ ;} ¼ X. We must prove that there is a marked finite set for g.

Suppose not and take any x0 2 X. If we have chosen x0, . . . ,xk 2 X then A¼ {x0, . . . ,
xk} is not marked and hence there exists xkþ1 2 X \

S
{U 2 g : U \ A 6¼ ;}. This

shows that we can construct by induction the set D ¼ {xi : i 2 o} � X so that xkþ1
=2 S{

S
gxi : i b k}. In particular, xi 6¼ xj if i 6¼ j and hence the set D is infinite. We

claim that D has no accumulation points in X. Indeed, take any x 2 X and U 2 gwith
x 2U. If i< j and xi 2U thenU 2 gxi and hence xj =2U by the construction ofD. This
shows that every point x 2 X has a neighbourhood which intersects at most one

element of D. Therefore x cannot be an accumulation point of D which is a

contradiction with (iii).

(v) ) (i). Suppose that D ¼ {dn : n 2 o} is a closed discrete subset of X
such that dn 6¼ dm if n 6¼ m. Since X is Tychonoff, there exists a disjoint family

{Un : n 2 o} � t(X) such that dn 2 Un for each n 2 o. The family g ¼ {X \ D} [
{Un : n 2 o} is an open cover of X. If A � X is finite then A intersects only finitely

manyUn’s. Therefore, there ism 2o such that A \ Um¼ ; and hence xm =2S{U 2 g
: U \ A 6¼ ;} which is a contradiction with the property (v) for X. Thus X is

countably compact by (ii).

S.133. Prove that a continuous image of a countably compact space is a countably
compact space.

Solution. Let f : X ! Y be surjective continuous map. Suppose that X is

countably compact. Given a countable open cover g of the space Y, the family

m ¼ {f�1(U) : U 2 g} is a countable open cover of X. Since X is countably compact,

there areU1, . . . ,Un 2 g such that X¼ f�1(U1) [ � � � [ f�1(Un) and hence Y¼ f(X)¼
U1 [ � � � [ Un, i.e., {U1, . . . ,Un} is a finite subcover of g. Therefore Y is also

countably compact.
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S.134. Prove that a closed subspace of a countably compact space is a countably
compact space.

Solution. Given a countably compact space X and a closed F� X, if D is an infinite

closed discrete subspace of F then D is an infinite closed discrete subspace of X
which is a contradiction. Hence F is countably compact by Problem 132(ii).

S.135. For an uncountable cardinal k, define S ¼ {x 2 Ik : the set x�1(I \ {0}) is
countable}. Prove that

(i) The set S is dense in Ik.
(ii) If A � S is countable, then A is compact (the closure is taken in S).
(iii) S Is a Fréchet–Urysohn space.
(iv) The space S is countably compact and non-compact.

Solution. (i). Fix any f 2 Ik and U 2 t( f, Ik). There exist a1, . . . , an 2 k and O1, . . .,
On 2 t(I) such that f 2W¼ {g 2 Ik : g(ai) 2 Oi for all ib n}� U. Define a function
h : k! I as follows: h(ai) ¼ f(ai) for all i b n and h(a) ¼ 0 for all a 2 k \ {a1, . . . ,
an}. It is clear that h 2 S. Observe that h 2W because h(ai)¼ f(ai) 2 Oi for all ib n.
Consequently,U

T
S�W

T
S 3 h and thereforeU T S 6¼ ;which implies f 2 S.

The point f 2 Ik being arbitrary we can conclude that S ¼ Ik.
(ii). For each f 2 A, let supp( f) ¼ {a < k : f(a) 6¼ 0}. Since supp( f) is countable

for any f 2 S, the set S ¼S{supp( f) : f 2 A} is countable. Let SS¼
Q
{Pa : a < k},

where Pa ¼ I for a 2 S and Pa¼ {0} if a 2 k \ S. It is clear that SS � S and A � SS.

Besides, SS is a compact subspace of S being a product of compact spaces (Problem

125). Therefore SS is closed in S (Problem 121) and the set A � SS is compact

being closed in SS.

(iii). Observation one. Every first countable (and hence every second countable)
space is Fréchet–Urysohn. Indeed, suppose that x 2 A and {Wn : n 2 o} is a local

base at x. IfUn¼ \ {Wi : ib n} for each n 2o then the family {Un : n 2o} is also a
local base at x. Choosing xn 2Un \ A for each n2owe obtain the sequence {xn}� A
which converges to x.

Observation two. If a space X has a countable base then any Y � X also has a

countable base. To see this, take any base {Un : n 2 o} in the space X and note that

{Un \ Y : n 2 o} is a base in Y.
Observation three. The space R is second countable and hence so is I

by observation two. To see that observation three holds, observe that the family

{(a, b) : a, b 2 Q} is a countable base in R.
Observation four. If X is second countable and S is countable then XS is also

second countable. Indeed, if B is a countable base in X the family C ¼ {
Q

s2S Us :

there is a finite set A � S for which Us 2 B for all s 2 A and Us ¼ X for all s 2 S \A}
is a countable base for XS. We will only show that C is base for XS. All elements of C
are standard open sets of the product so C � t(XS). If f 2 U 2 t(XS) then there is a

finite A � S andWs 2 t(X) for each s 2 A such that f 2W � U whereW¼ {g 2 XS :

g(s) 2Ws for each s 2 A}. Since B is a base in X, there areUs 2 B such that g(s) 2Us

�Ws for all s 2 A. Letting Us¼ X for s 2 S \A we obtain the set C¼Qs2S Us which

belongs to C. Since f 2 C � W � U, this proves that C is a base in the space XS.
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Observation five. Given a countable S � k, the space SS is homeomorphic to IS.
Here, as in (ii), SS¼

Q
{Pa : a< k}� S, where Pa¼ I for a 2 S and Pa¼ {0} if a 2

k \S. To prove this, consider the restriction pS : S! IS given by the formula pS( f)¼
f |S. The map pS is continuous being a restriction of a continuous map to S (Problem

107). It is evident that ’S¼ pSjSS : SS! IS is a continuous bijection defined on the
compact space SS. Thus ’S is a homeomorphism by Problem 123.

Observation six. If x 2 S and x 2 A for some A� S then there is a countable B�
A such that x 2 B. Let S0¼ supp(x) [o (we addo for the case when the support of x
(see (ii)) is empty). Then pS0ðxÞ 2 IS0 and IS0 is second countable by Observations

three and four. The map pS0 is continuous so pS0ðxÞ 2 pS0ðAÞ. By Observation one,

there is a countable B0� A such that pS0ðxÞ 2 pS0ðB0Þ. If we have countable sets S0
� � � � � Sn � k and B0 � � � � � Bn � A, let Snþ1 ¼ Sn [ (

S
{supp(y) : y 2 Bn}). The

map pSnþ1 is continuous and hence pSnþ1ðxÞ 2 pSnþ1ðAÞ. By Observation one, there

is a countable B0nþ1 � A such that pSnþ1ðxÞ 2 pSnþ1ðBnþ1Þ. Letting Bnþ1 ¼ Bn [ B0nþ1
we finish the inductive construction. The set B ¼ [n2o Bn � A is countable so it

suffices to establish that x 2 B. Take any U 2 t(x, S). There exist a1, . . . , an 2 k and

O1, . . . , On 2 t(I) such that x 2 W � U for the open set W ¼ {y 2 S : y(ai) 2 Oi for

all i b n}. Since Siþ1 � Si for all i 2 o, for the set S ¼ S{Si : i 2 o} we can find

a natural m such that S \ {a1, . . . , an} ¼ Sm \ {a1, . . . , an}. Recall that

pSmðxÞ 2 pSmðBmÞ which implies that there is z 2 Bm such that z(ai) 2 Oi for any

ai 2 P ¼ Sm \ {a1, . . . , an}. Now, if ai 2 {a1, . . . , an} \P then ai =2 S and hence

z(ai) ¼ 0 because supp(z) � S. Note also that supp(x) � S and therefore x(ai) ¼
0 for all ai 2 {a1, . . . , an} \P. This shows that z(ai) ¼ 0 ¼ x(ai) 2 Oi for all ai
2 {a1, . . ., an} \P and z 2 W � U. We proved that U \ B 6¼ ; for any U 2 t(x, S)
and hence x 2 B.

Now it is easy to finish the proof of (iii). Note that B [ {x} � SS and hence

the space B [ {x} � SS is second countable by Observations four and five. By

Observation one there is a sequence {xn : n 2 o} � B � A which converges to x.
(iv). To see that S is countably compact, take any countably infinite closed

discrete D � S. By (i) the set D ¼ D is compact which is a contradiction (Problem

132(ii)). Hence all closed discrete subsets of S are finite and hence S is countably

compact by Problem 132(ii). The space S is not compact for otherwise it would be

closed in the Tychonoff space Ik. This, together with (i) would imply S ¼ Ik.
However, x =2 S if x(a)¼ 1 for all a 2 k. The obtained contradiction proves that S is

a countably compact non-compact space.

S.136. Prove that the following conditions are equivalent for any space X:

(i) X is pseudocompact.
(ii) Any locally finite family of non-empty open subsets of X is finite.
(iii) Any discrete family of non-empty open subsets of X is finite.
(iv) For every decreasing sequence U0� U1� � � � of non-empty open subsets of X,

the intersection \ {Un : n 2 o} is non-empty.
(v) For every countable centered family {Un : n 2 o} of open subsets of X, the

intersection \ {Un : n 2 o} is non-empty.
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Solution. (i)) (ii). Suppose that X is pseudocompact and {Un : n 2 N} � t�(X) is
locally finite. Take xn 2Un for all n 2N. Since X is a Tychonoff space, there exists a

continuous function fn : X ! [0, 1] such that fn(xn) ¼ 1 and fnj(X \Un) � 0.

The function f ¼ S{n · fn : n 2 N} : X ! R is continuous. Indeed, if x 2 X and e
> 0 then there exists U 2 t(x, X) such that U intersects only finitely many sets Ui,

say, Uk1 ; . . . ;Ukn . Since fi(x) ¼ 0 for all x 2 X \ Ui, we have

f ðxÞ ¼ k1 � fk2 ;þ � � � þ kn � fkn and hence f jU is continuous being a finite sum of

continuous functions (Problem 027(i)). Therefore, there is V 2 t(x, U) such that

f(V) � ( f(x) � e, f(x) þ e). Observing that V is also open in X we conclude that f is
continuous at x. Thus f is continuous on X and unbounded which contradicts

pseudocompactness of X.
(ii)) (iii). This is true because every discrete family is locally finite.

(iii)) (iv). Suppose that
T
{Un : n 2 o} ¼;. Take a point x 2 U0. There exists

m ¼ m(0) 2 o such that x =2 Um. By regularity of X there exists an open set V0 such

that x 2 V0 � V0 � U0 \ (X \Um). Suppose that we have constructed sets V0, . . . ,
Vn 2 t�(X) with the following properties:

(1) Vi � Ui for all i b n.
(2) For each i b n, we have Vi \ Um ¼ ; for some m ¼ m(i) 2 o.
(3) Vi \ Vj ¼ ; if i 6¼ j.

Let k¼ m(0)þ � � � þ m(n)þ n. It is clear that Vi \ Uj¼ ; for any ib n and any
j r k. Take a point x 2 Uk and choose m ¼ m(n þ 1) such that x =2 Um. Choose any

Vnþ1 2 t(X) such that x 2 Vnþ1 � Vnþ1 � Uk \Um. It is evident that for the family

{V0, . . . , Vn, Vnþ1} the properties (1)–(3) hold. To get a contradiction we will prove
that the family g¼ {Vi : i 2 o}� t�(X) is discrete. So, let x 2 X. There exists m 2o
such that x =2 Um. The property (1) shows that V ¼ X \Um is neighbourhood of x
which can (possibly) intersect only elements of the family m ¼ {V0, . . . , Vm�1}.
Since the family {V0, . . . , Vm�1} is disjoint, there isW 2 t(x, X) such that W meets

at most one element of m. Then V \ W 2 t(x, X) intersects at most one element of

the family g which shows that g is discrete, a contradiction.
(iv)) (v). Let Vn ¼

T
{Ui : i b n} for all n 2 o. The fact that {Un : n 2 o} is

centered implies that the decreasing family {Vn : n 2o} consists of non-empty open

sets. Applying (iv) we obtain
T
{Un : n 2 o} � T{Vn : n 2 o} 6¼;.

(v)) (i). If X is not pseudocompact then fix an unbounded continuous function f
on X. Then f 2 is also unbounded so we can consider that f(x) r 0 for all x 2 X. The
setUn¼ f�1((n,þ1)) is open and non-empty for each n 2o. Since the family {Un :

n 2 o} is decreasing, it is centered. Observe also that Unþ1 � f�1([n þ 1, þ1)) �
f�1((n, þ1)) ¼ Un and hence

T
{Un : n 2 o} ¼ T{Un : n 2 o} ¼ ; which

contradicts (v).

S.137. Prove that any countably compact space is pseudocompact. Show that a
pseudocompact normal space is countably compact.

Solution. If X is countably compact and {Un : n 2o}� t�(X) is a decreasing family

then m ¼ {Un : n 2 o} is also a decreasing family of non-empty closed sets of X.
Apply Problem 132(iv) to conclude that

T
m 6¼ ; and hence X is pseudocompact.
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Now, suppose that X is a normal pseudocompact space which is not countably

compact. By Problem 132(ii) there exists a closed discrete set D ¼ {xn : n 2 o}
� X such that xi 6¼ xj if i 6¼ j. The function f : D ! R defined by f(xn) ¼ n is

continuous on D and hence, by normality of X, there is a continuous F : X! R such

that FjD ¼ f (see Problem 032). Since F is not bounded, the space X is not

pseudocompact, a contradiction.

S.138. Prove that any pseudocompact Lindel€of space is compact.

Solution. Any Lindel€of space is normal (Problem 124) and hence any Lindel€of
pseudocompact space is countably compact (Problem 137). Now, if g is any open

cover of X, then there is a countable g0 � g such that X ¼ Sg0 because X is Lindel€of.
Applying countable compactness of X we can conclude that the countable open cover

g0 ofX has a finite subcover m. Of course,m is also a finite subcover of g soX is compact.

S.139. Prove that a continuous image of a pseudocompact space is a pseudocom-
pact space.

Solution. Let ’ : X! Y be a surjective continuous map. If X is pseudocompact and

f : Y ! R is a continuous function then f 	 ’ is also a continuous real-valued

function on X. Therefore f 	 ’ is bounded and hence so is f. This proves that Y is

pseudocompact.

S.140. Prove that any condensation of a pseudocompact space onto a second
countable space is a homeomorphism.

Solution. Observation one. Any second countable space Y is Lindel€of. To prove it,

take a countable base B of the space Y. If g is an open cover of Y, call U 2 B marked
if there is some V 2 g such that U � V. Let B0 be the family of all marked elements

of B. We assert that
SB0 ¼ Y. Indeed, if y 2 Y there is V 2 g such that y 2 V. Since B

is a base, there is U 2 B such that x 2 U � V. Thus U is marked and y 2 U. For each
U 2 B0 take O(U) 2 g with U � O(U). The family {O(U) : U 2 B0} is a countable

subcover of g.

Observation two. If Y is pseudocompact then F ¼ U is pseudocompact for any

U 2 t(Y). To prove this, take any decreasing family {Un : n 2 o} � t�(F). The
family {Un \ U : n 2o} is also decreasing and consists of non-empty open subsets

of Y. Apply pseudocompactness of Y to conclude that
T
{clF(Un) : n 2 o} �T

{clY(Un \ U) : n 2 o} 6¼ ; and hence U is pseudocompact.

Observation three. Any pseudocompact second countable space is compact.

Indeed, it is Lindel€of by Observation one and hence compact by Problem 138.

Let f : X ! M be a condensation of a pseudocompact space X onto a second

countable spaceM. To show that f is a homeomorphism it suffices to prove that f(F) is
closed inM for any closed F� X. It is an easy consequence of regularity of X that F¼T
{U :U 2 t(F, X)}. Since f is a bijection, we have f(F)¼T{f(U) :U 2 t(F, X)}. But

each set U is pseudocompact by Observation two. Therefore f(U) is compact by

Problems 138, 139 and Observation three. Any compact subspace ofM is closed inM
(Problem 121) and hence f(F) is closed being intersection of closed sets.
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S.141. Call a family C � exp(o) almost disjoint, if every C 2 C is infinite and C \ D
is finite if C and D are distinct elements of C. A family C � o is maximal almost
disjoint if it is almost disjoint and, for any almost disjoint D � C, we have D ¼ C.
Prove that

(i) Every almost disjoint C � exp(o) is contained in a maximal almost disjoint
family D � exp(o).

(ii) Every maximal almost disjoint infinite family on o is uncountable.
(iii) There exists a maximal almost disjoint family C � exp(o) with j C j ¼ c.

Solution. (i) Let P ¼ {E : C � E and E is almost disjoint}. The partial order on P
is the inclusion. It is clear that any maximal element of P will be a maximal

almost disjoint family so it suffices to prove that every chain in P has an upper

bound in P. So take any chain C in P. Let U ¼ SC. It is clear that U is an upper

bound for C and hence it is sufficient to prove that U belongs to P, i.e., that
U is almost disjoint. To see this, take distinct A, B 2 U. There exist E1, E2 2 C

such that A 2 E1 and B 2 E2. Since C is a chain, one of the families E1, E2 contains
the other and hence A, B 2 Ei for some i 2 {1, 2}. Since Ei is almost disjoint, the

set A \ B is finite which proves that U is almost disjoint. Applying the Zorn

Lemma we conclude that there exists a maximal almost disjoint family D which

contains C.
(ii) Suppose that an infinite almost disjoint family D is countable. We will show

that D is not maximal, i.e., there is a set A � o such that A =2D and D [ {A} is

almost disjoint. Take some enumeration {Dn : n 2 o} of the setD such that Dn 6¼ Dm

if n 6¼ m. Observe that, for any n 2 o, the set o \ (D0 [ � � � [ Dn) is infinite

for otherwise an infinite subset of the set Dnþ1 would be covered by the sets

D0, . . ., Dn and hence Di \ Dnþ1 is infinite for some number i b n which is a

contradiction. This makes it possible to choose by induction points {xi : i2o} in such
a way that xi =2 (D0 [ � � � [Di)[ {x0, . . . , xi�1} for each i2o. The set A¼ {xi : i2o}
does not belong toD and A \ Dn� {x0, . . . , xn�1} for each n 2 o which shows that

D [ {A} is almost disjoint, a contradiction.

(iii) Since every almost disjoint family is contained in a maximal almost disjoint

family, it suffices to prove that there is an almost disjoint family on o of cardinality

c. The sets o and Q having the same cardinality it is sufficient to construct such a

family onQ. For every irrational r 2 R, take a sequence Ar�Q which converges to

r. It is clear that the family {Ar : r 2 R \ Q} is almost disjoint, has cardinality c and
consists of subsets of Q.

S.142. Let M be an infinite (and hence uncountable) maximal almost disjoint
family in o and M ¼ o [ M. If x 2 o, let Bx ¼ {x}. Given x 2 M, define Bx ¼
{{x} [ (x \A) : A is a finite subset of x} (remember that for x 2M, we can consider x
to be a point of M or a subset of o). Prove that

(i) The families {Bx : x 2 M} generate a topology tM on M as local bases (see
Problem 007).

(ii) The space (M, tM) (called Mrowka space) is a Fréchet–Urysohn separable
space; we will further denote it by M.
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(iii) The space M is locally compact (i.e., each point of M has a compact neigh-
bourhood) and pseudocompact.

(iv) The subspaceM is closed and discrete in M and therefore the space M is not
countably compact. This also shows that a closed subspace of a pseudocom-
pact space is not necessarily pseudocompact.

Solution. (i) The properties 007(i)–(iii) are evidently fulfilled if x 2 o. If x 2 M
then x cannot belong to

S By for any y 6¼ x. This proves that (iii) holds for any point
x 2 M. The property (i) is an evident consequence of the definition of Bx and

(ii) holds because the intersection of any finite number of the elements of Bx
belongs to Bx for any x 2 M.

(ii) It is clear that, for any x 2 M and any U 2 Bx, we have U \ o 6¼ ; so the

countable set o is dense in (M, tM). To prove that M is Fréchet–Urysohn, take any

x 2M such that x 2 A for some A�M. If x 2o then x 2 A and hence there is a trivial

sequence in Awhich converges to x. If x =2 A then x 2M and hence A \ x is infinite.
Let {an : n 2 o} be some enumeration of the set A \ x. If U 2 t(x,M) then there is

V 2 Bx with V� U and hence there is a finite B� o for which V¼ x \ B� U. Since
x \U is finite, there is m 2o such that an 2 x \ B� U for all nrm, i.e., the sequence
{an} � A converges to x.

(iii) If x 2 o then {x} is a compact neighbourhood of the point x. If x 2 M
then {x} [ x is a neighbourhood of x which is a convergent sequence and hence

compact by Problem 129. This proves that M is locally compact. To see that it is

pseudocompact, suppose not and take any infinite discrete family {Un : n 2 o}
of open subsets of M. Since o is dense in M, we can choose xn 2 o \ Un for

each n 2 o. It is clear that the family {{xn} : n 2 o} is also an infinite discrete

family of open sets of M. Since M is a maximal almost disjoint family, it is

impossible that A ¼ {xn : n 2 o} intersect each x 2 M in a finite set for

otherwise we would be able to add A to M obtaining a strictly larger almost

disjoint family. So fix x 2 M with x \ A infinite. The definition of the local

base at x implies that every neighbourhood of x contains infinitely many points

xn and hence it intersects infinitely many open sets of the family {{xn} : n 2 o}
which is a contradiction with the fact that {{xn} : n 2 o} is discrete. Hence M is

pseudocompact.

(iv) If x 2M \M then x 2o and {x} is a neighbourhood of xwhich does not meet

M. This proves thatM is closed in M. Since Vx ¼ {x}[x is a neighbourhood of x
and Vx \ M ¼ {x} for each x 2 M, the subspaceM is discrete. Since a discrete

space is pseudocompact iff it is finite,M is a closed subspace of M which is not

pseudocompact.

S.143. Show that a sequence {fn : n 2 o} � Cp(X) converges to a function f :
X ! R if and only if the numeric sequence {fn(x) : n 2 o} converges to f (x) for
every x 2 X.

Solution. Suppose that fn! f. Given e > 0, the set O( f, x, e) is open and contains

f which implies that there is m 2 o such that fn 2 O( f, x, e) for all n r m. Thus,
j fn(x) � f (x) j < e for all n r m and hence {fn(x)} converges to f (x).
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Now, assume that {fn(x)} converges to f (x) for each x 2 X. For an arbitrary set

U 2 t( f, Cp(X)) there are x1, . . . , xk 2 X and e> 0 with O( f, x1, . . . , xk, e)�U. Since
{fn(xi)} converges to f (xi) for each ib k, there existsm 2o such that j fn(xi)� f (xi) j
< e for all nr m and i 2 {0, . . . , k}. This means that we have fn 2 O( f, x1, . . . , xn, e)
� U for all n r m and hence the sequence {fn} converges to f.

S.144. Suppose that X is an arbitrary set. Given a family g of subsets of X, let
lim g¼ {x 2 X : j {U 2 g : x =2 U} j< o}.We call g an o-cover of X, if for any finite
A � X, there is U 2 g such that A � U. Prove that the following conditions are
equivalent:

(i) Cp(X) is a Fréchet–Urysohn space.
(ii) For any open o-cover g of the space X, there is a countable x � g such that

lim x ¼ X.
(iii) For any sequence {gn}n2o of open o-covers of X, one can choose Un 2 gn for

each n, in such a way that lim{Un : n 2 o} ¼ X.

Solution. (i) ) (ii). If X 2 g then x ¼ {X} does the work. If not, consider the set

P ¼ {f 2 Cp(X) : supp( f) � U for some U 2 g}. Here, of course, supp( f ) ¼
f�1(R \ {0}). We claim that u 2 P \ P, where u(x) ¼ 1 for all x 2 X. Indeed, u =2 P
because supp(u) ¼ X =2 g. Now, if x1, . . . , xn 2 X and e > 0 there is U 2 g with

{x1, . . ., xn} � U. It is an easy consequence of the Tychonoff property of X that

there is f 2 Cp(X) such that f (X \U)¼ {0} and f (xi)¼ 1 for all ib n. Thus, we have
f 2 O(u, x1, . . . , xn, e) and hence u 2P. By the Fréchet–Urysohn property of Cp(X)
there is a sequence {fn : n 2 o} � P with fn! u. By the choice of fn there is Un 2 g
such that supp( fn)�Un for each n 2o. We are going to prove that x¼ {Un : n 2o}
! X. Indeed, if x 2 X thenW¼ O(u, x, 1

2
) is a neighbourhood of u and hence there is

m 2 o such that fn 2 W for all n r m. This implies, in particular, that fn(x) 6¼ 0 and

hence x 2 supp( fn) � Un for all n r m. This proves that x! X.
(ii)) (iii). Call a sequence {mn : n 2o} of open o-covers of X, special if we can

choose Vn 2 mn for each n 2 o in such a way that {Vn : n 2 o}! X. We must prove

that any sequence of open o-covers is special if (ii) holds. Given families U, U0 �
exp(X), say that U < U0 if, for any U 2 U , there is U0 2 U0 such that U � U0. If we
have families U1, . . . , Un 2 exp(X), let U1 L � � � L Un ¼ {U1 \ � � � \ Un : Ui 2 U i
for all i b n}. It is clear that U1 L � � � L Un < U i for every i b n. Call a sequence of
open covers {mn : n 2 o} decreasing if mnþ1 < mn for each n 2 o.

Observation one. The family U ¼ U1 L � � � L Un is an o-cover of X if so is U i for
every i b n. The proof is straightforward.

Observation two. If a sequence fm0n : n 2 og is special and m0n < mn for each n 2o
then the sequence {mn : n 2 o} is also special. This follows from the evident

fact that, if fV0n : n 2 og ! X and V0n � Vn for each n 2 o then we have {Vn :

n 2 o}! X.
Observation three. We can reduce our considerations to the decreasing

sequences of open o-covers. More exactly, if every decreasing sequence of open

o-covers is special then every sequence of open o-covers is special. Indeed, if {mn :
n 2o} is a sequence of openo-covers then the sequence fm0n : n 2 og is decreasing
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if m0n ¼ m0 ^ � � � ^ mn for all n2o. The sequence fm0n : n 2 og is special and m0n < mn
for each n so applying Observation two we conclude that the sequence {mn : n 2 o}
is also special.

Observation four: A decreasing sequence {mn : n 2 o} of open o-covers of the
space X is special if it has a special subsequence, i.e., if there is an increasing sequence

{kn : n 2 o} of natural numbers such that we can choose Uki 2 mki for every i 2 o so

that fUki : i 2 og ! X. To see this, note that, for each i 2 o there are setsUj 2 mj for
each j2 {kiþ 1, . . . , kiþ1� 1} for whichUj�Ujþ1 for each j2 {kiþ 1, . . . , kiþ1� 1}.

These sets Uj can be constructed “backwards” using the fact that our sequence is

decreasing and starting from Ukiþ1 . The first step is to observe that mkiþ1< mkiþ1�1 and
hence there is Ukiþ1�1 2 mkiþ1�1 withUkiþ1 � Ukiþ1�1. Analogously, there is Ukiþ1�2 2
mkiþ1�2 such that Ukiþ1�2 � Ukiþ1�1 and so on. Now it is immediate that, after we

constructUj2 mj for all j2o \ {ki : i2o} wewill have the sequence {Ui : i2o}! X
with Ui 2 mi for all i 2 o which proves that the sequence {mn : n 2 o} is special.

Now, take a decreasing sequence {gn : n 2 o} of open o-covers of X. If X
is finite then X 2 gn for each n 2 o so letting Un ¼ X for all n we obtain the

desired sequence {Ui : i 2 o}! X. If X is infinite we can choose a set {xn : n 2 o}
� X such that xi 6¼ xj for i 6¼ j. Let mn¼ {U \ {xn} : U 2 gn} for each n 2 o. It is easy
to see that m¼S{mn : n 2o} is ano-cover of X. Use (ii) to choose a sequence {Un :

n 2 o} � m such that {Ui : i 2 o} ! X. We have Ui 2 mki for each i 2 o. The
sequence {ki : i 2 o} cannot be bounded by a number m for otherwise {x0, . . . , xm}
is not covered by anyUiwhich is a contradiction. This shows that the sequence {mn :
n 2 o} has a special subsequence. Therefore {gn : n 2 o} also has a special

subsequence because mn < gn for each n 2 o. Apply Observation four to conclude

that {gn : n 2 o} is special.

(iii)) (i). Let u 2 Cp(X) be the function equal to zero at all points of X. Take any
A � Cp(X) and f 2 A. Then u 2 Aþ ð�f Þ by Problem 079. If we find a sequence

S � A þ (�f) convergent to u then the sequence S þ f is contained in A and

converges to f by Problem 079. This shows that, without loss of generality, we can

assume that f ¼ u.
For each n 2 N, let gn ¼ fg�1ðð�1

n;
1
nÞÞ : g 2 Ag. It is straightforward that gn is

an o-cover of X for all n 2 N. Take Un 2 gn with {Un : n 2 N} ! X. There is

fn 2 A with Un ¼ f�1n ðð�1
n;

1
nÞÞ for each n 2 N. To show that fn ! u it suffices, by

Problem 143, to show that fn(x)! u(x) ¼ 0 for every x 2 X. So take any x 2 X and

e > 0. There is m 2 N such that 1
m < e and x 2 Un for all n r m. But x 2 Un implies

j fn(x) j< 1
nb

1
m < e for all nr m. Therefore fn(x)! 0¼ u(x) for any x 2 X and hence

fn! u.

S.145. Prove that, if Cp(X) is a Fréchet–Urysohn space, then (Cp(X))
o is also a

Fréchet–Urysohn space.

Solution. Let Xn ¼ X for all n 2 o and denote the space
L

n2o Xn by Y. Then
(Cp(X))

o ¼Q{Cp(Xn) : n 2 o} ¼ Cp(
L

n2o Xn) ¼ Cp(Y) by Problem 114 (here we

use equalities to denote that the respective spaces are homeomorphic). Call a

function f 2 Cp(Y) a Fréchet–Urysohn point if, for any A � Cp(Y) with f 2 A,
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there is a sequence {fn} � A such that fn! f. It is clear that we must prove that all

points of Cp(Y) are Fréchet–Urysohn points. However, we may restrict ourselves

to proving that only one point of Cp(Y) is Fréchet–Urysohn. Indeed, if a point

g 2 Cp(Y) is Fréchet–Urysohn and f 2 A then g 2 Aþ ðg� f Þ by Problem

079 and hence there is a sequence {gn} � A þ (g � f) such that {gn} ! g. Then
fn ¼ gn þ f � g 2 A for all n 2 o and {fn}! f again by Problem 079.

Therefore, we can take any point of the space (Cp(X))
o and establish that

(Cp(X))
o is Fréchet–Urysohn at this point. To do so, observe that (Cp(X))

o is

homeomorphic to Cp(X, Ro) (Problem 112) and consider a point u0 2 Ro

defined by u0(n) ¼ 0 for all n 2 o. The function f 2 Cp(X, Ro) for which we

will prove the Fréchet–Urysohn property, will be defined by f (x) ¼ u0 for all

x 2 X. So take any A � Cp(X, Ro) with f 2 A. The space Ro is second countable

(see Observations three and four of S.135), so it is possible to fix a countable

local base {On : n 2 o} of Ro at the point u0 such that Onþ1 � On for each n 2 o.
Let gn ¼ {g�1(On) : g 2 A} for all n 2 o. It easily follows from f 2 A that gn is an
o-cover of X for all n 2 o. Apply Problem 144(iii) to conclude that we can

pick Un 2 gn for all n 2o so that {Un : n 2o}! X. For each n 2o take a function

fn 2 A such that f�1n ðOnÞ ¼ Un.

We claim that fn ! f. Given arbitrary points x1, . . . ,xn 2 X, consider the set

W(x1, . . . ,xn) ¼ {g 2 Cp(X, Ro) : g(xi) 2 On for all i b n}. Note first that the family

B ¼ {W(x1, . . . ,xn) : n 2 N, x1, . . . ,xn 2 X} is a local base of Cp(X, Ro) at f so if f 2 U
2 t(Cp(X, Ro)) then there are k 2 o and points x1, . . . ,xk 2 X such thatW(x1,. . . , xk)
� U. Since Un ! X, there exists a number m 2 o such that fx1; . . . ; xkg
� Un ¼ f�1n ðOnÞ for every n r m. This implies that fn 2 W(x1, . . . , xk) � U for all

n r m and therefore fn! f showing that Cp(X, Ro) is a Fréchet–Urysohn space.

S.146. Prove that Cp(A(k)) is a Fréchet–Urysohn space for any cardinal k.

Solution. Let g be an o-cover of the space A(k). Take any U0 2 g with a 2 U0.

Remember that A(k) ¼ k [ {a} where a is the unique non-isolated point of A(k).
The set F0 ¼ A(k) \U0 is finite and hence there exists U1 2 g such that {a}[F0 �
U1. If we have U0, . . . , Un 2 t(a, A(k)) then the set Fn¼ A(k) \ (U0 \ � � � \ Un) is

finite and hence we can find Unþ1 2 g for which {a} [ Fn � Unþ1. Thus, the
sequence {Un : n 2 o} can be constructed by induction. We claim that Un ! X.
Indeed, take any x 2 A(k). If x 2 \ {Un : n 2 o} then there is nothing to prove.

If x =2 Um for some m 2 o then, by construction, x 2 Un for any n > m. This
proves that Un ! X. Now apply Problem 144(ii) to conclude that Cp(A(k)) is
Fréchet–Urysohn.

S.147. Prove that Cp(I) is not a Fréchet–Urysohn space.

Solution. If I ¼ (a, b)� R, let m(I) ¼ b � a. We will need the following statement.

Fact. Suppose that In is an open interval for each n 2 N and I� [{In : n 2 N}. ThenP1
n¼1 m ðInÞr2, where this inequality is considered true if the sum of this series is

infinite.
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This fact is well known from measure theory or can be deduced easily from the

Lebesgue’s theorem on bounded convergence. We will give an elementary proof

anyway. Since I is compact, we can choose a finite subfamily g of the family {In :
n 2 o} which still covers I.

Observation. If I is an open interval, J1 [ � � � [ Jk � I, where the open intervals

J1, . . . ,Jk are disjoint, then m(J1) þ � � � þ m(Jk) b m(I).
We may assume that the right endpoint of Ji is less than or equal to the left

endpoint of Jiþ1 for all i b (k � 1). Thus, Ji ¼ (ai, bi) and for all i ¼ 1, . . . , k, we
have ab a1b b1b a2b b2b a3< � � � b ak�1<bk�1b ak < bkb b:

As a consequence,

Xk

i¼1 m ðJiÞ ¼
Xk

i¼1 ðbi � aiÞb a1 � aþ ðb1 � a1Þ þ ða2 � b1Þ
þ ðb2 � a2Þ þ � � � þ ðbk � akÞ þ ðb� bkÞ ¼ b� a ¼ mðIÞ:

which finishes the proof of our observation.

Returning to our Fact, suppose that the points x0 ¼ �1 < x1 < � � � < xm ¼ 1

contain all endpoints of all intervals of g which (the endpoints!) are inside I. If Di¼
(xi�1,xi) then

Pm
i¼1 m (Di) ¼ 2. Note also that each Di is contained in some Ui 2 g.

Let g0 ¼ {U 2 g : U ¼ Ui for some i b m}. For each U 2 g0, let mU ¼ S{m(Di) : U ¼
Ui}. Then by Observation, m(U) r mU for each U 2 g0. As a consequence,PfmðUÞ :U2 ggrPfmðUÞ :U2 g0grPfmU :U2 g0g¼Pm

i¼1mðDiÞ¼ 2, and our

fact is proved.

Now, it is very easy to show that the space Cp(I) is not Fréchet–Urysohn.

For each n 2 N, let gn ¼ {U : U ¼ I1 [ � � � [ Ik for some k 2 N, where I1, . . . , Ik
are disjoint open intervals such that

Pk
j¼1 m ðIjÞ<2�n}. It is easy to see that each

mn ¼ {W \ I : W 2 gn} is an o-cover of I for each n 2 N. If Cp(I) is

Fréchet–Urysohn, then we can choose Un 2 gn such that Un \ I ! I and, in

particular, I � S{Un : n 2 N}. Now our fact says that S{Un : n 2 N} � 2 whilePfUn : n 2 Ngb P1i¼1 2�i ¼ 1 which is a contradiction.

S.148. Prove that the following properties are equivalent for any space X and any
infinite cardinal k:

(i) For every open o-cover g of the space X, there exists an o-cover m � g of the
space X such that j m j b k. In other words, every open o-cover of X has an
o-subcover of cardinality b k.

(ii) l(Xn) b k for all n 2 N.
Solution. (i)) (ii). Take any n 2 N and fix an open cover g of the space Xn. Call a

family m � t(X) g-small if, for any U1, . . . ,Un 2 m (which are not necessarily

different), we have U1 � � � � � Un � G for some G 2 g. Consider the family d ¼
{
S
m : m is a finite g-small family}. If A� X is a finite set then, for any x1, . . . , xn 2 A,

there exist Ui 2 t(xi, X) such that U1 � � � � � Un � G for some G 2 g. This shows
that every x 2 A has an open neighbourhood Ux such that m ¼ {Ux : x 2 A} is a

g-small family. Since
S
m� A, we can conclude that d is an o-cover of X. By (i) we

122 2 Solutions of Problems 001–500



can find an o-cover d0 � dwith j d0 jb k. For anyU 2 d0 there exists a g-small finite

family mU such that U ¼SmU. There also exists a finite family gU � g such that, for
anyW1, . . . ,Wn 2 mU, we haveW1� � � � �Wn�G for someG 2 gU. The family g0 ¼S
{gU :U 2 d0} is a subfamily of g and j g0 jb k, so we only have to prove that

S
g0 ¼

Xn. If x ¼ (x1, . . . , xn) 2 Xn then there exists U 2 d0 such that {x1, . . . ,xn} � U. Thus
there are U1, . . . , Un 2 mU such that xi 2 Ui for all i b n. By definition of gU there

exists G 2 gU such that U1� � � � � Un� G. Therefore x 2 U1 � � � � � Un � G so g0

is a subcover of g of cardinality b k.

(ii)) (i). Take any o-cover g of the space X. For any n 2 N, the family {Un :

n 2 o} is a cover of the space Xn. Since l(Xn) b k, there exists g0n � g with jg0njb k
and

S
{Un : U 2 g0n} ¼ Xn. The family g0 ¼ S{g0n : n 2 o} has cardinality b k so it

suffices to prove that it is an o-cover of X. Take any finite A ¼ {x1, . . . ,xn} � X.
Then x ¼ (x1, . . . ,xn) 2 Xn and hence there is U 2 g0n with x 2 Un. As a consequence

xi 2 U for each i b n and therefore A � U which proves that g0 is an o-cover of X.

S.149. Prove that t(Cp(X)) ¼ sup{l(Xn) : n 2 N}. In particular, tightness of Cp(X)
is countable if and only if Xn is a Lindel€of space for any n 2 N.
Solution. Let us prove first that t(Cp(X)) b k ¼ sup{l(Xn) : n 2 N}. Denote by u the
function for which u(x) ¼ 0 for each x 2 X. It suffices to show that, for any A �
Cp(X) with u 2 A there is a set B � A such that u 2 B and j B j b k. For each n 2 N,
the family gn ¼ ff�1ðð�1

n;
1
nÞÞ : f 2 Ag is an o-cover of X. It follows from Problem

148 that there is ano-cover m� gnwith j m jb k. Therefore there exists Bn� A such

that j Bn j b k and the family ff�1ðð�1
n;

1
nÞÞ : f 2 Bng is an o-cover of X. Let B ¼S

{Bn : n 2 N}. It is clear that j B j b k, so we only have to prove that u 2B. Given
x1, . . . , xk 2 X and e > 0, take any n 2 N such that 1

n < e. Since

ff�1ðð�1
n;

1
nÞÞ : f 2 Bng is an o-cover of X, there exists f 2 Bn such that

fx1; . . . ; xkg � f�1ðð�1
n;

1
nÞÞ. This means that j f (xi) j< 1

n < e for all ib k. Therefore

f 2 V¼O(u,x1, . . . ,xk, e) and hence V \ B 6¼ ; for an arbitrary basic neighbourhood
V of the point u. Thus u 2B.

Now let l ¼ t(Cp(X)). We must prove that l(Xn) b l for all n 2 N. By Problem

148 this is equivalent to proving that any o-cover of X has an o-subcover of

cardinality b l. So let g be an o-cover of X and A ¼ {f 2 Cp(X) : f
�1(R \ {0}) �

U for some U 2 g}. It is easy to see that w 2 A where w(x) ¼ 1 for all x 2 X. Since
t(Cp(X))b l, we can find B� Awith w 2 B and j B jb l. For each f 2 B, takeUf 2 g
with f�1(R \ {0}) � Uf. Then m ¼ {Uf : f 2 B} � g and j m j b l. Our proof will be
over if we establish that m is an o-cover of X. Take any finite F � X. Since w 2B,
there is f 2 B such that f (x)> 0 for all x 2 F. This implies F� f�1(R \ {0})�Uf and

hence m is an o-cover of X.

S.150. Prove that t(Cp(X)) ¼ t((Cp(X))
o) for any space X.

Solution. Let Xi be a copy of the space X for each i 2 o. Then (Cp(X))
o is

homeomorphic to Cp(
L

i2o Xi) by Problem 114. Now, if t(Cp(X)) ¼ k then

l(Xn) b k for each n 2 N by Problem 149. If Y ¼Li2o Xi then Yn is a countable
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union of its subspaces homeomorphic to Xn. Therefore l(Yn) b k. Apply Problem

149 once more to conclude that t((Cp(X))
o) ¼ t(Cp(Y)) b k ¼ t(Cp(X)). Since the

inverse equality is evident, we proved that t(Cp(X)) ¼ t((Cp(X))
o).

S.151. Show that there exist spaces X and Y such that t(Cp(X)) ¼ o and
t(Cp(Y)) ¼ o while t(Cp(X) � Cp(Y)) > o.

Solution. We will first prove some facts about the Cantor set K.

Fact 1. For every second countable uncountable space P there exists an uncountable

P0 � P such that the subspace P0 has no isolated points.

Proof. Let g¼ {U� t(P) :U is countable}. It is easy to see that every subspace of a

second countable space is second countable so U ¼ Sg is second countable. Every

second countable space is Lindel€of (Observation one of S.140) so there are Ui 2 g,
i 2 o such that U ¼ S{Ui : i 2 o}. The set U is countable being a union of

countably many countable sets. Therefore P0 ¼ P \U is an uncountable subset of P.
For any p 2 P0 and anyW 2 t(p, P0) there exists V 2 t(P) with V \ P0 ¼W. The set

V has to be uncountable (for all countable open sets are inside U) and hence W ¼
V \U is also uncountable. This shows thatW 6¼ {p} i.e., the point p is not isolated in
P0 and Fact 1 is proved.

Fact 2. The cardinality of the family of all closed subsets of K is exactly c.

Proof. Note that the points of K give c distinct closed sets and therefore the number

of closed sets ofK is greater than or equal to c. The number of open set is equal to the

number of closed sets so it suffices to prove that j t(K) j b c. Fix any countable base
B inK and note that any open set is a union of some subfamily of B. Since there are c
subfamilies of B, we can conclude that j t(K) j b c and Fact 2 is proved.

For any n 2N, let pni :Kn!K be the natural projection ofKn onto the ith factor.
Given a set A � Kn, let j A jn ¼ sup{j B j : B � A and pni j B is an injection for any

i b n}. The cardinal j A jn will be called n-cardinality of A. If x ¼ (x1, . . . ,xn) 2 Kn,

let b(x) ¼ {x1, . . . ,xn} � K.

Fact 3. Given A � Kn, suppose that n-cardinality of A is infinite. Then we have

(1) j A jn ¼ min{j Y j : Y � K and A � S{ðpni Þ�1 (Y) : i b n}} and

(2) j A jn ¼ sup{j B j : B � A and b(x) \ b(y) ¼ ; for any distinct x, y 2 B}.

Proof. Denote the n-cardinality of A by k and let ki be the cardinal defined in the

condition (i) for i ¼ 1, 2. It is clear that if b(x) \ b(y) ¼ ; for distinct x, y 2 B then

pni j B is an injection for each ib n. This shows that k2b k. Now, fix a set Y� K of

cardinality k1 with A � S{ðpni Þ�1 (Y) : i b n}. If B � A is such that pni j B is an

injection for all ib n then, for each x 2 B, there is i(x)b n with q(x)¼ pniðxÞ (x) 2 Y.
It is easy to see that q : B! Y and j q�1 (y) j b n for any y 2 Y and therefore j B j b
jY j. As a consequence, k b k1.

To finish the proof it suffices to show that k1 b k2. To do this, take any Y � K
with j Y j ¼ k1 and A � S{ðpni Þ�1 (Y) : i b n}. Choose a point z0 2 A arbitrarily.

Suppose that a < k1 and we have chosen points {zb : b < a} � A so that
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b(zb)\ b(zb0) ¼ ; if b 6¼ b0. The set Y0 ¼ S{b(zb) : b < a} has cardinality < k1
which implies A 6� S{ðpni Þ�1 (Y0) : i b n}. Take any za 2 A \

S
{ðpni Þ�1 (Y0) : i b n}

and observe that b(za) \ Y0 ¼ ; and hence the family {b(zb) : b b a} is disjoint.

Thus, we can construct a set {za : a< k1}� A such that {b(zb) : bb k1} is a disjoint
family. This shows that k1 b k2 and Fact 3 is proved.

Fact 4. Fixm 2N and take an arbitrary closed F�Km. If j F jm>o then j F jm¼ c.

Proof. Take any continuous surjective map ’ : K ! F which exists by Problem

128(v). By condition (2) of Fact 3 there exists an uncountable A � F such that

{b(x) : x 2 A} is a disjoint family. For each x 2 A, take zx 2 ’�1(x). Observe that the
open intervals with rational endpoints form a countable base in R and therefore

K� R is also second countable. Apply Fact 1 to find an uncountable Z� {zx : x 2 A}
with no isolated points.

Let Sn ¼ {f : f is a function from {1, . . . , n} to {0, 1}} for each n 2 N. For
each f 2 S¼S{Sn : n 2 N} we will construct a point tf 2 Z and Of 2 t(tf,K) in such

a way that

(i) If f and g are distinct elements of Sn then there exists disjoint H, G 2 t(K) such

that ’(Of ) � Hm and ’(Og) � Gm.

(ii) If f 2 Sn, g 2 Sk, n < k and g j {1, . . . , n} ¼ f then Of � Og.

Clearly, S1¼ {u, w} where u (1)¼ 0 and w (1)¼ 1. Choose arbitrarily distinct tu,
tw 2 Z and find disjoint sets G 2 t(b(’(tu)), K), H 2 t(b(’(tw)), K). The map ’
being continuous, we can find Ou 2 t(tu, K), Ow 2 t(tw, K) such that ’(Ou) � Gm

and ’(Ow) � Hm.

The sets Ou, Ow and the points tu, tw satisfy the condition (i) (and (ii) vacuously).

Proceeding by induction suppose that we have a set Of and a point tf 2 Z for each f 2S
{Si : i< n} with the properties (i)–(ii). Take an arbitrary h 2 Sn�1 and observe that

there are exactly two functions, say h0, h1 2 Sn such that h ¼ h0 j {1, . . . , n � 1} ¼
h1 j {1, . . . , n� 1}. Without loss of generality, we may assume that h0(n)¼ 0 and h1
(n) ¼ 1. The set Oh \ Z 3 th is non-empty and cannot consist of only one point th
because this point would be isolated in Z. Therefore it is possible to take distinct

th0 ; th2 2Oh \ Z. We have b(’(th0 ))\ b(’(th2 ))¼ ; and therefore there exist disjoint
sets G1 2 t(b(’(th0 )), K) and H1 2 t(b(’(th2 )), K). The mapping ’ being continu-

ous, we can find sets Oh0 2 tðth0 ;KÞ;Oh1 2 tðth1 ;KÞ such that Oh0 [ Oh1 � Oh,

’(Oh1Þ � Gm
1 and ’(Oh1 )�Hm

1 . Since Sn¼ {h0, h1 : h 2 Sn�1}, we have constructed
points tf and sets Of 2 t(tf, K) for any f 2S{Sk : k b n} and it is immediate that the

properties (i)–(ii) are fulfilled.

To prove that j F j m ¼ c it suffices to construct an injection ℵ : {0, 1}N! F such

that b(ℵ(x)) \ b(ℵ(y))¼ ; for any distinct x, y 2 {0, 1}N. So, if x 2 {0, 1}N let xn¼ x
j {1, . . . , n} and Un ¼Oxn . It an immediate consequence of (ii) that U1 � U2 � U2 �
U3 � � � � and therefore Hx ¼

T
{Un : n 2 N} ¼ T{Un : n 2 N} is a non-empty set

becauseK is compact. Now, if we take any point ux 2 Hx then the map r : {0, 1}N!
F defined by r(x)¼ ’(ux) has the required property. Indeed, if x, y2 {0, 1}N and x 6¼ y
then x(n) 6¼ y(n) for some n whence xn 6¼ yn and hence there exist disjoint open
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subsets G, H � K such that ’(Oxn ) � Hm and ’(Oyn ) � Gm. Therefore b(r(x)) � H
and b(r(y))�G and consequently b(r(x)) \ b(r(y))�H \ G¼ ; so Fact 4 is proved.
Fact 5. There exist disjoint sets A, B�K such that, for any n 2N and for any closed

n-uncountable F � Kn, we have An \ F 6¼ ; and Bn \ F 6¼;.
Proof. Since Kn is homeomorphic to K for each natural n, apply Fact 2 to observe

that there are at most c closed sets which lie in some Kn. Let {Fa : a < c} be an

enumeration of all closed n-uncountable subsets ofKn for all n 2N. For each a< c,
there is n ¼ n(a) such that Fa � Kn. Apply Fact 4 to conclude that each Fa has n-
cardinality continuum for n¼ n(a). By Fact 3, we can fix a setHa� Fawith jHa j ¼
c and b(a) \ b(a0) ¼ ; for any distinct a, a0 2 Ha. Take distinct x, y 2 H0 and let

A0 ¼ b(x), B0¼ b(y). Suppose that a < c and we have constructed sets {Ab : b < a}
and {Bb : b < a} with the following properties:

(iii) The family ma ¼ {Ab : b < a} [ {Bb : b < a} is disjoint.

(iv) Ab ¼ b(p), Bb ¼ b(q) for some distinct p, q 2 Hb.

The set P ¼ Sma has cardinality strictly less than c while {b(z) : z 2 Ha} is a

disjoint family of cardinality c. Therefore we can choose distinct r, r0 2 Ha such

that b(r) [ b(r0) is disjoint from P. Letting Aa ¼ b(r) and Ba ¼ b(r0), we obtain

families {Ab : b b a} and {Bb : b b a} for which the conditions (iii)–(iv) hold so

the inductive construction can go on. After we have the families {Ab : b < c} and

{Bb : b < c} observe that the sets A ¼ [{Ab : b < c} and B ¼ {Bb : b < c} are

disjoint by (iii). Note that, for any x 2 Kn, we have x 2 (b(x))n. Now take any

n-uncountable F � Kn. Since we enumerated all such sets, F ¼ Fa for some a < c.
Therefore An \ F� An

a \ Fa 6¼ ; and Bn \ F� Bn
a \ Fa 6¼ ; by (iv) which finishes

the proof of Fact 5.

Fact 6. Take a set A � K with the properties described in Fact 5. Let m be the

topology on K generated by the family B ¼ t(K) [ {{x} : x 2 A}. It is easy to see

that B is a base for m. Denote by X the space (K, m). Then X is a Tychonoff space

with Xn Lindel€of for all n 2 N.
Proof. We leave to the reader the trivial exercise that any topology, which contains a

Hausdorff one, is Hausdorff. Since m � t(K), the space X is Hausdorff. To establish

complete regularity ofX, take any x2 X and any closedF� Xwith x =2 F. If x2 A then

x is isolated in X and the function f : X! [0, 1] defined by f (x) ¼ 1 and F(X \ {x})¼
{0}, is continuous and equals zero on F. If x 2 X \A then t(x, K) is a local base at x
and therefore x2U� X \F for someU 2 t(x,K). SinceK is a Tychonoff space, there

exists a continuous map f : K! [0, 1] with f(x) ¼ 1 and f (X \ U) � {0}. Since F �
X \U, we have f (F) � {0} and it is immediate that f is continuous considered as a

function from X to [0, 1]. This proves that X is Tychonoff.

We will prove that Xn is Lindel€of by induction on n. To do this for n¼ 1 take any

open cover g of the space X. It is easy to see that without loss of generality, we may

assume that g � B. The subspace X \A is homeomorphic to K \A because the

topology of K \A has not been changed. Thus X \A is second countable and hence

Lindel€of (Observation one of S.140). Take any countable g0 � g with X \A � S g0.
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Since no element of B \ t(K) meets X \A, we may assume that g0 � t(K). But then

[g0 is open inK and hence F¼K \ (
S
g0)� A is closed inK and disjoint from the set

B from Fact 5. Since B¼ B1 intersects all uncountable subsets ofK¼K1 by Fact 5,

the set F has to be countable. Thus there is a countable g00 � g with F � Sg00. As a
consequence, the family g0 [ g00 is a countable subcover of g which proves that X
is Lindel€of.

Suppose that we proved that Xn is Lindel€of for some n r 1 and take any open

cover g of Xnþ1. Let Bnþ1 ¼ {U1 � � � � � Unþ1 : Ui 2 B, i ¼ 1, . . . , (n þ 1)}. It is

again an easy exercise that Bnþ1 is a base of Xnþ1 and hence we do not lose

generality assuming that g � Bnþ1. The subspace (X \A)nþ1 is second countable

because so is X \A (Observation four of S.135) and hence there is a countable g0 �
g with (X \A)nþ1 �S g0. Observe that if x 2 (X \A)nþ1 \ (U1� � � � � Unþ1) and U1

� � � � � Unþ1 2 Bnþ1 then Ui 2 t(K) for each i and hence we may assume that g0 �
t(K)n. Therefore F ¼ Knþ1 \ (

S
g0) is closed in Knþ1 and disjoint from Bnþ1 �

(X \A)nþ1. Apply Fact 5 to conclude that F is (n þ 1)-countable and therefore there

exists a countable Z � K such that T ¼ S{(pnþ1i )�1 (Z) : i b n þ 1} covers F. Note
that (pnþ1i )�1 (z) is homeomorphic to Xn for each z 2 Z and i b n þ 1. By the

inductive hypothesis T is a countable union of Lindel€of subspaces of Xnþ1 and

hence it is Lindel€of. Thus, there is a countable g00 � g with F � S g00. As a

consequence, the family g0 [ g00 is a countable subcover of g which proves that

Xn þ 1 is Lindel€of and Fact 6 is proved.

Fact 7. Denote by Y the subspace A of the spaceK, constructed in Fact 5. The space

Y is second countable and hence Yn is Lindel€of for each n 2 N. However, X � Y is

not Lindel€of.

Proof. Observation four of S.135 shows that Yn is second countable for any n 2 N.
Applying Observation one of S.140, we can conclude that Yn is Lindel€of for each
n 2 N. To prove that X � Y is not Lindel€of it suffices to find an uncountable closed

discrete subspace of X � Y. Let p : X � Y! X and q : X � Y! Y be the respective

natural projections. Note that, as a set, Y is a subset of X and hence we can consider

the setD¼ {(y, y) : y 2 Y}� X� Y. It is easy to see from the method of construction

of A that it is uncountable and hence so isD. If d¼ (y, y) 2D then p(d)¼ y 2 A is an

isolated point in X and hence U ¼ p�1(y) is an open set in the space X � Y such that

U \ D¼ {d} which shows thatD is discrete. To see that the setD is closed take any

point z¼ (x, y) 2 (X� Y) \D. Then x 6¼ y and we can choose disjoint open subsets of
K such that x 2 U and y 2 V. Observe that U 2 t(X) and V0 ¼ V \ A is an open

subset of Y. The set W ¼ U � V0 is open in X � Y and z 2W. If d ¼ (t, t) 2W \ D
then t 2 U \ V0, a contradiction with U \ V0 ¼;. Therefore W \ D ¼ ; and this

proves that D is closed in X � Y finishing the proof of Fact 7.

To finish the solution of our problem, we will show that the spaces X and Y are as

promised. Indeed, since Xn and Yn are Lindel€of for all n 2 N, we have t(Cp(X)) ¼
t(Cp(Y))¼ o by Problem 149. If Z¼ X

L
Y then Cp(X)� Cp(Y) is homeomorphic to

Cp(Z) by Problem 114 so it suffices to prove that t(Cp(Z))> o. Observe that X� Y is

a closed subspace of Z2 and hence Z2 is not Lindel€of. Applying Problem 149 once

more we conclude that t(Cp(Z)) > o and our solution is, at last, complete.
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S.152. Let Y be a subspace of a space X. Denote by pY : Cp(X) ! Cp(Y) the
restriction map, i.e., pY( f) ¼ f j Y. Prove that
(i) The map pY is continuous and pYðCpðXÞÞ ¼ CpðYÞ.
(ii) The map pY is an injection if and only if Y is dense in X;
(iii) The map pY is a homeomorphism if and only if Y ¼ X.
(iv) The subspace Y is closed in X if and only if the map pY : Cp(X)! pY (Cp(X)) is

open.
(v) If X is normal and Y is closed in X then pY (Cp(X)) ¼ Cp(Y).

Solution. (i) Observe first that pY (Cp(X)) � Cp(Y) by Problem 022. The map pY is
continuous because it coincides with the natural projection pY : RX! RY restricted

to Cp(X) (see Problems 111 and 107). The set Cp(X) is dense in RX (Problem 111)

so, by continuity of pY we have RY ¼ pY(RX) ¼ pY CpðXÞ
� �

� pYðCpðXÞÞ (the first
bar denotes the closure in RX and the second one in RY). Thus the set pY (Cp(X)) ¼
pY(Cp(X)) is dense in RY and hence in a smaller space Cp(Y).

(ii) Suppose that Y is not dense in X and denote by u the function identically

equal to zero on X. Take any x 2 X \Y. By the Tychonoff property of X there exists

a continuous f : X! R such that f(x) ¼ 1 and f jY � 0. Thus pY( f) ¼ pY(u) while
u 6¼ f. This shows that Ymust be dense in X if pY is an injection. Now if Y is dense in

X and f, g 2 Cp(X), f 6¼ g, then h ¼ f � g is a continuous function and the open set

U¼ h�1(R \ {0}) is non-empty. Since Y is dense in X, we can pick y 2 Y \ U. Then
f(y) 6¼ g(y) which implies pY( f) ¼ f j Y 6¼ g j Y ¼ pY(g) and hence pY is an injection.

(iii) If pY is a homeomorphism then it is an injection so Y is dense in X by (ii). If

Y 6¼ X, take any x 2 X \Y. The set F ¼ {f 2 Cp(X) : f(x) ¼ 1} is not dense in Cp(X)
because it does not intersect the open non-empty set U ¼ {f 2 Cp(X) : f(x) 2 (2, 3)}.

However pY(F) is dense inCp(Y). Indeed, take any g2Cp(Y), y1, . . . , yn2 Y and e> 0.

There exists f 2 Cp(X) such that f(x)¼ 1 and f(yi)¼ g(yi) for all ib n (Problem 034).

Thus pY( f)2O(g, y1, . . . , yn, e) \ pY(F) which proves that pY(F) is dense inCp(Y). As
a consequence, the map p�1Y is not continuous because the image of a dense set pY(F)
under p�1Y would be a dense set. But this image is F which is not dense in Cp(X), a
contradiction. We proved that if pY is a homeomorphism then Y¼ X. Finally, observe
that if X ¼ Y then pY is the identity map and hence homeomorphism.

(iv) Suppose that Y is closed and denote the set pY(Cp(X)) by Cp(Y j X).
Fact 1. Suppose that y1, . . . , ym 2 X \Y, r1, . . . , rm 2 R and f 2 Cp(X). Then there

exists g 2 Cp(X) such that g j Y ¼ f and g(xi) ¼ ri for all i b m.

Proof. For each ib m, use the Tychonoff property of X to find gi 2 C(X, [0, 1]) with
gi j (F [ ({y1, . . . , ym} \ {yi})) � 0 and gi(yi) ¼ 1. It is easy to see that the function

g ¼ f þPm
i¼1 ðri � f ðyiÞÞ � gi is as promised.

Take any openW� Cp(X). Since the standard open sets form a base in Cp(X), we
have W ¼ S{Ua : a 2 A} where each Ua is a standard open set. Then pY (W) ¼S
{pY(Ua) : a 2 A} and therefore it suffices to show that the image of any standard

set under pY is open. Take any x1, . . . , xn 2 X and O1, . . . , On 2 t(R). We will

prove that the set pY(U) is open where U ¼ [x1, . . . , xn; O1, . . . , On]X (the index

128 2 Solutions of Problems 001–500



says that the standard open set is taken in Cp(X)). Without loss of generality, we

may assume that x1, . . . , xk�1 2 Y and xk, . . . , xn =2 Y for some k 1. It suffices to

show that pY(U)¼W¼ [x1, . . . , xk�1;O1, . . . ,Ok]Y¼ {f 2 Cp(Y j X) : f(xi) 2Oi for

all ib k� 1}. It is evident that pY(U)�W. Now if f 2W then take any rk, . . . , rn 2
R with ri 2 Oi for all i ¼ k, . . . , n. Apply Fact 1 to find g 2 Cp(X) for which gjY¼ f
and g(xi) ¼ ri for all i ¼ k, . . . , n. Then pY(g) ¼ f and g 2 U which implies W ¼
pY(U). This shows that pY : Cp(X)! Cp(YjX) is an open map.

Now suppose that pY is an open map and x 2 Y \ Y. We will use the following

evident observation: in any space Z, if G and H are dense open subsets of Z then

G \ H 6¼ ;. Let U ¼ [x; (0, 2)]X and V¼ [x; (3, 5)]X. To get a contradiction we will
prove that the sets G ¼ pY(U) and H ¼ pY(V) are dense and disjoint in Cp(Y j X).
Therefore it is impossible that they both be open which is a contradiction with the

openness of the map pY. Suppose that, f 2 G \ H. Then there is g 2 U and h 2 V
with pY(g) ¼ pY(h) ¼ f. The function w ¼ g � h is continuous on X and w(x) 6¼ 0.

The set A¼ w�1(R \ {0}) is open and contains x. Since x 2 Y, there is y 2 Y \ A. As
a consequence w(y) 6¼ 0, i.e., h(y) 6¼ g(y) which contradicts the fact that gjY � hjY.
This proves that the sets G and H are disjoint. Let us prove, for example, that G
is dense in Cp(Y j X); the proof for H is analogous. Given y1, . . . , yn 2 Y and

O1, . . . , On 2 t�(R), choose ri 2 Oi for each i b n and observe that there exists

function f 2 Cp(X) such that f(x) ¼ 1 and f(yi) ¼ ri for all i b n by Problem 034. It

is clear that pY(f) 2 [y1, . . . , yn; O1, . . . , On]Y \ G whence G is dense in Cp(YjX).
(v) By normality of X, for every f 2 Cp(Y) there is g 2 Cp(X) such that pY(g) ¼

gjY ¼ f (see Problem 032). Therefore pY(Cp(X)) ¼ Cp(Y).

S.153. Prove that closed maps as well as open ones are quotient. Give an example

(i) Of a quotient map which is neither closed nor open
(ii) Of a closed map which is not open
(iii) Of an open map which is not closed

Solution. Let f : X! Y be a closed map. If U � Y and f�1(U) is open then consider
the set F¼ Y \ U. Since f�1(F)¼ X \ f�1(U), the set f�1(F) is closed in X. The map f
being closed, the set F ¼ f(f�1(F)) is closed in Y and hence U ¼ Y \ F is open. This

proves that f is quotient. Now, if f is open and f�1(U) is open then U ¼ f(f�1(U)) is
open an hence f is also quotient.

(i) Let X ¼ {(t, 1) : t 2 [0, 2)} [ {(t, 2) : t 2 [1, 2]} � R2. The topology of X is

induced from R2. For Y ¼ [0, 2] define a map f : X! Y by f(x) ¼ t if x ¼ (t, i), i ¼
1, 2. Let us prove that f is a quotient map which is neither open nor closed.

Let p : R2! R be the natural projection onto the first factor. It is clear that f ¼
pjX and hence f is a continuous. Let P¼ {(t, 1) : t 2 [0, 2)} andQ¼ {(t, 2) : t 2 [1, 2]}.
Suppose that A� [0, 2] and B¼ f�1(A) is open in X. Then B \ P 2 t(P) and B \ Q
2 t(Q). If 2 =2 A then A ¼ f(B \ P). The map fjP is a homeomorphism of P onto

[0, 2) which is open in [0, 2]. As a consequence A is open in [0, 2) and hence in

[0, 2]. Now, if 2 2 A then (2, 2) 2 B \ Q. Since B \ Q is open in Q, there is

e 2 ð0; 1
2
Þ such that {(t, 2) : t 2 (2� e, 2]}� B \ Q. This implies (2� e, 2]� A i.e.,
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2 is in the interior of A. But A¼ f(B \ P) [ {2} and we saw already that f(B \ P) is
open in [0, 2]. Thus A is a union of two open sets: f(B \ P) and the interior of A.
Consequently, A is open and we proved that f is quotient.

It is immediate that both P and Q are clopen(� closed-and-open) subsets of X.
However, f(P) ¼ [0, 2) is not closed and f(Q) ¼ [1, 2] is not open which proves that

f is neither closed nor open.

(ii) Let X ¼ [0, 2] � R and Y ¼ [0, 1] � R. Given t 2 X, let f(t) ¼ min{t, 1}. It is
immediate that f : X! Y is a continuous map. It is also closed because X is compact

(see Problem 122). However, f is not open because U ¼ (1, 2) is an open subset of

X while f(U) ¼ {1} is not open in Y.
(iii) Let X ¼ R2 and let p : X! R be the natural projection onto the first factor.

The map p is open by Problem 107. Let F ¼ fð1n; nÞ : n 2 Ng � X. The set F is

closed in X. Indeed, if z ¼ (x, y) 2 X \ F take any m 2 N with m > y and note that

U ¼ {(a, b) 2 X : b < m} is an open set such that z 2 U and U \ F is finite. Thus

U \ F is an open neighbourhood of z which does not intersect F. However,

pðFÞ ¼ f1n : n 2 Ng is not closed in R and hence p is an open map which is not

closed.

S.154. Prove that every quotient map is R-quotient. Give an example of an
R-quotient non-quotient map.
Solution. Let f : X! Y be a quotient map. Suppose that g : Y!R is a map such that

g 	 f is continuous. Given an open U � R the set V ¼ (g 	 f )�1(U) is open in X.
However, V¼ f�1(g�1(U)) and hence the inverse image of the set g�1(U) is open in
X. The map f being quotient, the set g�1(U) has to be open in Y and hence g is

continuous. This proves that f is R-quotient.
To construct the promised example, we will need several auxiliary facts.

Fact 1. Let Q ¼ Q \ I. There exists an almost disjoint familyM on Q such that

every x 2 M is a convergent sequence.

Proof. Let {Na : a< c} be some enumeration of all infinite subsets of Q. Since N0 is

a bounded infinite set, there is an infiniteM0� N0 such thatM0 is a sequence which

converges to some t0 2 I. Suppose that a < c and we have infinite sequences {Mb :

b < a} with their respective limits {tb : b < a} chosen in such a way that the

following conditions are satisfied:

(1) The family {Mb : b < a} is almost disjoint

(2) For every b < a there is d < a such that the set Nb \ Md is infinite

If, for each l< c, there is b< a such that the setNl \ Mb is infinite, the inductive

construction stops. If not, let d¼min{l< c : Nl \ Mb is finite for all b< a}. Then
dr a and the bounded sequenceNd has an infinite subsequenceMawhich converges

to a point ta2 I. It is clear that the properties (1)–(2) hold the family {Mb : bb a} and
hence the inductive construction can go on. If it stops at some a< c then, for every l
< c there is some b < a such that the set Nl \ Mb is infinite. This means that the

family m ¼ {Mb : b < a} is maximal almost disjoint. Indeed, if some infinite set
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N�Q has finite intersections with all elements of m then N¼ Nl for some l< c and
hence there is b < a with Nl \ Mb ¼ N \ Mb infinite which is a contradiction.

Now if the inductive process did not stop until c then we have the family m ¼
{Mb : b < c} which is also almost disjoint. Indeed, if some infinite set N � Q has

finite intersections with all elements of m then N ¼ Nl for some l < c. If a ¼ l þ 1

then by (2) there is b < a with Nl \ Mb ¼ N \ Mb infinite, a contradiction which

concludes the proof of Fact 1.

Fact 2. There is a maximal almost disjoint familyM on o such that the respective

Mrowka space M (see Problem 142) can be mapped continuously onto I.
Proof. Take any bijection ’ :o!Q¼Q \ I and letM¼ {’�1(x) : x 2N } where

N is the maximal almost disjoint family constructed in Fact 1. For each N 2 N
denote by lN the limit of the convergent sequence N. Given any d 2 M, let f(d) ¼
l’(d) and let f(n) ¼ ’(n) for each n 2 o. We will prove that the map f : M ! I is
continuous and surjective. Since every point of o is isolated, we must only prove

continuity at any d 2M. If e> 0 then there is a finite A� ’(d) such that ’(d) \ A�
(f(x) � e, f(x) þ e) because the sequence ’(d) converges to l’(d) ¼ f(x). The set B ¼
’�1(A) is finite and hence U ¼ d \ B is an open neighbourhood of the point d for

which f(U) � (f(x) � e, f(x) þ e). Thus f is continuous at d. Observe that f(M) is a

pseudocompact second countable space by Problem 139 and hence f(M) is compact.

By Problem 121 the set f(M) is closed in I. Since Q � F(M), we have I ¼ Q � f(M)

and Fact 2 is proved.

Fact 3. If X is a pseudocompact space and Y is a second countable space then every

continuous surjective map f : X! Y is R-quotient.
Proof. Take any function g : Y! R such that g 	 f is continuous. Fix any closed set
F � R. We are going to prove that G ¼ g�1(F) is closed in Y. For any x 2 R,
let dF(x) ¼ inf{jx � yj : y 2 F}. The function dF : R ! [0, þ1) is continuous

(see Claim of S.019) and hence the set Un ¼ d�1F

�	
0; 1n
��

is open in X and contains

F. Besides, Unþ1 � d�1F

�	
0; 1

nþ1

� � d�1F

�	
0; 1n
�� ¼ Un for each n 2 N. Conse-

quently, F ¼ T{Un : n 2 N} ¼ T{Un : n 2 N}. The set H ¼ (g 	 f)�1(F) is closed
in X and H ¼ T{Vn : n 2 N} ¼ T{Vn : n 2 N}, where Vn ¼ (g 	 f)�1(Un) for all

numbers n 2 N. Therefore G ¼ T{f(Un) : n 2 N}.
Note that every Un is pseudocompact. Indeed, if g is a locally finite family of

non-empty open sets of Un then g0 ¼ {U \ Un : U 2 g} is a locally finite family of

non-empty open subsets of X. Since X is pseudocompact, the family g0 is finite and
hence so is g. Now Problem 136(ii) implies that Un is pseudocompact. Every f(Un)

is compact being Lindel€of and pseudocompact (see Problem 138) and hence f(Un)

is closed in Y for each n. Finally, G is closed being the intersection of closed sets.

This proves that g is continuous and Fact 3 is proved.

Now let f : M ! I be a continuous surjective map of the Mrowka space

constructed in Fact 2. The set o is dense in M and hence C ¼ f(o) is a countable

dense subset of I. The set C cannot be open because every open subset of I contains
a non-empty interval which is uncountable. Observe that f�1(C) contains o and
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hence M \ f�1(C) is contained in M which is closed and discrete. Since every

subset of a closed discrete set is closed, the set f�1(C) is open. Thus the set C
witnesses the fact that f is not a quotient map. By Fact 3 and Problem 142(iii) the

map f is R-quotient and our solution is complete.

S.155. Prove that any R-quotient condensation is a homeomorphism.

Solution. Suppose that f : X ! Y is an R-quotient condensation. By Problem 127

we may consider that X is a subspace of IA for some A. Let pa : I
A! I be the natural

projection onto the ath factor. The map f�1 : Y! X can be considered as a map from

Y to IA and it suffices to prove that f�1 : Y! IA is continuous. By Problem 102 it is

sufficient to show that ga¼ pa 	 f�1 is continuous for each a 2 A. Observe that ga 	 f
¼ pa 	 f�1 	 f ¼ pa is a continuous map. Applying the fact that f is R-quotient, we
conclude that ga is continuous for each a and hence f�1 is a continuous map, i.e.,

f is a homeomorphism.

S.156. For any space X prove that

(i) c(X) b d(X) b nw(X) b w(X).
(ii) c(X) b s(X) and ext(X) b l(X) b nw(X).
(iii) c(X) b w(X) and c(X) b iw(X) b nw(X).
(iv) t(X) b w(X) b w(X) and t(X) b nw(X).

Solution. (i) Any base is also a network so nw(X) b w(X). IfN � exp(X) \ {;} is a
network of X, then pick a point x(P) 2 P for any P 2 N . It is immediate that {x(P) :
P 2 N } is dense in X whence d(X) b nw(X). Now if D � X is a dense set, then

for any disjoint family g � t�(X) we can choose y(U) 2 U for any U 2 g. The map

U! y(U) is clearly an injection of g to D which proves that c(X) b d(X).
(ii) If g � t�(X) is a disjoint family, choose y(U) 2 U for each U 2 g. The

subspace D¼ {y(U) : U 2 g} is discrete and j D j ¼ j g j. Consequently, c(X)b s(X).
Assume that l(X) b k and take any closed discrete D � X. For each d 2 D choose

Ud 2 t(d, X) withUd \ D¼ {d}. The family m¼ {Ud : d 2D} [ {X \ D} is an open
cover of X. It is easy to see that every subcover m0 of the cover m has to contain the

family {Ud : d 2 D} and hence j m0 j ¼ j m j. This shows that D ¼ j m j b k whence

ext(X) b l(X). Suppose finally thatN is a network of X, jN j ¼ k and g � t(X) is an
open cover of X. Let N 0 ¼ {P 2 N : there is U(P) 2 g with P � U(P)}. The family

g0 ¼ {U(P) : P 2 N 0} is a subcover of g of cardinality b k. Indeed, we only have to
prove that g0 is a cover. For any x 2 X, there isU 2 gwith x 2U. The familyN being

a network, there is P 2 N with x 2 P � U. This shows that P 2 N 0 and hence x 2 P
� U(P). Thus g0 is a cover of X and we proved that l(X) b nw(X).

(iii) IfB is a local base at a point x2 X then, for any y 6¼ x, the set X \ {y} is an open
neighbourhood of X (don’t forget that all spaces are Tychonoff and hence T1). Thus,
there exists U 2 B such that x 2 U � X \{y}. As a consequence,

T B ¼ {x} and

thereforec(X)b w(X). Let f : X! Y be a condensation such thatw(Y)b k. Thenc(Y)
b w(Y)b w(Y)b k. Now, if x2 X, let y¼ f(x) and fix a familyB � t(Y) such that

T B
¼ {y}. ThenB0 ¼ {f�1(U) :U 2 B}� t(X) and

T B0 ¼ {x} which proves thatc(X)b
k. Thus, we established the inequalityc(X)b iw(X). To show that iw(X)b nw(X) take
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any network N of the space X with jN j ¼ nw(X) ¼ k. It is an easy consequence of

regularity of X that if we take the closures of the elements of N , we will still have a

network in X. Therefore, we can assume that all elements ofN are closed.

Fact 1. If a spaceM is second countable and A is an infinite set then, for any Y�MA,

we have w(Y) b j A j.
Proof. Fix a countable base B in M. Given a1, . . . , an 2 A and O1, . . . , On 2 B,
let [a1, . . . , an; O1, . . . , On] ¼ {x 2 MA : x(ai) 2 Oi for all i b n}. The family C ¼
{[a1, . . . , an; O1, . . . , On] : n 2 N, ai 2 A and Oi 2 B for all i b n} is a base inMA

and j C jb j A j so w(MA)b j A j. It is evident that C0 ¼ {U \ Y : U 2 C} is a base in
Y and j C0 j b j C j b j A j so Fact 1 is proved.

Fact 2. There exists a set A � C(X, [0, 1]) with j A j b k such that, for any distinct

x, y 2 X, there is f 2 A for which f(x) 6¼ f(y).

Proof. Let us call a pair p¼ (M, N) 2 N �N marked if there exist a function f¼ fp
2 C(X, [0, 1]) such that f(M) � [0, 1

3
] and f(N) � [2

3
, 1]. Let A ¼ {fp : p is a marked

pair}. It is clear that jAjbjN � Nbk. Given distinct x, y 2 X, by the Tychonoff

property of X, there is g 2 C(X, [0, 1]) such that g(x) ¼ 1 and g(y) ¼ 0. If U ¼
g�1([0, 1

3
)) and V ¼ g�1((2

3
, 1]) then U 2 t(x, X) and V 2 t(y, X). As a consequence

there are M, N 2 N such that x 2 M � U and y 2 N � V. Since g(M) � [0, 1
3
] and

g(N) � [2
3
, 1], the pair p ¼ (M, N) is marked and hence f ¼ fp 2 A so f(x) b 1

3
and

f(y) r 2
3
which implies f(x) 6¼ f(y) so Fact 2 is proved.

To finish the proof of the inequality iw(X)b nw(X), take the set A given by Fact 2

and consider the map ’ : X ! [0, 1]A defined by ’(x)(f) ¼ f(x) for all x 2 X and

f 2 A. If f 2 A and pf : [0, 1]
A! [0, 1] is the respective natural projection then the

composition pa 	 ’ ¼ f is a continuous function on X which proves that ’ is a

continuous map by Problem 102. If Y ¼ ’(X) then w(Y) b j A j b k by Fact 1.

Thus, we only have to prove that ’ is an injection. To see this take distinct x, y 2 X.
By Fact 2 there is f 2 A with f(x) 6¼ f(y). Then ’(x)(f) ¼ f(x) 6¼ f(y) ¼ ’(y)(f) and
therefore ’(x) 6¼ ’(y) and the proof of (iii) is complete.

(iv) If B is a base of the space X then, for any x 2 X, the family Bx ¼ {U 2 B :

x 2 U} is a local base at x and j Bx j b j B j which proves the inequality w(X) b w
(X). Now suppose that w(X) b k and take any A � X with x 2 A. Fix a local base

B at the point x such that j B jb k. For any U 2 B, pick any point xU 2 U \ A and

let B¼ {xU : U 2 B}. It is clear that B 2 A and j B jb k. To see that x 2 B, take any
W 2 t(x, X). Since B is a local base at x, there isU 2 B with U�W. Therefore xU 2
W \ A and henceW \ A 6¼ ; for any open W 3 x. Thus x 2 B and we proved that

t(X)b w(X). Now suppose that nw(X)b k and take any A� X with some x 2 A. Let
N 0 ¼ {N 2 N : N \ A 6¼ ;} and choose a point aN 2 N \ A for each N 2 N 0. It is
clear that B ¼ {aN : N 2 N 0} � A and j B jb j N jb k. We claim that x 2 B. For if
not, take any U 2 t(x, X) with U \ B ¼ ; and note that B \ A 6¼ ; because x 2 A.
Pick any a 2 A \ U and N 2 N such that a 2 N � U. It is clear that N 2 N 0 and
hence aN 2 U \ B which is a contradiction. Therefore x 2 B and we proved that

t(X) b nw(X).
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S.157. Prove that, for any space X, if Y is a continuous image of X, then

(i) c(Y) b c(X).
(ii) d(Y) b d(X).
(iii) nw(Y) b nw(X).
(iv) s(Y) b s(X).
(v) ext(Y) b ext(X).
(vi) l(Y) b l(X).

Solution. Let f : X! Y be a continuous onto map.

(i) If g is a disjoint family of non-empty open subsets of Y then the family g0 ¼
{f�1(U) :U 2 g}� t�(X) is also disjoint and j g0 j ¼ j g j. This shows that c(Y)b c(X).

(ii) If A is a dense subset of X, then f(A) is dense in Y, j f(A) j b j A j and hence

d(Y) b d(X).
(iii) If N is a network in X, thenM¼ {f(P) : P 2 N } is a network in Y, which

together with jMj � jN j implies nw(Y) b nw(X).
(iv)–(v) If D is a (closed) discrete subspace of the space Y, then we can choose

x(d) 2 f�1(d) for each d 2 D. It is immediate that the set E ¼ {x(d) : d 2 D} is

(closed) discrete and j E j ¼ j D j. This shows that s(Y) b s(X) and ext(Y) b ext(X).
(vi) If g � t(Y) is a cover of Y, then the family m ¼ {f�1(U) : U 2 g} is an open

cover of X. Take any m0 � m such that
S
m0 ¼ X and j m0 j b k ¼ l(X). Then {f(U) :

U 2 m0} is a subcover of g of cardinality b k. Therefore l(Y) b l(X).

S.158. Show that, for any ’ 2 {weight, character, pseudocharacter, i-weight,
tightness} there exist spaces X and Y such that Y is a continuous image of X and
’(Y) > ’(X).

Solution. We will need the following statement.

Fact 1. Let T be a dense subset of a space Z. Then, for each t 2 T, we have w(t,T) ¼
w(t, Z).

Proof. If B is a local base at t in Z then {U \ T : U 2 B} is a local base at t in T and

therefore w(t, T) b w(t, Z). Now take a local base C of t in T. For each U 2 C choose
O(U) 2 t(Z) such that O(U) \ T¼U. We claim that the family B ¼ {O(U) :U 2 C}
is a local base at t in Z. Indeed, assume that t 2W 2 t(Z). By regularity of Z there is

V 2 t(t, Z) such that V �W (the bar will denote the closure in Z). Take U 2 C withU
� V \ T. Then OðUÞ ¼ U � V �W and hence O(U) �W which proves that B is a

local base at t in Z. Since j B jb j C j , we have w(t, Z)b w(t, T) concluding the proof
of Fact 1.

Since d(R)b w(R)¼ o by Problem 156(i), we have d(Rc)b o by Problem 108.

Take any dense countable subspace Y � Rc. Then w(y, Y) > o for every y 2 Y.
Indeed, if w(y, Y) ¼ o for some y 2 Y then w(y, Rc) ¼ o by Fact 1. It is evident

that Rc is homeomorphic to Cp(D(c)) and hence, for any f, g 2 Rc there is a

homeomorphism ’ : Rc ! Rc with ’(f) ¼ g (see Problem 079). As a consequence

w(Rc) ¼ o. Observe that jRj ¼ c and hence Cp(R) is homeomorphic to a subspace

ofRc so w(Cp(R))¼owhich is a contradiction with S.046. Thus we have w(y, Y)>o
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for any y 2 Y and, in particular, w(Y) > o. Now if X is a discrete countably

infinite space then Y is a continuous image of X (any surjection of X onto Y will

do) while w(X) ¼ w(X) ¼ o.
To see that tightness is not preserved by continuous images observe that the

space Y ¼ Cp(D(o1)) has uncountable tightness because D(o1) is not Lindel€of (see
Problem 149). If X is the set Cp(D(o1)) with the discrete topology then t(X)¼o and

Y is a continuous image of X while t(Y) > o.
Now if Y ¼ A(o1) then c(Y) > o. Indeed, take any countable g � t(a, A(o1)).

Then o1 \ U is finite for each U 2 g and hence M ¼ S{A(o1) \ U : U 2 g} is

countable. Since any a 2 o1 \ M belongs to
T

g, we have
T

g 6¼ {a} and hence

c(a, A(o1)) > o. Note that also iw(A(o1)) r c(A(o1)) > o (see Problem 156(iii)).

The space X ¼ D(o1) has the same cardinality as Y and hence Y is a continuous

image of X. However, c(X) ¼ o and iw(X) ¼ o. The first equality is evident so let

us show that X can be condensed onto a second countable space. Since j X j b j R j,
there is an bijection ’ : X ! Z � R. Since every map of a discrete space is

continuous, ’ is a condensation onto a second countable space Z. Thus iw(X) b
o and our solution is complete.

S.159. Suppose that X is a space and Y � X. Prove that

(i) w(Y) b w(X).
(ii) nw(Y) b nw(X).
(iii) c(Y) b c(X).
(iv) s(Y) b s(X).
(v) iw(Y) b iw(X).
(vi) t(Y) b t(X).
(vii) w(Y) b w(X).

Solution. If B is a base (network) in X then B0 ¼ {U \ Y : U 2 B} is a base

(network) in Y and j B0 j b j B j so (i) and (ii) are proved. If y 2 Y, P � t(X) andT P ¼ {x} then P0 ¼ {U \ Y : U 2 P} � t(Y) and
T P0 ¼ {x} so (iii) is

established. Any discrete subspace of Y is also a discrete subspace of X so (iv)

holds. Assume that iw(X) ¼ k and take any condensation f : X ! Z for which

w(Z) b k. Then f j Y : Y ! f(Y) is a condensation and w(f(Y)) b w(Y) b k.
Therefore iw(Y) b k and (v) is proved. Suppose that t(X) b k and take any A �
Y such that y 2 clY (A). Then y 2 clX (A) and hence we can find B � A with j B j
b k and y 2 clX (B). It is immediate that y 2 clY (B) and (vi) is settled. If y 2 Y
and C is a local base at y in X then C0 ¼ {U \ Y : U 2 C} is a local base at y in

Y and j C0 j b j C j which settles (vii).

S.160. Let ’ 2 {Souslin number, density, extent, Lindel€of number}. Show that there
exist spaces X and Y such that Y � X and ’(Y) > ’(X).

Solution. The space IA has the Souslin property for any A by Problem 109.

The space Y ¼ D(o1) is Tychonoff and hence it is homeomorphic to a subspace

of X ¼ IA for some A by Problem 127. Thus we have c(X) ¼ o while c(Y) ¼
o1 > c(X).
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The space Y ¼ A(o1) is compact and w(Y) ¼ d(Y) ¼ o1. By Problem 126 the

space Y is homeomorphic to a subspace of X ¼ Io1 . The space X is separable by

Problem 108 and hence d(Y) ¼ o1 > d(X) ¼ o.
Now if X ¼ A(o1) then ext(X) ¼ l(X) ¼ o because X is compact. The subspace

Y ¼ o1 � X is discrete and l(Y) ¼ ext(Y) ¼ o1 > l(X) ¼ ext(X).

S.161. Suppose that f : X! Y be an open map. Prove that w(Y) b w(X) and w(Y) b
w(X).

Solution. IfB is a base of X (a local base at a point x2 X) then the familyB0 ¼ {f(U) :
U 2 B} is a base in Y (a local base at the point f(x) in Y, respectively) and jB0j b jBj
which proves that w(Y) b w(X) and w(Y) b w(X).

S.162. Let f : X! Y be a quotient map. Prove that t(Y) b t(X).

Solution. We will first prove the following lemma for further references.

Lemma. Given an infinite cardinal k and a space Z, we have t(Z) b k if and only if,

for any non-closed A � Z, there is B � A such that jBj b k and B \ A 6¼ ;.
Proof. If t(Z)b k then, for any z 2 A \ Awe have B� Awith jBjb k such that z 2 B.
Thus B \ A 3 z and necessity is proved. To establish sufficiency, take any A � Z
and let [A]o ¼

S
{B : B � A and jBj b k}. We must prove that [A]o ¼ A. If it is

not so, then [A]o is not closed and hence we have C � [A]o such that jCj b k and

C \ A]o 6¼ ;. For each c 2 C fix a set Bc � A with jBcj b k and c 2 Bc. The set B ¼S
{Bc : c 2 C} has cardinality b k and c 2 B for every c 2 C. Therefore C � B �

[A]o, this contradiction finishes the proof of our lemma.

Suppose that t(X)¼ k and take any non-closed A� Y. Since the map f is quotient,
the set A0 ¼ f�1(A) is non-closed in X and hence there is B0 � A0 such that j B0 j b k
and B0 \ A0 6¼ ;. If B ¼ f(B0) then B � A, jBj b k and B \ A 6¼ ;. Applying our

lemma, we can conclude that t(Y) b k ¼ t(X).

S.163. Let X and Y be topological spaces. Given a continuous map r : X! Y, define
the dual map r� : Cp(Y)! Cp(X) by r

�(f) ¼ f 	 r for any f 2 Cp(Y). Prove that

(i) The map r� is continuous.
(ii) If r(X) ¼ Y, then r� is a homeomorphism of Cp(Y) onto r�(Cp(Y)).
(iii) If r(X) ¼ Y, then the set r�(Cp(Y)) is closed in Cp(X) if and only if r is an

R-quotient map.
(iv) If r(X) ¼ Y, then the set r�(Cp(Y)) is dense in Cp(X) if and only if r is a

condensation.
(v) If r(X) ¼ Y, then the set r�(Cp(Y)) coincides with Cp(X) if and only if r is a

homeomorphism.
(vi) If r(X) ¼ Y and s : X ! Z is a continuous onto map, then there exists a

continuous map t : Z! Y with t 	 s ¼ r if and only if r�(Cp(Y)) � s�(Cp(Z)).

Solution. (i) Fix an arbitrary function h0 2 Cp(Y) and a basic neighbourhood

U ¼ OX(g0, x1, . . . , xn, e) of the function g0 ¼ r�(h0) (the index X shows that

the basic neighbourhood is taken in Cp(X)). Here x1, . . . , xn 2 X and e > 0.
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ThenW ¼ OY (h0, r(x1), . . . , r(xn), e) 2 t(h0, Cp(Y)) and r
�(W) � U. Indeed, h 2W

implies jh(r(xi)) � h0(r(xi))j ¼ jr�(h)(xi) � g0(xi)j < e for all i b n and therefore

r�(h) 2 U. This proves that r� is continuous at an arbitrary point h0 2 Cp(Y) so (i) is
proved.

(ii) To see that r� is an injection take distinct f, g 2 Cp(Y). Then f(y) 6¼ g(y) for
some y 2 Y. If x 2 r�1(y) then r�(f)(x) ¼ f(y) 6¼ g(y) ¼ r�(g)(x) and hence r�(f) 6¼
r�(g). Let us show that (r�)�1 is continuous. Take any f 2 Cp(Y) and any basic

neighbourhood U ¼ OY ( f, y1, . . . , yn, e) of the function f. Choose xi 2 r�1(yi) for
all i b n and let V ¼ OX(g, x1, . . . , xn, e) \ r�(Cp(Y)), where g ¼ r�(f). The set V is

an open neighbourhood of g in the space r�(Cp(Y)). If h 2 V then h ¼ r�(h0)
for some h0 2 Cp(Y) and h(xi) ¼ r�(h0)(xi) ¼ h0(r(xi)) ¼ h0(yi) for all i b n. Thus,
h0 ¼ (r�)�1(h) 2 U for any h 2 V and hence (r�)�1(V) � U which proves continuity

of (r�)�1 at an arbitrary point f. Hence the mapping r� : Cp(Y) ! r�(Cp(Y)) is a

homeomorphism.

(iii) Suppose that r is R-quotient. Given any f 2 r�ðCpðYÞÞ, observe that

fj(r�1(y)) is a constant function for any y 2 Y. Indeed, if x1, x2 2 (r�)�1(y) and
f(x1) 6¼ f(x2) then for e ¼ 1

2
. jf(x1)� f(x2)j> 0, take an arbitrary function g 2OX(f, x1,

x2, e) \ r�(Cp(Y)). Since g 2 OX(f, x1, x2, e), we have g(x1) 6¼ g(x2) while g ¼ r�(g0)
for some g0 2 Cp(Y) and hence g(x1)¼ g0(r(x1)) ¼ g0(y)¼ g0(r(x2))¼ g(x2) which is
a contradiction. As a consequence, there exists a function f 0 : Y! R such that f ¼ f 0

	 r. Since r is R-quotient and f is continuous, the map f 0 has to be continuous, i.e.,

f ¼ r�(f 0) 2 r�(Cp(Y)) which proves that r�(Cp(Y)) is closed in Cp(X).
Now assume that r�(Cp(Y)) is closed in Cp(X). To show that r is R-quotient, take

any f : Y! R such that g ¼ f 	 r 2 Cp(X). We claim that g 2 r�ðCpðYÞÞ. Indeed, if
x1, . . . , xn 2 X and e > 0 there exists h 2 Cp(Y) such that h(r(xi)) ¼ g(xi) ¼ f(r(xi))
for each i b n (note that here we used the fact that g ¼ f 	 r and hence g is constant
on the fibres of r). Then r�(h) 2 OX(x1, . . . , xn, e) \ r�(Cp(Y)) and therefore g 2
r�ðCpðYÞÞ ¼ r�(Cp(Y)). This means that g ¼ r�(g0) ¼ r�(f) for some g0 2 Cp(Y). The
map r� : RY! RX being an injection we can conclude that f ¼ g0, i.e., the map f is
continuous which proves that r is R-quotient.

(iv) Suppose that r is a condensation. Given f 2 Cp(X), x1, . . . , xn 2 X and e> 0,

there exists g 2 Cp(Y) such that g(r(xi)) ¼ f(xi) for all i b n. It is clear that r�(g) 2
OX (f, x1, . . . , xn, e) and hence f 2 r�ðCpðYÞÞ for each f 2 Cp(X) whence r�ðCpðYÞÞ ¼
Cp(X). Now if r is not injective then take distinct x1, x2 2 X for which r(x1) ¼ r(x2).
Observe that U ¼ [x1, x2; (0, 1), (2, 3)]X is a non-empty open set in Cp(X) with
U \ r�(Cp(Y)) ¼ ; and hence r�(Cp(Y)) is not dense in Cp(X).

(v) If r is a homeomorphism then, for any f 2 Cp(X), the function g ¼ f 	 r�1
belongs to Cp(Y) and r�(g) ¼ f which proves that r�(Cp(Y)) ¼ Cp(X). Now suppose

that r�(Cp(Y)) ¼ Cp(X). Then the map r is a condensation by (iv) and R-quotient by
(iii). Thus r is a homeomorphism by Problem 155.

(vi) Assume first that there exists a continuous map t : Z ! Y with t 	 s ¼ r.
Then, for any f 2 Cp(Y) we have t

�(f) 2 Cp(Z) and s
�(t�(f))¼ (f 	 t) 	 s¼ f 	 (t 	 s)¼

f 	 r ¼ r�(f). This proves that r�(Cp(Y)) � s�(Cp(Z)). Now assume that r�(Cp(Y)) �
s�(Cp(Z)). Observe first that r is constant on s

�1(z) for any z 2 Z. Indeed, so is s�( f )
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for any f 2 Cp(Z) and hence r
�(g) must be constant on s�1(z) for each g 2 Cp(Y) and

z 2 Z. Now, if x, y 2 s�1(z) and r(x) 6¼ r(y) then there is g 2 Cp(Y) with g(r(x)) ¼ 1

and g(r(y)) ¼ 0 which implies that r�(g) is not constant on s�1(z), a contradiction.
We proved that r is constant on the fibres of s and hence there exists a map t : Z! Y
with t 	 s ¼ r so we only have to show that t is continuous.

Take any B � Z and any z 2 B. It suffices to show that t(z) 2 tðBÞ. If this is
not true then there is f 2 Cp(Y) with f(t(z)) ¼ 1 and f(t(B)) � {0}. Pick any point

x 2 s�1(z) and observe that r(x) ¼ t(z) which implies r�(f)(x) ¼ 1. There exists

g 2 Cp(Z) such that s�(g) ¼ r�(f). We have 1 ¼ r�(f)(x) ¼ s�(g)(x) ¼ g(s(x)) ¼ g(z).
Now if b 2 B, take any a 2 s�1(b) and note that r(a) ¼ t(s(a)) ¼ t(b) 2 t(B) and
therefore r�(f)(a) ¼ f(t(b)) ¼ 0. Thus 0 ¼ r�(f)(a) ¼ s�(g)(a) ¼ g(s(a)) ¼ g(b) for
each b 2 B and therefore g(B)� {0}. We have z 2 B, g(z)¼ 1 and g(B)� {0} which

contradicts continuity of g. The obtained contradiction shows that the function t is
continuous and we are done.

S.164. Let X be a separable space with ext(X) r c. Prove that X cannot be normal.

Solution. Fix a closed discrete D � X of cardinality c and a countable dense S � X.
If X is normal then RD ¼ Cp(D) is a continuous image of Cp(X) by Problem 152(v)

and therefore jCpðXÞjrjRDj ¼ 2c > c. Now the map pS : Cp(X) ! Cp(S) is an

injection by Problem 152(ii) and hence jCpðXÞjbjCpðSÞjbjRSjb co ¼ c which is

a contradiction.

S.165. Consider the family B ¼ {[a, b) : a, b 2 R, a < b}. Check that B has the
properties (B1) and (B2) formulated in Problem 006 and hence can be considered
a base for a unique topology ts on the set R. The space S ¼ (R, ts) is called the
Sorgenfrey line. Prove that

(i) Any subspace of S is Lindel€of.
(ii) Any subspace of the space S is separable.
(iii) No uncountable subspace of S has a countable network.
(iv) The space S � S is not normal and has a closed discrete subspace of power c.
(v) Prove that the space Cp(S) has a closed discrete subspace of cardinality c

Deduce from this fact that Cp(S) is not normal.

Solution. It is clear that
SB ¼ R and U \ V 2 B for any U, V 2 B. Therefore the

properties (B1) and (B2) hold for B.
(i) Let X be any subspace of S. We leave it to the reader to verify that X is

Lindel€of if and only if, for any g � B such that
S
g � X, there is a countable m � g

with
S
m� X. So take any g� B with X�Sg. Given U¼ [a, b) 2 g, let U0 ¼ (a, b).

We claim that the set X0 ¼ S{U0 : U 2 g} covers almost all points of X, i.e.,
Y ¼ X \ X0 is at most countable. Indeed, if x 2 Y then there exists r(x) > x such that

[x,r(x)) 2 g. Note that, for distinct x,y 2 Y, we have [x, r(x)) \ [y, r(y)) ¼ ; for
otherwise x 2 (y, r(y)) � X0 or y 2 (x, r(x)) � X0. Since weight of R is countable, its

Souslin number is also countable by Problem 156(i) and therefore R has no

uncountable disjoint family of open intervals. Since the family {(x, r(x)) : x 2 Y}
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is disjoint, the set Y has to be countable. As a consequence, there is a countable

m0 � g such that Y �Sm0. Evidently, the family m [ m0 is a countable subfamily of g
which covers X. This proves that X is Lindel€of.

(ii) Take any X� S and denote by Y the set X with the topology induced fromR.
Then d(Y) b w(Y) ¼ o by Problem 156(i) and hence there is a countable subset

A � X which is dense in Y. Denote by B the closure of the set A in X. We claim that

the set C ¼ X \ B is countable. Indeed, if x 2 C then there is r(x) > x such that

[x, r(x)) \ A¼ ;. Now, if V¼ (x, r(x)) \ X 6¼ ; then V is an open non-empty subset

of Y. Since A is dense in Y, we have V \ A 6¼ ;, a contradiction which shows that

[x, r(x)) \ X ¼ {x}. Therefore [x,r(x)) \ [y, r(y)) ¼ ; for distinct x, y 2 C for

otherwise x 2 (y, r(y)) or y 2 (x, r(x)). Any disjoint collection of non-empty open

intervals of R is countable (see (i)). Since the family {(x, r(x)) : x 2 C} is disjoint,

the set C has to be countable. It is clear that C [ A is a countable dense subset of X
and we proved that X is separable.

(iii) Let X be an uncountable subspace of S. Assume that N ¼ {Pn : n 2 o} is a
countable network in X. For each n 2 o, let qn¼ inf Pn if the inf Pn >�1. Since X
is uncountable, we can choose x 2 X such that x 6¼ qn for any n 2 o. Since N is a

network of X, there exists n 2 o such that x 2 Pn � [x, x þ 1). But this implies that

qn ¼ x which is a contradiction.

(iv) Let us show that D¼ {(t,�t) : t 2R} is a closed discrete subspace of S� S.
For any d ¼ (t, �t) 2 D the set U ¼ [t, t þ 1) � [�t, �t þ 1) is open in S � S and

U \ D ¼ {d} which proves that D is discrete. Now, if z ¼ (x, y) =2 D then e ¼
jxþ yj> 0 and thereforeW¼ [x, xþ e

2
Þ � [y, yþ e

2
) is an open neighbourhood of z in

S� S withW \ D¼ ;. Thus D is closed in S� S whence ext(S� S)¼ c. Since S�
S is separable (this is an easy exercise for the reader), we can apply Problem 164

to conclude that S � S is not normal.

(v) Let r : R ! R be the identity map, i.e., r(t) ¼ t for all t 2 R. It is clear
that r : S! R is a condensation and hence r�(Cp(R)) is a dense subspace of Cp(S)
homeomorphic to Cp(R) (see Problem 163(iv)). If A is a countable dense subspace

of Cp(R) (which exists by Problem 047) then r�(A) is a countable dense subspace

of Cp(S) i.e., Cp(S) is separable.

Given an “arrow” [a, b)� S, observe that it is a clopen subset of S. Let f(t)¼ t� a
and g(t) ¼ 1

b�a. t for all t 2 R. It is immediate that h ¼ g 	 f : S ! S is a

homeomorphism and h([a, b)) ¼ [0, 1). This shows that every two arrows in

S are homeomorphic subspaces of S. Note also that S ¼ S{Ak : k 2 o} where

A2i ¼ [�i � 1, �i) and A2iþ1 ¼ [i, i þ 1) for all i 2 o. Applying Problem 113(iii),

we can see that S¼L{Ak : k 2 o}. Now, [0, 1)¼S{[pi, qi) : i 2 o} where pi¼ i
iþ1

and qi ¼ iþ1
iþ2 for each i 2 o. Applying Problem 113(iii) again, we verify that

[0, 1) ¼ L{Bk : k 2 o} where each Bk is an arrow. As a consequence S is

homeomorphic to any of its arrows so we will consider the space S0 ¼ [0, 1) from

now on. For each t 2 (0, 1] let ft(x)¼ 1 if 0b x< t and ft(x)¼ 0 for all x 2 [t, 1). It is
immediate that ft 2 Cp(S

0) for all t 2 (0, 1].

Fact 1. The set F ¼ {ft : t 2 (0, 1]} is closed in Cp(S
0).
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Proof. Given f =2 F suppose first that f(x) =2 {0, 1} for some x 2 S0. Then, for e ¼ min

{jf(x)j, jf(x) � 1j} the set [x; (f(x) � e, f(x) þ e)] is an open neighbourhood of f
which does not meet the set F. Now, if f(S0)� {0, 1} and f 2 F then f(x)¼ 1 implies

f(y) ¼ 1 for any y < x. Indeed, if f(y) ¼ 0 for some y < x then [y, x; (�1/2, 1/2), (1/2,
3/2)] is an open neighbourhood of fwhich does notmeetF because all functions fromF
are non-increasing. Analogously, f(x)¼ 0 implies f(y)¼ 0 for any y> x. Thus, there is
t 2 S0 such that f(x) ¼ 1 for all x < t and f(x) ¼ 0 for all x > t. If f(t) ¼ 1 then

f discontinuous so f(t)¼ 0 and hence f¼ ft 2 F. This shows that F is closed in Cp(S
0).

Fact 2. The map ’ : S0 ! F defined by ’(s) ¼ f1�s is a homeomorphism.

Proof. It is clear that ’ is a bijection. Since Cp(S
0) is a subspace of the product space

RS0, to prove continuity of ’, it suffices to show that ht ¼ pt 	 ’ is continuous for

each pt defined by pt(f) ¼ f(t) for all f 2 Cp(S
0) and t 2 [0, 1) (see Problem 102).

Since ht(s) ¼ f1�s(t) ¼ 1 for s < 1 � t and ht(s) ¼ 0 for s r 1 � t, the function ht is
continuous for all t 2 S0. To finish the proof it suffices to show that the mapping ’ is

open. Since the arrows form a base in S0, it is sufficient to establish that ’(U) is open
inF for anyU¼ [a, b)� S0. To see this, observe that’(U)¼ {ft : 1� b< tb 1� a}¼
[1 � b, 1 � a; (1/2, 3/2), (�1/2, 1/2)] \ F and we are done.

Fact 3. The spaces Cp(S
0) and Cp(S

0) � Cp(S
0) are homeomorphic.

Proof. Since S0 ¼ [0, 1/2) [ [1/2, 1) and S0 is homeomorphic to every arrow, the

space S0 is homeomorphic to S0  S0. Thus Cp(S
0) is homeomorphic to Cp(S

0  S0)
which in turn is homeomorphic to Cp(S

0) � Cp(S
0) by Problem 114.

It follows from Facts 1 and 2 that F is a closed subspace of Cp(S
0) homeomorphic

to S0. Therefore Cp(S) has a closed subspace T which is homeomorphic to S. The
space T� T is a closed subspace of Cp(S)� Cp(S). By (iv), there is a closed discrete
D � T � T with jDj ¼ c. It is clear that D is also a closed discrete subspace of

Cp(S) � Cp(S). Apply Fact 3 to conclude that Cp(S) is homeomorphic to Cp(S) �
Cp(S) and hence it also has a closed discrete subspace of cardinality continuum.

Apply Problem 164 to see that Cp(S) is not normal.

S.166. Suppose that X is an arbitrary space and F � Cp(X). For any x 2 X, define
the function eFx : F! R by the formula eFx (f) ¼ f(x) for any f 2 F; observe that eFx
belongs to Cp(F). Let E

F(x) ¼ eFx for any x 2 X; then EF : X! Cp(F) is called the
evaluation map. Prove that

(i) EF is continuous for any F � Cp(X).
(ii) EF is injective if and only if F separates the points of X, i.e., for any distinct x, y
2 X there is f 2 F with f(x) 6¼ f(y).

(iii) EF is an embedding if and only if F generates the topology of X, i.e., the family
UF ¼ {f�1(U) : f 2 F, U 2 t(R)} is a subbase of X.

(iv) EF is an embedding if F separates the points and the closed subsets of X, i.e.,
for any x 2 X and any closed G � X such that x =2 G, we have f(x) =2 f ðGÞ for
some f 2 F.

(v) The set X0 ¼ EF(X)� Cp(F) generates the topology of F and hence F embeds in
Cp(X

0).
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Solution.Given x 2 X, the natural projection px :RX!R to the factor indexed by x,
is defined by px(f) ¼ f(x) for all f 2 RX. Therefore eFx ¼ pxjF is a continuous

mapping, i.e., we proved that eFx 2 Cp(F) for every x 2 X.

To see that (i) holds let us show that EF is continuous at any x 2 X. Take any

basic neighbourhood U ¼ O(eFx , f1, . . . , fn, e) of the function eFx in Cp(F). The set
V ¼ T{f�1i ((fi(x) � e, fi(x) þ e)) : i b n} is an open neighbourhood of the point x
and it is immediate that EF(V) � U. This shows that EF is a continuous map and

hence (i) is proved.

If F separates the points of X then, for any distinct x, y 2 X there is f 2 F such that

eFx (f)¼ f(x) 6¼ f(y)¼ eFy (f) which shows that the maps eFx and e
F
y do not coincide, i.e.,

EF(x) 6¼ EF(y). Thus EF is an injection. This settles necessity in (ii). Now, if the

mappingEF is injective then, for any distinct x, y2 Xwe have eFx ¼ EF(x) 6¼ EF(y)¼ eFy
and hence there is f 2 F for which f(x) ¼ eFx (f) 6¼ eFy (f) ¼ f(y), i.e., F separates the

points of X and hence (ii) is proved.

To tackle with (iii) assume that EF is an embedding and hence we can consider

that the map EF is a homeomorphism between X and X0 ¼ EF(X). Thus {(EF)�1(B) :
B 2 B} is a subbase in X whenever B is a subbase in X0. For any f 2 F and U 2 t(R)
the set [f, U]¼ {’ 2 Cp(F) : ’(f) 2 U} is open in Cp(F) and the family B0 ¼ {[f, U] :
f 2 F, U 2 t(R)} is a subbase in Cp(F). As a consequence B ¼ {W \ X0 :W 2 B0} is
a subbase in X0 so the family S ¼ {(EF)�1([f, U] \ X0) : f 2 F, U 2 t(R)} is a

subbase in X. Next observe that eFx 2 [f, U] if and only if x 2 f�1(U) which shows

that (EF)�1([f, U]\X0) ¼ f�1(U) so the family {f�1(U) : U 2 t(R), f 2 F} is a

subbase in X because it coincides with S. Thus, F generates the topology of X and

we proved necessity in (iii).

Now, assume that F generates the topology of X. Given distinct x, y 2 X there are

f1, . . . , fn and U1, . . . , Un 2 t(R) such that x 2W¼T{f�1i (Ui) : ib n} and y =2W.

As a consequence, fi(x) 6¼ fi(y) for some i b n which proves that F separates the

points of X so EF is injective by (ii) and hence we can consider EF to be a bijection

between X and X0 ¼ EF(X). Let us prove that the map g ¼ (EF)�1 is continuous at
every y 2 X0. Let x¼ h(y) and take anyW 2 t(x, X). Since the family UF is a subbase
in X, there are f1, . . . , fn 2 F andU1, . . . ,Un 2 t(R) such that x 2 G¼T{f�1i (Ui) :

i b n} � W.

The set H¼T{[fi, Ui] \ X0 : ib n} is open in X0 and y 2 H. It is straightforward
that g(H) ¼ G � W and hence H witnesses continuity of g ¼ (EF)�1 at the point y.
Applying (i) we conclude that EF : X! X0 is a homeomorphism so (iii) is proved.

Now suppose that F separates the points and closed subsets of X. Given x 2 X
andW 2 t(x, X) letG¼ X \ W; there is f 2 F such that f(x) =2 f ðGÞ soU¼R \ f ðGÞ 2
t(f(x), R) and hence x 2 f�1(U) � W. This proves that UF is a base in X so EF is an

embedding by (iii) and hence we settled (iv).

Finally, let G(x, U) ¼ {f 2 Cp(X) : f(x) 2 U} for any x 2 X and U 2 t(R); then
the family {G(x, U) \ F : x 2 X, U 2 t(R)} is a subbase in F. Observe that G(x, U)
\ F¼ (eFx )

�1(U) for any x 2 X andU 2 t(R) which shows that E ¼ {(eFx )
�1(U) : x 2

X,U 2 t(R)} is a subbase in F; it is obvious that we have the equality E ¼ {’�1(U) :
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’ 2 X0, U 2 t(R)} so the set X0, indeed, generates the topology of F. This finishes
the proof of (v) and completes our solution.

S.167. Let X be an arbitrary space. For each point x 2 X, define the function ex :
Cp(X)! R by the formula ex(f)¼ f(x) for all f 2 Cp(X). For any x 2 X, let E(x)¼ ex.

(i) Show that the map E : X! Cp(Cp(X)) is an embedding.
(ii) Prove that E(X) is closed in Cp(Cp(X)).

As a consequence, any space X can be canonically identified with the closed
subspace E(X) of the space Cp(Cp(X)).

Solution. (i) Taking F ¼ Cp(X) in Problem 166, we can see that E ¼ EF is

a continuous map. By the Tychonoff property of X, for any x 2 X and any

closed G � X there is f 2 Cp(X) such that f(X) ¼ 1 and f(G) � {0} and

hence f(x) =2 f ðGÞ. Applying Problem 166 again we can conclude that E is a

homeomorphism.

(ii) Denote by f0 the function equal to zero at all points of X and take any

continuous function ’ : Cp(X)! R with ’ 2 EðXÞ \ E(X). It is straightforward that
any ex 2 E(X) is a linear functional. The set of linear functionals is closed in

Cp(Cp(X)) by Problem 078 which implies that ’ is linear and hence ’(f0) ¼ 0.

By continuity of ’ there exists a basic neighbourhood W ¼ O(f0, x1, . . . xn, e) such
that ’(W)� (� 1

2
; 1
2
). The space Cp(Cp(X)) is Tychonoff and hence there are disjoint

open sets Ui 2 t(xi, X), i b n such that ’ =2SfEðUiÞ : ibng. For each i b n fix a

continuous function fi : X ! [0, 1] with f(xi) ¼ 1 and fj(X \ Ui) � 0. Then the

function f¼ 1� (f1þ � � � þ fn) is continuous, f(xi)¼ 0 for all ib n and fj(X \ U)� 1

for U ¼ Si b n Ui. Since f 2 W, we have ’(f) 2 (�1
2
; 1
2
). On the other hand ex(f) ¼

f(x) ¼ 1 for any x 2 X \ U which shows that the set V ¼ {c 2 Cp(Cp(X)) : c(f) 2
(�1

2
; 1
2
)}2 t(’, Cp(Cp(X))) does not intersect the set E(X \ U). As a consequence,

’ =2 EðXnUÞ and therefore ’ does not belong to the closure of the set E(X \ U)
[S{E(Ui) : i b n} ¼ E(X) which is a contradiction. This proves that E(X) is closed
in Cp(Cp(X)).

S.168. Prove that, for any continuous function f : E(X) ! R, there exists a
continuous function F : RCpðXÞ ! R such that F \ E(X) ¼ f. Identifying X and
E(X), it is possible to say that each continuous real-valued function on X extends
continuously to RCpðXÞ and hence to Cp(Cp(X)).

Solution. The function f 0 ¼ f 	 E belongs to Cp(X). For each ’ 2 RCpðXÞ let F(’) ¼
’(f 0). The function F : RCpðXÞ ! R is continuous being the natural projection of

RCpðXÞ onto the factor indexed by f 0. Given ex 2 E(X), we have F(ex) ¼ ex(f
0) ¼

f 0(x) ¼ f(ex) and hence FjE(X) ¼ f as promised.

S.169. Prove that we have jXj ¼ w(Cp(X)) ¼ w(Cp(X)) for any infinite space X. In
particular, weight of Cp(X) is countable if and only if X is countable.

Solution. The family B ¼ {[x1, . . . , xn; O1, . . . , On] : n 2 N, xi 2 X and Oi is a

rational interval for all i b n} is a base of Cp(X) by Problem 056 and jBjb jXj.
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Therefore w(Cp(X)) b jXj. Denote by u the function equal to zero at all points of X
and take any local base C at the point u in the space Cp(X). For any U 2 C, we can
choose a standard open set O(U) such that u 2 O(U) � U. It is clear that the family

{O(U) : U 2 C} is also a local base at u and therefore we can assume without loss of

generality that all elements of C are standard. Given an arbitrary U ¼ [x1, . . . , xn;
O1, . . . , On] 2 C, let supp(U) ¼ {x1, . . . , xn}. Consider the set Y ¼ S{supp(U) :
U 2 C}. If x 2 X \ Y then there is U ¼ [x1, . . . , xn; O1, . . . , On] 2 C with U �W ¼
[x; (�1, 1)]. However, supp(U) ¼ {x1, . . . , xn} � Y � X \ {x} and therefore there

exists a function f 2 Cp(X) such that f(xi) 2 Oi and f(x) ¼ 1 by Problem 034. It is

clear that f 2 U \ W which is a contradiction.

As a consequence, we must have Y ¼ X and hence jXj ¼ jYj b jw(Cp(X))j. Now,
the inequalities w(Cp(X)) b jXj b w(Cp(X)) b w(Cp(X)) (see Problem 156(iv))

show that jXj ¼ w(Cp(X)) ¼ w(Cp(X)).

S.170. Let X be an arbitrary space. Suppose that there exists a compact subspace K
of Cp(X) such that w(K, Cp(X)) b o. Prove that X is countable.

Solution. Given a standard set U ¼ [x1, . . . , xn; O1, . . . , On] 2 t(Cp(X)), let supp
(U) ¼ {x1, . . . , xn}. Let {On : n 2 o} be a base of neighbourhoods of K in Cp(X).
Fix n 2 o. For every f 2 K pick a standard Uf such that f 2 Uf � On. Taking any

finite subcover {Uf1 ; . . . ;Ufm} of the open cover {Uf : f 2 K} of the compact set K
we obtain a setWn ¼ Uf1 [ � � � [ Ufm with K �Wn � On and the set An ¼ supp(Uf1 )

[ � � � [ supp(Ufm ). It is evident that the set A ¼ S{An : n 2 o} is countable so it

suffices to prove that A ¼ X.

Suppose that x 2 X \ A. The map ex : Cp(X) ! R defined by ex(f) ¼ f(x) is
continuous and therefore the set ex(K) is bounded in R. Choose any r > 0 such that

jf(x)j< r for all f 2 K and observe thatW¼ [x; (�r, r)] is an open neighbourhood of
K. There exists n 2 o such that K � On �W and henceWn ¼ Uf1 [ � � � [ Ufm �W.

This implies Uf1 ¼ [x1, . . . , xn; O1, . . . , On] � W while x =2 {x1, . . . , xn}. Apply
Problem 034 to find g 2 Cp(X) such that g(xi) 2 Oi for all i b n and g(x) ¼ r. It is
immediate that g 2 Wn \ W which is a contradiction. Thus A ¼ X and hence X is

countable.

S.171. Given a space X and x 2 X, call a family B � t�(X) a p-base of X at x if for
any U 2 t(x, X) there is V 2 B such that V�U. Note that the elements of a p-base at
x need not contain the point x. Suppose that Cp(X) has a countable p-base at some of
its points. Prove that X is countable.

Solution. Given a standard set U ¼ [x1, . . . , xn; O1, . . . , On] 2 t(Cp(X)), let supp
(U) ¼ {x1, . . . , xn}. By homogeneity of Cp(X) (see Problem 079), if Cp(X) has a
countable p-base at some point then it has a countable p-base {Un : n 2 o} at the

point u � 0. For each n 2 o choose a non-empty standard open set Vn � Un and let

A ¼ S
{supp(Vn) : n 2 o}. If x 2 X \ A then W ¼ [x; (�1, 1)] is an open

neighbourhood of u and there exists n 2 o such that Vn � Un � W. Observe that

if Vn ¼ [y1, . . . , ym; O1, . . . , Om] then x =2 {y1, . . . , ym} and hence there exists
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f 2 Cp(X) such that f(yi) 2 Oi for each i b n and f(x) ¼ 1 (Problem 034). It is

evident that f 2 Vn \ W which is a contradiction. Thus X ¼ A is countable.

S.172. Prove that, for any space X, we have nw(X) ¼ nw(Cp(X)). In particular, the
space Cp(X) has a countable network if and only if X has one.

Solution. Let N be a network in the space X with jN j ¼ k ¼ nw(X). For any
collection N1, . . . , Nk 2 N and any open intervals I1, . . . , Ik with rational end-

points, let M(N1, . . . , Nk; I1, . . . , Ik) ¼ {f 2 Cp(X) : f(Nj) � Ij for all j b k}. It is
evident that the familyM¼ {M(N1, . . . , Nk; I1, . . . , Ik) : k 2 N, N1, . . . , Nk 2 N
and Ij is a rational interval for all j b k} has cardinality b k. To prove thatM is a

network in Cp(X), take any f 2 Cp(X) and any U 2 t(f, Cp(X)). There is a canonical
open set V ¼ [x1, . . . , xk; O1, . . . , Ok] with f 2 V � U. Without loss of generality

we can consider the points x1, . . . , xk to be distinct. Continuity of the function f
makes it possible to choose disjoint open sets U1, . . . ,Uk with xi 2Ui for each ib k
and rational intervals I1, . . . , Ik such that f(Uj) � Ij � Oj for all j b k. There exist
N1, . . . , Nk 2 N such that xj 2 Nj � Uj for every j b k. It is easy to see that f 2 M
(N1, . . . , Nk; I1 . . . , Ik) � V � U which proves thatM is a network in Cp(X). Since
jMj b k ¼ nw(X), we have nw(Cp(X)) b nw(X) for all spaces X. Thus nw
(Cp(Cp(X))) b nw(Cp(X)) b nw(X) for any space X. However, X embeds in

Cp(Cp(X)) (see Problem 167) which implies nw(X) b nw(Cp(Cp(X))). The obtained
inequalities show that nw(X) ¼ nw(Cp(X)).

S.173. Prove that d(X) ¼ c(Cp(X)) ¼ D(Cp(X)) ¼ iw(Cp(X)) for any space X. In
particular, Cp(X) condenses onto a second countable space if and only if X is
separable.

Solution. Suppose that we are given a space Y and a family g � t(Y � Y) such that

DY¼
T
g. Fix y 2 Y and, for any U 2 g choose OU 2 t(y, Y) such that OU� OU� U.

Then
T
{OU : U 2 g} ¼ {y} which proves that c(Y) b D(Y).

Now suppose that f : Z! Y is a condensation and B is a base of Y with jBj ¼ k¼
iw(X). Then l((Y � Y) \ DY) b w((Y � Y) \ DY) b k. For each z 2 (Y � Y) \ DY

choose Uz 2 t(z, Y � Y) such that Uz \ DY ¼;. The open cover {Uz : z 2 (Y �
Y) \ DY} of the space (Y � Y) \ DY has a subcover m with jmj b k. Therefore, (Y �
Y) \ DY ¼

S
{U : U 2 m} is a union of b k closed sets and hence c(DY, Y � Y) b k.

Since f is a condensation, we have c(DZ, Z � Z) b k and hence D(Z) b iw(Z).
Given a standard set V ¼ [x1, . . . , xn; O1, . . . , On] 2 t(Cp(X)), let supp(V) ¼

{x1, . . . , xn}. Take any g � t(Cp(X)) such that {u} ¼
T
g, where u � 0 and jgj ¼ k.

For each U 2 g take a standard set OU ¼ [x1, . . . , xn; O1, . . . , On] such that u 2 OU

� U. It is easy to see that the set Y¼S{supp(OU) : U 2 g} has cardinality b k. If X
6¼ Y, pick any x 2 X \ Y and find a function f 2 Cp(X) such that f(x) ¼ 1 and f(Y) �
{0}. It is straightforward that f 2 \ g which is a contradiction with f 6¼ u andT

g ¼ {u}. Hence Y is dense in X and therefore d(X) b jYj b k. This proves that
d(X) b c(Cp(X)) and applying the inequalities we proved above, we have d(X) b
c(Cp(X)) b D(Cp(X)) b iw(Cp(X)). To finish the proof let us show that

iw(Cp(X)) b d(X). Fix a set Y � X such that jYj ¼ d(X) and X ¼Y. The map
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pY : Cp(X) ! Z ¼ pY(Cp(X)) � Cp(Y) is a condensation by Problem 152(ii) and

w(Z) b w(Cp(Y)) ¼ jYj ¼ d(X). This shows that iw(Cp(X)) b d(X) and our proof is

complete.

S.174. Prove that, for any space X, we have iw(X) ¼ d(Cp(X)). In particular, the
space Cp(X) is separable if and only if X condenses onto a second countable space.

Solution. Observe that iw(X) b iw(Cp(Cp(X))) b d(Cp(X)). The first inequality

holds because X embeds in Cp(Cp(X)) (Problem 167) so Problem 159(v) is

applicable. The second inequality follows from Problem 173.

On the other hand, if iw(X)b k, take a condensation f : X! Y such that w(Y)b k.
Then f � embeds Cp(Y) into Cp(X) as a dense subspace (Problem 163(iv)). Let

Z ¼ f �(Cp(Y)). Then d(Z) b nw(Z) ¼ nw(Cp(Y)) ¼ nw(Y) b w(Y) b k and therefore

d(Cp(X)) b d(Z) b k which establishes that d(Cp(X)) b iw(X) and we are done.

S.175. Suppose that c(K, Cp(X)) b o for some compact subspace K of the space
Cp(X). Prove that X is separable.

Solution. Since Cp(X) is homogeneous (i.e., for any f, g 2 Cp(X) there is a

homeomorphism ’ : Cp(X) ! Cp(X) such that ’(f) ¼ g (see Problem 079)), we

can assume that u 2 K where u � 0. Given a standard set U ¼ [x1, . . . , xn; O1, . . . ,
On] 2 t(Cp(X)), let supp(U) ¼ {x1, . . . , xn}. Let g ¼ {On : n 2 o} be a family of

neighbourhoods of K such that
T
g ¼ K. Fix n 2 o. For every f 2 K pick a standard

open set Uf such that f 2 Uf � On. Taking any finite subcover {Uf1 ; . . . ;Ufm} of the

open cover {Uf : f 2 K} of the compact set K, we obtain a set Wn ¼ Uf1 [ � � � [ Ufm

with K � Wn � On and the set An ¼ supp(Uf1 ) [ � � � [ supp(Ufm ). It is evident that

the set A ¼ S{An : n 2 o} is countable so it suffices to prove that A ¼ X.

Suppose that x 2 X \ A. The map ex : Cp(X) ! R defined by ex(f) ¼ f(x) is
continuous and therefore the set ex(K) is bounded in R. Choose any r > 0 such that

jf(x)j < r for all f 2 K and find some g 2 Cp(X) such that g(x) ¼ r and g(A) � {0}. It

follows from g(x) ¼ r that g =2 K. However, gjA ¼ ujA implies g 2 T g which

contradicts the fact that
T

g ¼ K.

S.176. Prove that s(X) b s(Cp(X)) for any space X. Give an example of a space X
with s(X) < s(Cp(X)).

Solution. Let D be a discrete subspace of X. Fix a family {Ud : d 2 D} � t(X)
such that Ud \ D ¼ {d} for each d 2 D. There is fd 2 Cp(X) with fd(d) ¼ 1 and

fd(X \ Ud) � {0}. We claim that the set E ¼ {fd : d 2 D} is discrete. Indeed, the set
Vd¼ [d, (0, 2)] is open in Cp(X) and Vd \ E¼ {fd} which proves the discreteness of
E and the inequality s(X) b s(Cp(X)).

Now if X is the Sorgenfrey line (see Problem 165) then s(X) ¼ o because every

subspace of X is Lindel€of (Problem 165(i)) and a Lindel€of discrete space is

countable. However, s(Cp(X)) r ext(Cp(X)) r c by Problem 165(v) whence

s(X) < s(Cp(X)).
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S.177. Suppose that X is homeomorphic to Y � R for some space Y. Prove that
Cp(X) is linearly homeomorphic to (Cp(X))

o, i.e., there exists a homeomorphism
x : Cp(X) ! (Cp(X))

o such that x(f þ g) ¼ x(f) þ x(g) and x(lf) ¼ lx(f) for all
f, g 2 Cp(X) and l 2 R.
Solution. We will need the discreate subspace ¼ {0, �1, �2, . . .} of the space R
and the space X0 ¼ Y � � X. Given r 2 R, the maximal integer which does not

exceed r is denoted by [r] and hri ¼ r � [r]. If x ¼ (y, r) 2 X then x� ¼ (y, [r]) 2 X0

and xþ ¼ (y, [r] þ 1) 2 X0. We are going to construct a continuous linear mapping

’ : Cp(X0)! Cp(X) which extends the functions from Cp(X0), i.e., ’(f)jX0¼ f for all
f 2 Cp(X0). To do so, for any x ¼ (y, r) 2 X and f 2 Cp(X0), let ’(f)(y, r) ¼ ’(f)(x)¼
hri · f(xþ) þ (1 � hri) · f(x�1).

Now, if x ¼ (y, r) 2 X0 then r 2 and hri ¼ 0 which implies x� ¼ x and ’(f)(x) ¼
f(x), i.e., the function ’(f) extends f for any f 2 Cp(X0). Let us prove that ’(f) is
continuous for every f 2 Cp(X0). First, fix n 2 and take any x¼ (y, r) 2 Y� (n, nþ 1)

and e > 0. Let fk(z) ¼ f(z, k) for any k 2 and z 2 Y. It is evident that fk 2 C(Y) for
each k 2 . There exists U 2 t(y, Y) and M > 1 such that jfn(z)j þ jfnþ1(z)j < M and

jfn(z) � fn(y)j þ jfnþ1(z) � fnþ1(y)j < e
4M for all z 2 U. Now, let W ¼ (U � (r � e

4M,

r þ e
4M)) \ (Y � (n, n þ 1)). We claim that ’(f)(W) � (’(f)(x) � e, ’(f)(x) þ e).

Indeed, take any x1 ¼ (y1, r1) 2 W. Then y1 2 U and

j’ðf Þðx1Þ�’ðf ÞðxÞj¼ jhr1ifnþ1ðy1Þþð1�hr1iÞfnðy1Þ�hrifnþ1ðyÞ�ð1�hriÞfnðyÞj
bjhr1ifnþ1ðy1Þ�hrifnþ1ðyÞjþjð1�hr1iÞfnðy1Þ�ð1�hriÞfnðyÞj:

Now observe that jhr1ifnþ1(y1)� hrifnþ1(y)jb jhr1ij · jfnþ1(y1)� fnþ1(y)j þ jhr1i �
hrij · jfnþ1(y)j b 1 · e

4M þ e
4M · M < e

4
þ e

4
¼ e

2
.

Analogously, j(1 � hr1i)fn(y1) � (1 � hri)fn(y)j b j1 � hr1ij · jfn(y1) � fn(y)j þ
jhr1i � hrij · jfn(y)jb 1 · e

4Mþ e
4M ·M< e

4
þ e

4
¼ e

2
which shows that, for any x12W, we

have j’(f)(x1) � ’(f)(x)j < e
2
þ e

2
¼ e and continuity of ’(f) at the point x is proved.

Now take an arbitrary point x¼ (y, n) 2 Y� {n} and e> 0. There exists U 2 t(y,
Y) and M 2 R,M > 1 such that jfn�1(z)j þ jfn(z)j þ jfnþ1(z)j < M and jfn(z) � fn(y)j
< e

6M for all z 2 U. Now, letW ¼ U � (n � e
6M, n þ e

6M). Take any x1¼ (y1, r) 2W. If

r b n, we have

j’ðf Þðx1Þ � ’ðf ÞðxÞj ¼ jhrifnðy1Þ þ ð1� hriÞfn�1ðy1Þ � fnðyÞj
bhrijfnðy1Þ � fnðyÞj þ ð1� hriÞ ðjfn�1ðy1Þj þ jfnðyÞjÞ
b1 � e

6M þ e
6MðM þMÞb e

6
þ e

3
¼ e

2
:

Analogously, if r > n then

j’ðf Þðx1Þ � ’ðf ÞðxÞj ¼ jhrifnþ1ðy1Þ þ ð1� hriÞfnðy1Þ � fnðyÞj
bhri ðjfnþ1ðy1Þj þ jfnðyÞjÞ þ ð1� hriÞ ðjfnðy1Þ � fnðyÞjÞ
b e

6MðM þMÞ þ 1 � e
6Mb

e
6
þ e

3
¼ e

2

and we finished the proof of continuity of ’(f).
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It is evident that ’ is a linear map, so let us check that ’ is continuous. Let

U ¼ OX(’(f), x1, . . . , xn, e) be an arbitrary basic neighbourhood of ’(f) in Cp(X),
where xi ¼ (yi, ri) for each i b n. Then the set V ¼ OX0

ðf ; x�1 ; xþ1 ; . . . ; x�n ; xþn ; eÞ
is an open neighbourhood of f in Cp(X0) and ’(V) � U. Indeed, if we

have jgðxþi Þ � f ðxþi Þj< e and jgðx�i Þ � f ðx�i Þj< e for each i b n then

jgðxiÞ � f ðxiÞj ¼ jhriiðgðxþi Þ � f ðxþi ÞÞ þ ð1 � hriiÞðgðx�i Þ � f ðx�i ÞÞj <e ðhriiþ
1 � hriiÞ ¼ e for each i b n and we are done.

Fact 1. The space Cp(X) is linearly homeomorphic to the space Cp(X0) � L where

L ¼ {g 2 Cp(X) : g(X0) ¼ {0}}.

Proof. Given an arbitrary (f, g) 2 Cp(X0) � L, let c(f, g) ¼ ’(f) þ g. It is clear that
c : Cp(X0) � L! Cp(X) is a continuous linear map. It is easy to check that c is a

bijection. Now, given h 2 Cp(X) the formula w (h) ¼ (hjX0, h � ’(hjX0)) defines a

continuous map from Cp(X) to Cp(X0)� L and its is easy to see that w¼ c�1 whence
c is a linear homeomorphism and Fact 1 is proved.

Since X0 is a discrete union of o copies of the space Y (see Problem 113), we can

apply Problem 114 to conclude that Cp(X) is homeomorphic to (Cp(Y))
o. In fact

these spaces are even linearly homeomorphic (check that the proof of Problem 114

for the case Y ¼ R gives a linear homeomorphism). For any n 2 , let Ln ¼ {g 2
Cp(Y� [n, nþ 1]) : g(Y� {n})¼ g(Y� {nþ 1})¼ {0}}. Let pn(f)¼ fjLn for each f
2 L and n 2 . We leave to the reader an easy verification that the map p : L!Q{Ln
: n 2 } defined by p(f)(n)¼ pn(f), is a linear homeomorphism. So, if we denote by�
the relationship of being linearly homeomorphic, then Cp(X0) � (Cp(Y))

o and L �
(L0)

o because L0 � Ln for all n 2 . Finally,

CpðXÞ�CpðX0Þ�L�ðCpðYÞÞo�ðL0Þo�ðCpðYÞ�L0ÞÞo�ððCpðYÞ�L0ÞÞoÞo
�ððCpðYÞÞo�ðL0ÞoÞo�ðCpðX0Þ�LÞo�ðCpðXÞÞo:

Note that we used here Problems 103 and 104 in their linear forms for which the

same proofs will do if the factors are linear spaces.

S.178. Let a(X) ¼ sup{j Y j : Y � X and Y is homeomorphic to the Alexandroff
one-point compactification of an infinite discrete space}. Prove that we have the
equality p(X) ¼ a(Cp(X)) for any infinite space X.

Solution. Suppose that g� t�(X) is an infinite point-finite family. For each U 2 g fix
a point xU 2U and fU 2 Cp(X) such that fU(xU)¼ 1 and fU(U)� {0}. Denote by u the
function equal to zero at all points of X. Since the family g is point-finite, the set

{V 2 g : fV(xU)¼ 1} is finite for anyU 2 g. Therefore, the set {V 2 g : fV¼ fU} is also
finite for any U 2 g. As a consequence the set A ¼ {fU : U 2 g} has the same

cardinality as the family g.

Given any W 2 t(u, Cp(X)), there are x1, . . . , xn 2 X and e > 0 such that G ¼ O
(u, x1, . . . , xn, e) �W. The family m ¼ {U 2 g : xi 2 U for some ib n} is finite and
hence fU(xi) ¼ 0 for all i b n if U 2 g \ m. Thus fU 2 G � W for all but finitely
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many U. This proves that the space {u} [ A is homeomorphic to A(k) where k ¼ j g j.
Therefore p(X) b a(Cp(X)).

Now assume that k ¼ p(X) < a(Cp(X)) and fix an Alexandroff one-point

compactification of a discrete space P � Cp(X) with jPj ¼ kþ. Without loss of

generality, we may assume that P ¼ A [ {u} and u is the unique non-isolated point
of P. Let On ¼ R n ½�1

n;
1
n
 for each n 2 N. Since Wx ¼ ½x; ð�1

n;
1
nÞ
 is an open

neighbourhood of u for any x 2 X, the set P \ Wx is finite and hence the family

gn¼ {f�1(On) : f 2 A} is point-finite for any n 2 N. For any f 2 A there is n¼ nf 2 N
such that f�1(On) 6¼ ; and therefore there ism 2N for which there are kþ non-empty

elements of gm. Some of them can coincide, but, given U¼ f�1(On) 2 gm, the family

{g 2 A : g�1(On) ¼ U} is finite because gm is point-finite. Thus jgmj ¼ kþ > p(X)
which is a contradiction showing that a(Cp(X)) b p(X).

S.179. Prove that, for an arbitrary space X, we have c(X)b p(X)b d(X) and p(X)b
s(X). Give an example of a space Y such that c(Y) < p(Y). Is it possible for such a
space Y to be a space Cp(X) for some X?

Solution. Any disjoint family is point-finite and hence c(X) b p(X). Now if D � X
is a dense subspace with jD j ¼ d(X) take any point-finite family g � t�(X).
For each U 2 g pick xU 2 U \ D and observe that, for each d 2 D, there are only
finitely many U 2 g for which d ¼ dU. Therefore j g j b j D j ¼ d(X) which implies

p(X) b d(X).

Suppose that s(X)¼ k< p(X) and choose a point-finite g� t�(X) with j g j ¼ kþ.
For anyU 2 g pick xU 2U and consider the subspace Y¼ {xU :U 2 g}. Given n 2N
say that ord(U) ¼ n if the point xU belongs to exactly n elements of g. Then Y ¼S
{Yn : n 2 N} where Yn ¼ {xU : ord(U)¼ n} for each n 2 N. If x 2 Yn then x 2 V¼

V1 \ � � � \ Vn for some distinct V1, . . . , Vn 2 g. The set V \ Yn is finite because
xU 2 V implies U 2 {V1, . . . , Vn}. This proves that each Yn is discrete (or empty).

We have j Yn j ¼ j Y j ¼ kþ for some n 2 N which is a contradiction with s(X) b k.
This proves that p(X) b s(X).

Finally, let Y ¼ Cp(A(o1)). Then A(o1) embeds in Cp(Y) ¼ Cp(Cp(A(o1)))

by Problem 167 so we can conclude that p(Y) ¼ a(Cp(Y)) r o1. To finish the

proof, apply Problem 111 to see that c(Y) ¼ c(Cp(A(o1))) ¼ o < p(Y) and we

are done.

S.180. Prove that, for an arbitrary space X, any locally finite family of non-empty
open subsets of the space Cp(X) is countable. Is it possible to say the same about
point-finite families of non-empty open subsets of Cp(X)?

Solution. In the solution of Problem 179, we gave an example of a space Cp(X) for
which p(Cp(X)) > o and hence Cp(X) has a point-finite uncountable family of non-

empty open sets. Now assume that g� t�(Cp(X)) is a locally finite family. Let m be a

maximal disjoint family of non-empty open sets each one of which meets at most

finitely many elements of g. It follows from local finiteness of g that
S
m is dense in

Cp(X). Since c(Cp(X))¼o (Problem 111), the family m is countable. EachU 2 g has
to intersect some V 2 m because

S
m is dense in X. If g were uncountable someU 2 g
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would have to intersect uncountably many elements of m which is a contradiction.

Hence j g j b o.

S.181. Prove that, if a space X is pseudocompact, then c(X) ¼ a(Cp(X)), where a
(Cp(X)) ¼ sup{k : A(k) embeds in Cp(X)}.

Solution. It follows from Problem 178 that it suffices to prove that c(X) ¼ p(X). If
this is not true then there exists a point-finite family g � t�(X) such that j g j ¼ kþ

where k ¼ c(X). Let Xn ¼ {x 2 X : x belongs to at most n elements of g}. If y 2
X \ Xn then there are distinctU1, . . . ,Unþ1 2 g such that y 2U¼U1 \ � � � \ Unþ1
and hence x 2 U� X \ Xn. This shows that Xn is a closed set for each n 2 o. Since g
is point-finite, we have X ¼ S{Xn : n 2 o}.

Fact 1. The set O ¼ S{Int(Xn) : n 2 o} is dense in X.

Proof. Suppose not. Then there is an open non-empty U � X such that U \ O ¼;.
Since X0 can cover no open non-empty subset of U, there is U0 2 t�(X) such that

U0 � U and U0 \ X0 ¼ ;. Suppose that we have U0, . . . , Un such that Uiþ1 � Ui

and Ui \ Xi ¼ ; for all i b n � 1. Since Xnþ1 can cover no non-empty open subset

of Un, there is Unþ1 2 t�(X) such that Unþ1 � Un and Unþ1 \ Xnþ1 ¼ ;. Since X is

pseudocompact, we have P ¼ T{Un : n 2 o} ¼ T{Un : n 2 o} 6¼ ; by Problem

136(iv). However, P \ Xn ¼ ; for all n 2 o which contradicts X ¼S{Xn : n 2 o}.
Hence O is dense in X and Fact 1 is proved.

SinceU \ O 6¼ ; for allU2 g by Fact 1, there ism2o such that the cardinality of

the family {U 2 g : U \ Int(Xm) 6¼ ;} is equal to kþ. Let m ¼ {U \ Int(Xm) : U 2 g
and U \ Int(Xm) 6¼ ;}. Then m � t�(X), jmj¼ kþ and

S
m � Int(Xm). Let n be the

maximal family of non-empty open subsets of Om ¼ Int(Xm) each one of which

meets at most finitely many elements of m. We claim that
S
n is dense inOm. Indeed,

ifW ¼ Om n
S
n 6¼ ; then there is x 2W which belongs to a maximal number jb m

of the elements of m. IfU1, . . . ,Uj are distinct elements of mwith x2 V¼U1 \ � � � \
Uj then the set V can only intersect elements from {U1, . . . , Uj} (for otherwise the

relevant intersection would have a point which belongs to > j elements,

a contradiction). Therefore {V} [n is still a disjoint family each element of which

intersects at most finitely many elements of m which is a contradiction with the

maximality of n. This proves that
S
n is dense inOm. As a consequence each element

of m intersects some element of n. Since eachW2 nmeets but finitely many elements

of m, we have jnj ¼ m¼ kþwhich is a contradiction with c(X)b k because n� t�(X)
is a disjoint family. This contradiction shows that p(X) b c(X) and we are done.

S.182. Let X be a space. Given x 2 X, let Cx ¼ {f 2 Cp(X) : f(x) ¼ 0}. Prove that
Cp(X) is homeomorphic to Cx � R.
Solution.Define a map ’ : Cx�R! Cp(X) by ’(z)¼ fþ t for any element z¼ (f, t)
2 Cx � R. Given any g 2 Cp(X), let c(g) ¼ (g � g(x), g(x)) 2 Cx � R. This defines
a map c : Cp(X) ! Cx � R. It is evident that the maps ’ and c are continuous

and it is easy to check that they are bijections and c ¼ ’�1. Therefore ’ is a

homeomorphism.
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S.183. Prove that compact spaces X and Y are homeomorphic if and only if C(X)
and C(Y) are isomorphic (the isomorphism between C(X) and C(Y) need not be
topological). Show that there exists a compact space X and a non-compact space
Y such that C(X) is isomorphic to C(Y).

Solution. Let X be homeomorphic to Y. Fix some homeomorphism ’ : X! Y and

let ’�(f) ¼ f 	 ’ for any function f 2 C(Y). It follows from Problem 163(v) that the

mapping ’� : C(Y) ! C(X) is a bijection. To prove that the map ’ is an isomor-

phism, take any f, g 2 C(Y) and x 2 X. Then ’�(fþ g)(x)¼ (fþ g)(’(x))¼ f(’(x))þ
g(’(x)) ¼ ’�(f)(x) þ ’�(g)(x) which shows that ’�(f þ g) ¼ ’�(f) þ ’�(g).
Analogously, ’�(f · g)(x) ¼ (f · g)(’(x)) ¼ f(’(x)) · g(’(x)) ¼ ’�(f)(x) · ’�(g)(x)
and therefore ’�(f · g) ¼ ’�(f) · ’�(g) whence ’� is an isomorphism.

Given a space Z call a set I� C(Z) an ideal if I has at least two distinct elements,

I 6¼ C(Z) and, for any f, g 2 I and h 2 C(Z), we have f þ g 2 I and f · h 2 I. Call an
ideal I � C(Z) a maximal ideal if, for any ideal J � C(Z), we have J ¼ I whenever
I � J.

Fact 1. Given a compact space Z, for any z 2 Z, the set Iz¼ IZz ¼ {f 2 C(Z) : f(z)¼ 0}

is an ideal in C(Z) and, for any ideal J � C(Z), there exists z 2 Z such that J � Iz.

Proof. It is straightforward that the set Iz is an ideal in C(Z). Given f 2 J, let Zf ¼
f�1(0). We claim that the family g ¼ {Zf : f 2 J} is centered. Indeed, if not, we can
find f1, . . . , fn 2 J such that

T
{Zfi : ib n}¼ ;. Since J is an ideal, we have f 2i 2 J for

each i b n and hence f ¼Pn
i¼1 f

2
i 2 J. It is clear that f(z) > 0 for any z 2 Z.

It follows from f 2 J that h ¼ f · 1f 2 J. Now, since h(z) ¼ 1 for each z 2 Z, we have
g ¼ g · h 2 J for each g 2 C(Z). It turns out that J ¼ C(Z) which is a contradiction.

The family g being centered we have
T

g 6¼ ; (Problem 118(viii)). It is clear that,

for each z 2 Tg, we have J � Iz and Fact 1 is proved.

Fact 2. Given a compact space Z, the ideal Iz¼ IZz is maximal for any z 2 Z. Besides,
the correspondence z↦ Iz is a bijection between Z and the familyM of all maximal

ideals in C(Z).

Proof. Suppose that J � C(Z) is an ideal with Iz � J. By Fact 1 there is y 2 Z such

that J � Iy. If y 6¼ z then there exists f 2 C(Z) such that f(z) ¼ 0 and f(y) ¼ 1. This

implies f 2 Iz \ Iy which is a contradiction. Hence y ¼ z and Iz � J � Iz whence J ¼
Iz. Therefore Iz is a maximal ideal. As a consequence, the map ’(z)¼ Iz sends Z into

M. If y 6¼ z then, for any f 2 C(Z) with f(z)¼ 0 and f(y)¼ 1 we have f 2 Iz \ Iy which
implies Iz 6¼ Iy so ’ is an injection. Now, if J �M then J � Iz for some z 2 Z by

Fact 1. Since J is maximal, we have J ¼ Iz ¼ ’(z) and Fact 2 is proved.

Fact 3. Let Z be a (not necessarily compact) space. For any A � Z and z 2 Z, we
have z 2 A if and only if Iz �

T
{Iy : y 2 A}.

Proof. If z 2 A and f 2T{Iy : y 2 A} then f(y)¼ 0 for all y 2 A. Since the function f is
continuous, we have f(z) ¼ 0, i.e., f 2 Iz. This proves necessity. Now suppose thatT
{Iy : y 2 A} � Iz. If z =2 A then there exists f 2 C(Z) such that f(z) ¼ 1 and f(A) ¼

{0}. Thus f 2 T{Iy : y 2 A} \ Iz which is a contradiction. Fact 3 is proved.
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Returning to the proof of sufficiency, assume that ’ : C(X) ! C(Y) is an

isomorphism. Observe that the notion of a maximal ideal is defined in algebraic

terms and hence ’(I) is a maximal ideal in C(Y) for any maximal ideal I� C(X). For
any x 2 X, the set IXx is a maximal ideal of C(X) by Fact 2; hence ’(Ix) is a maximal

ideal of C(Y). Applying Fact 2 again, we conclude that there is y 2 Y such that

’(Ix) ¼ IYy . Letting y ¼ f(x) we obtain a function f : X ! Y. Since ’ is an

isomorphism, the map Ix ↦ ’(Ix) is a bijection between the families of maximal

ideals in C(X) and C(Y). Applying Fact 2 we see that f is a bijection. Finally, let

A � X. Given x 2 A, we have IXx �
TfIXz : z 2 Ag by Fact 3. Since ’ is a bijection,

we have IYf ðxÞ �
TfIYz : z 2 f ðAÞg and hence f(x) 2 f ðAÞ by Fact 3. This proves that

f(A) � f ðAÞ and hence f is continuous. Since f is a bijection, we can apply Problem

123 to see that f is a homeomorphism.

S.184. Suppose that we are given a function fn 2 Cp(X) for all n 2o. Prove that, if f :
X! R and fn !! f, then fn! f. Give an example of a sequence {fn : n 2 o}� Cp(I)

such that fn! f for some f 2 Cp(I) and {fn} does not converge uniformly to f.

Solution. If fn !! f, take any U 2 t(f, Cp(X)). There are x1, . . . , xn 2 X and e >
0 such that O(f, x1, . . . , xn, e) � U. By uniform convergence of fn to f, there exists
m 2 o such that j fn(y) � f(y) j < e for all n r m and y 2 X. In particular, j fn(xi) �
f(xi) j < e for all n r m and i b n. As a consequence, fn 2 O(f, x1, . . . , xn, e)
� U for all n r m and hence fn ! f.

To give the required example, for an arbitrary n 2 o, let fn(t) ¼ 0 for all

t 2 ½�1; n
nþ1
. Now, fnðtÞ ¼ ðnþ 1Þðnþ 2Þðt� n

nþ1Þ for all t 2 ½ n
nþ1;

nþ1
nþ2
 and fn(t) ¼

(n þ 2)(1 � t) if t 2 ½nþ1nþ2; 1
. It is easy to see that {fn : n 2 o} � Cp(I). Observe that,
for any t1, . . . , tk 2 I there exists m 2 o such that fn(ti) ¼ 0 for all n r m and i b k.
This shows that fn 2O(f, t1, . . . , tk, e) for any e> 0 and nrm if f(t)¼ 0 for all t 2 I.
Therefore fn ! f. However, the sequence {fn} does not converge uniformly to f,
because fnðnþ1nþ2Þ ¼ 1 for each n 2 o and hence the definition of the uniform

convergence is not satisfied for e ¼ 1.

S.185. (The Dini theorem). Let X be a pseudocompact space. Suppose that fn 2
Cp(X), fnþ1(x) r fn(x) for all x 2 X and n 2 o. Prove that if there exists f 2 Cp(X)
such that fn! f then the sequence {fn} converges uniformly to the function f.

Solution. Take an arbitrary number e > 0. For any n 2 N, consider the open set

Un¼ {x 2 X : j fn(x)� f(x) j> e
2
}. Observe that, for any point x 2 Xwe have j fn(x)�

f(x) j ¼ f(x) � fn(x) r f(x) � fnþ1(x) due to the inequalities fn(x) b fnþ1(x) b f(x).
This implies Unþ1 � Un for all n 2 N. If Un 6¼ ; for all n 2 N then, by

pseudocompactness of X, we have
T
{Un : n 2 N} 6¼ ; (Problem 136(iv)). Pick

any x 2 T{Un : n 2 N}. If gn ¼ f � fn for every n, then gn(x) 2 gn(Un) � gnðUnÞ �
ðe
2
;þ 1Þ ¼ ½e

2
;þ1Þ. Thus gn(x) r e

2
for each n 2 N which is a contradiction

because gn(x)! 0 due to the fact that fn(x)! f(x).

Therefore, Um ¼ ; for some m 2 N which implies Un ¼ ; for every n r m and

hence j fn(x) � f(x) j b e
2
< e for each n r m and x 2 X. This shows that fn !! f.
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S.186. Prove that the following are equivalent for any non-empty space X:

(i) Cp(X) is s-compact.
(ii) Cp(X) is s-countably compact.
(iii) Cp(X) is locally compact, i.e., every f 2 Cp(X) has a compact neighbourhood.
(iv) Cp(X) is locally countably compact, i.e., every f 2 Cp(X) has a countably

compact neighbourhood.
(v) Cp(X) is locally pseudocompact, i.e., every f 2 Cp(X) has a pseudocompact

neighbourhood.
(vi) The space X is finite.

Solution. For any A � X let pA : Cp(X)! Cp(A) be the restriction map. If X is finite

then Cp(X) is homeomorphic to Rn, where n ¼ j X j. Take any x 2 Rn, r > 0 and

y 2 Bnðx; rÞ. For any e > 0 there exist a point z 2 Bn(y, e) \ Bn(x, r) and hence

dn(y, x)b dn(y, z)þ dn(z, x) (see S.130(i) for the definition of dn and the proof of the
last inequality) which implies that dn(y, x) < r þ e. This proves that Bnðx; rÞ �
Bn(x, r þ e) and therefore the set Bnðx; rÞ is compact by Problem 131. As a

consequence the space Rn is locally compact. This proves (vi)) (iii). It is evident

that we also have (i)) (ii) and (iii)) (iv)) (v). Note also that Rn ¼S{Bnðx; kÞ :
k 2 N} for any x 2 Rn and therefore Rn is s-compact. This proves (vi)) (i).

Now suppose that Cp(X) is locally pseudocompact and fix a pseudocompact

neighbourhood U of the function h � 0. There exist x1, . . . , xn 2 X and e > 0 such

that O(h, x1, . . . , xn, e) � U. If X is infinite then there is y 2 X \ {x1, . . . , xn}. The
map ey : Cp(X)! R, defined by ey(f)¼ f(y) for all f 2 Cp(X), is continuous (Problem
166). For any r 2 R there is f 2 Cp(X) such that f(y) ¼ r and f(xi) ¼ 0 for all i b n
(Problem 034). Since f 2 O(h, x1, . . . , xn, e)� U and ey(f)¼ r, the function ey is not
bounded on U which contradicts the pseudocompactness of U. Hence X has to be

finite and (v)) (vi).

To finish the proof, it suffices to show that (ii)) (vi).

Fact 1. If X is not pseudocompact then Cp(X) maps continuously onto Ro.

Proof. If X is not pseudocompact then, by Problem 136, there exists a discrete

family U ¼ {Un : n 2 o} � t�(X). Take a point xn 2 Un for each n 2 o and fix a

function fn 2 C(X, [0, 1]) such that fn(xn) ¼ 1 and fn(X \ Un) ¼ {0}. It is clear that

D ¼ {xn : n 2 o} is a discrete and closed subspace of X. If f : D ! R then the

function g ¼ Sn2o fn · f(xn) is continuous on X. Indeed, if y 2 X then there is U 2
t(y, X) which meets at most one element of U, say, Uk. Then gjU ¼ fk · f(xk)jU is a

continuous function. This implies continuity of g at the point y and hence g is a

continuous. Since gjD ¼ f, the restriction map pD : Cp(X)! Cp(D) ¼ RD is onto.

Since RD is homeomorphic to Ro, Fact 1 is proved.

Fact 2. The space Ro is not s-pseudocompact and hence it is neither s-countably
compact nor s-compact.

Proof. Let pn : Ro! R be the natural projection onto the nth factor. Assume that

Ro ¼ S
{Fn : n 2 o} where each Fi is pseudocompact. Since Ro is second

countable, so is Fn for each n and hence each Fn is compact by Problem 138.
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The set pn(Fn) is bounded in R by Problem 131, so there is xn 2 R \ pn(Fn). Now it

is immediate that the point x 2Ro defined by x(n)¼ xn does belong to
S
{Fn : n 2o}

which is a contradiction. Fact 2 is proved.

Fact 3. If Cp(X) is s-countably compact then X is pseudocompact.

Proof. If not then Cp(X) maps continuously onto Ro by Fact 1. It is easy to see

that any continuous image of a s-countably compact space is a s-countably
compact space so Ro is s-countably compact which contradicts Fact 2 and Fact

3 is proved.

Any countable intersection of open sets of a space X is called a Gd-subset of X.
Call a space X a P-space if any Gd-subset of X is open.

Fact 4. For any space X if A� X and the set CA¼ pA(Cp(X)) is s-countably compact

then A is a P-space. In particular, if Cp(X) is s-countably compact then X is a

P-space.

Proof. Assume that CA is s-countably compact. If A is not a P-space then there

exists x 2 A and a family {Fn : n 2 o} of closed subsets of A such that x =2 Fn and

Fn� Fnþ1 for each n 2 o while x 2 clA(
S
{Fn : n 2 o}). Let F¼S{Fi : i 2 o}; it is

clear that x 2 F.

The set Ix ¼ {f 2 CA : f(x) ¼ 0} is closed in CA and hence it is s-countably
compact; therefore Ix ¼

S
{Kn : n 2 o} where each Kn is countably compact. We

claim that, for each n 2 o and e > 0, there is kn 2 o such that for every f 2 Kn there

is z 2 Fkn with f(z) < e. If it were not true then, for each i 2 o, there is fi 2 Kn such

that fi(y)r e for every y 2 Fi. Since Kn is countably compact, the set {fi : i 2 o} has
an accumulation point f 2 Kn. If y 2 F¼S{Fi : i 2 o} then y 2 Fm for some m 2 o
and hence fi(y) r e for all i r m. It is immediate that this implies f(y) r e. Thus we
have f(y) r e for all y 2 F while f(x) ¼ 0 which contradicts continuity of f on A and

the fact that x 2 clA(F).
Therefore, we can fix a sequence {kn : n 2o}� owith the following properties:

(1) knþ1 > kn for each n 2 o;
(2) For every f 2 Kn there is y 2 Fkn such that f(y) < 1

2n
.

The set Fn being closed in A it follows from x 2 A that x =2 Fn for every n 2 o.
Thus, we can apply the Tychonoff property of X to choose a continuous function gn :
X ! [0, 1

2n
] such that gn(x) ¼ 0 and gnðFknÞ ¼ f 12ng for each n 2 o. The function

g ¼ Sn2o gn is a uniform limit of the sequence {g0 þ � � � þ gn}n2o and hence g 2
Cp(X). It is evident that g(x) ¼ 0 so h ¼ g j A 2 Ix. However, we have h(y) ¼ g(y)r
gn(y) r 1

2n
for each y 2 Fkn whence h =2 Kn for all n 2 o. Therefore h 2 Ix \ (

S
{Kn :

n 2 o}); this contradiction shows that Fact 4 is proved.

To finish the proof of (ii)) (vi) it suffices to establish that each pseudocompact

P-space X is finite (see Facts 3 and 4). Suppose that X is infinite. Take any distinct

x, y 2 X and disjoint U 2 t(x, X), V 2 t(y, X). Since X¼ (X \ U) [ (X \ V), one of the
sets X \ U, X \ V has to be infinite. If, for example, j X \ U j r o then we can apply

regularity of X and findW 2 t(x, X) withW �U. It is clear that X \ W is infinite. Thus
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we have proved, that in any infinite space X there is W 2 t�(X) such that X \ W is

infinite.

Call such W a small subset of X. So, choose a small U0 � X and if we have

U0, � � � , Un 2 t�(X) with Xn ¼ X \ (U0 [ � � � [ Un) infinite, let Unþ1 be a small

subset of Xn. By induction, we can construct a sequence {Un : n 2 o} of disjoint

non-empty open subsets of X. Pick xn 2 Un for all n and use regularity of X to

construct open sets fUi
n : i 2 og so that U0

n ¼ Un and Uiþ1
n � Ui

n for each i 2 o.
Since X is a P-space, the set Vn ¼

TfUi
n : i 2 og ¼ TfUi

n : i 2 og is clopen in X
and Vn � Un for each n 2 o. Using once more the P-property of X we can conclude

that the set V¼ X \ ðS{Vn : n 2 o}Þ is also open in X and therefore the family {Vn :

n 2 o} is discrete which contradicts pseudocompactness of X. Hence X is finite and

our proof is complete.

S.187. Prove that Cp(X) is locally Lindel€of (� each f 2 Cp(X) has a Lindel€of
neighbourhood) if and only if Cp(X) is Lindel€of.

Solution. If Cp(X) is Lindel€of then it is a Lindel€of neighbourhood of any of its

points. To prove sufficiency, assume that Cp(X) is locally Lindel€of and fix a

Lindel€of neighbourhood U of the function h � 0. There exist x1, . . . , xn 2 X and

e > 0 such that V � U where V ¼ O(h, x1, . . . , xn, e). It is an easy exercise that a

closed subspace of a Lindel€of space is Lindel€of so V is also Lindel€of. It is an

easy consequence of Problem 116 that the map ’k : Cp(X)! Cp(X) defined by ’k(f)
¼ k · f, is continuous. We can apply Problem 157(vi) to conclude that ’k(V) is
Lindel€of for any k 2N. Now, if f 2 Cp(X) then there is k 2N such that k · e> f(xi) for
all ib n. As a consequence f 2 ’k(V). The function f being arbitrary, we proved thatS
{’k(V) : k 2 N}¼ Cp(X). Another easy exercise is to prove that a countable union

of Lindel€of spaces is also a Lindel€of space. Thus, Cp(X) is Lindel€of and we are

done.

S.188. Assume that Cp(X) is Lindel€of. Prove that any discrete family g � t�(X) is
countable.

Solution. Any subfamily of a discrete family is discrete so if there is some

uncountable discrete family of non-empty open subsets of X, then we can find a

discrete family g ¼ {Ua : a < o1} � t�(X). Pick xa 2 Ua for each a < o1 and let

D ¼ {xa : a < o1}. Fix a function fa 2 Cp(X, [0, 1]) such that fa(xa) ¼ 1 and

fa(X \ Ua)¼ {0}. Given any f :D!R, let g ¼Pa<o1
fa � f ðaÞ. It is clear that gjD¼ f.

Besides, the function g is continuous because for any x 2 X there isW 2 t(x, X) such
that W intersects at most one element of g, say Ub. Then gjW ¼ fb · f(xb)jW is a

continuous function and hence g is continuous at x. The point x being arbitrary, the
function g is continuous. Hence the restriction map pD : Cp(X)! Cp(D) is continu-
ous and onto (see Problem 152). Hence the space Cp(D) is Lindel€of by Problem 156

(vi). The spaceD is clearly discrete so Cp(D) is homeomorphic toRo1 . To obtain the

desired contradiction, it suffices to prove that Ro1 is not Lindel€of.

Assume that the space Ro1 is Lindel€of. The space ðRo1Þn is homeomorphic

to Ro1 by Problem 103 and hence tðCpðRo1ÞÞ ¼ o by Problem 149. Let
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’a : Ro1 ! R be the natural projection onto the ath factor for each a < o1. Denote

by h the function on Ro1 which is identically zero. We claim that h belongs to the

closure of the set A ¼ {’a� ’b : a < b < o1}. It suffices to prove that for arbitrary

x1, . . . , xn 2 Ro1 and e > 0, we have O(h, x1, . . . , xn, e) \ A 6¼ ;.
Define a map y :o1!Rn by the formula y(a)¼ (x1(a), . . . , xn(a)) 2Rn for each

a < o1. If y(a) ¼ y(b) for some a < b then ’a(xi) � ’b(xi) ¼ xi(a) � xi(b) ¼ 0 < e
for each i b n and therefore ’a � ’b 2 O(h, x1, . . . , xn, e) \ A. Now, if y is an

injection then the set y(o1) � Rn is uncountable and we can apply Fact 1 of S.151

to conclude that there is P� o1 such that y(P) has no isolated points. Pick any a 2 P.
Since y(a) is not isolated, there is b 2 P \ {a} such that y(b) 2 Bn(y(a), e)
(see Problem 130). There will be no loss of generality to assume that a < b. It is
easy to see that y(b) 2 Bn(y(a), e) implies j xi(a)� xi(b) j< e for any ib n and hence
’a � ’b 2 O(h, x1, . . . , xn, e) \ A. This shows that h 2 A.

Since we have the equality t(Cp(Ro1 )) ¼ o, there is a countable set B � A such

that h 2 B. Take a countably infinite set C � o1 such that B � {’a � ’b : a, b 2 C
and a < b}. Choose any enumeration {di : i 2 N} of the set C and define x 2 Ro1 as

follows: x(di) ¼ i for all i 2 o and x(g) ¼ 0 for all g 2 o1 \ C. We claim that V \
B ¼ ; where V ¼ O(h, x, 1). Indeed, if c 2 B then c ¼ ’di � ’dj for some i, j 2 N,
i 6¼ j. Therefore j c(x) j ¼ j x(di) j � x(dj) j ¼ j i� j jr 1 and hence c =2 V which is a

contradiction with the fact that h 2 B. This contradiction shows that t(Cp(Ro1 ))> o
and hence Ro1 is not Lindel€of so our proof is over.

S.189. (Asanov’s theorem) Prove that t(Xn) b l(Cp(X)) for any space X and n 2 N.
In particular, if Cp(X) is a Lindel€of space, then t(Xn) b o for all n 2 N.
Solution. Let l(Cp(X)) b k. Fix any n 2 N to prove that t(Xn) b k. Take any

x¼ (x1, . . . , xn) 2 Xn and any A� Xn with x 2 A. Choose Oi 2 t(xi, X) in such a way
that Oi \ Oj ¼ ; if xi 6¼ xj and Oi ¼ Oj if xi ¼ xj. The set O ¼ O1 � � � � �On is a

neighbourhood of x and x 2 A \ O which makes it possible to assume that A � O.
The set F ¼ {f 2 Cp(X) : f(xi) ¼ 1 for all i b n} is closed in Cp(X) and hence

l(F)b k. Given y ¼ (y1, . . . , yn) 2 A, let Uy ¼ {g 2 Cp(X) : g(yi) > 0 for all i b n}.
Now, if f 2 F then Ui ¼ f�1((0, þ1)) 2 t(xi, X) for all i b n. Since x 2 A, there is
y ¼ (y1, . . . , yn) 2 A \ (U1 � � � � � Un). Thus f(yi) > 0 for each ib n and hence f 2
Uy. This proves that F�

S
{Uy : y 2 A}. Since l(F)b k, there exists B� A such that

j B j b k and F � S{Uy : y 2 B}. We claim that x 2B. If not, then V \ B ¼ ; for
some V ¼ V1 � � � � � Vn where xi 2 Vi 2 t(Oi) for each i b n and Vi ¼ Vj if xi ¼ xj.

It is easy to see that there exists a function g 2 F such that g(z) ¼ 0 for any z 2
X \ ðS{Vi : i b n}Þ. We have g 2 Uy for some y ¼ (y1, . . . , yn) 2 B. Now y 2 A
implies yi 2 Ui for all ib n. Recall that g(yi)> 0 and therefore yi 2 Vi for otherwise

g(yi) ¼ 0. As a consequence y 2 (V1 � � � � � Vn) \ B which is a contradiction.

S.190. For a space X, let A � C�(X) be an algebra which is closed with respect to
uniform convergence. Prove that f, g 2 A implies max(f, g) 2 A and min(f, g) 2 A.

Solution. Denote by I the closed interval [0, 1] � R. Let s(t) ¼ ffiffi
t
p

for any t 2 I.

Fact 1. There exists a sequence {pi}i2o of polynomials on I such that pn !! s.
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Proof. Let p0(t) ¼ 0 for all t 2 I. If we have the polynomial pi for some i r 0, let

piþ1ðtÞ ¼ piðtÞ þ 1
2
ðt� p2i ðtÞÞ for every t 2 I.

Let us show by induction that pi(t) b
ffiffi
t
p

for all t 2 I and i 2 o. Evidently, this
inequality holds for i ¼ 0, so suppose that pi(t) b

ffiffi
t
p

. Since

ffiffi
t
p � piþ1ðtÞ ¼

ffiffi
t
p � piðtÞ � 1

2
ðt� p2i ðtÞÞ ¼ ð

ffiffi
t
p � piðtÞÞð1� 1

2
ð ffiffitp þ piðtÞÞÞ;

the inductive hypothesis and the inequality t b 1 imply

ffiffi
t
p � piþ1ðtÞrð

ffiffi
t
p � piðtÞÞð1� 1

2
� 2 � ffiffi

t
p Þr 0;

which completes the proof of the fact that pi b s for all i 2 o. For any t 2 I the
sequence {pi(t)} is bounded by

ffiffi
t
p

and piþ1(t) r pi(t) for all i 2 o. Therefore pi(t)
converges to some p(t) 2 I. Therefore it is possible to pass to the limit in the equality

piþ1ðtÞ ¼ piðtÞ þ 1
2
ðt� p2i ðtÞÞ, when i!1. This gives us pðtÞ ¼ pðtÞ � 1

2
ðt� p2ðtÞÞ

and hence p(t) ¼ ffiffi
t
p

. We are now in condition to apply the Dini theorem (Problem

185) to conclude that pi!!
ffiffi
t
p ¼ s so Fact 1 is proved.

Returning to the main proof observe that min(f, g)¼ 1
2
(fþ g� j f� gj ) and max

(f, g)¼ 1
2
(fþ gþ j f� gj ). Since A is an algebra, we have fþ g 2 A and f� g 2 A so

it suffices to prove that j f þ gj 2 A and jf � gj 2 A. In other words, it suffices to

show that h 2 A implies j h j 2 A. Let hi(x)¼ pi((h(x))
2) for all x 2 X and i 2 o. Here

pi is the respective polynomial from Fact 1. Since A is an algebra, we have hi 2 A for

all i 2o. By Fact 1 the sequence {hi} converges uniformly to
ffiffiffiffiffi
h2
p

¼ jhj. Since A is

closed with respect to uniform convergence, we have j h j 2 A and our proof

is complete.

S.191. (The Stone–Weierstrass theorem). Let X be a compact space. Suppose that
A is an algebra in C(X) which separates the points of X and is closed with respect to
uniform convergence. Prove that A ¼ C(X). Deduce from this fact that if A is an
algebra in C(X) which separates the points of X then, for any f 2 C(X), there is a
sequence {fn}n2o � A such that fn !! f.

Solution. Let max(f0, . . . , fn)(x) ¼ max{f0(x), . . . , fn(x)} for any point x 2 X and

functions f0, . . . , fn 2 C(X). This defines the function max(f0, . . . , fn) 2 C(X).
Analogously, letting min(f0, . . . , fn)(x) ¼ min{f0(x), . . . , fn(x)} for any x 2 X, we
define the function min(f0, . . . , fn) 2 C(X).

Fact 1. For any f 2 C(X) and e > 0, there exists a function fe 2 A such that j fe(x) �
f(x)j < e for any x 2 X.

Proof. For every pair of distinct points a, b 2 X we can find a function h 2 A such

that h(a) 6¼ h(b). Since A is an algebra, the function g defined by the formula g(x)¼
(h(x) � h(a))(h(b) � h(a))�1 for every x 2 X, belongs to A. It is immediate that

g(a) ¼ 0 and g(b) ¼ 1. Now let fa,b(x) ¼ (f(b) � f(a))g(x) þ f(a) for each x 2 X.
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Of course, fa,b 2 A and fa,b(a) ¼ f(a) and fa,b(b) ¼ f(b). The sets Ua,b ¼ {x 2 X :

fa,b(x) < f(x)þe} and Va,b ¼ {x 2 X : fa,b(x) > f(x)�e} are open neighbourhoods of

the points a and b, respectively. Fix any b 2 X and extract a finite subcover {Uai;b :

i 2 {0, . . . , n}} of the open cover {Ua,b : a 2 X} of the compact space X. Apply
Problem 190 to conclude that the function fb ¼ min(fa0 ; b; . . . ; fan; b) belongs to A.
It is easy to see that fb(x) < f(x)þe for all x 2 X and fb(x) > f(x)�e for any x 2 Vb ¼T
{Vai;b : i b n}. Since X is compact, we can choose a finite subcover

{Vbi : 0 b i b k} of the open cover {Vb : b 2 X} of the space X. Apply Problem 190

once more to observe that the function fe ¼ max(fb0 ; . . . ; fbk ) belongs to A and we

have j fe(x) � f(x) j < e for all x 2 X so Fact 1 is proved.

To finish our proof take an arbitrary f 2 C(X) and find a function fn 2 A such that

j fn(x)� f(x)j< 1
n for all x 2 X. The existence of such fn is guaranteed by Fact 1. It is

obvious that fn !! f and therefore f 2 A because A is closed with respect to uniform

convergence. Being f 2 C(X) an arbitrary function, we proved that A ¼ C(X).
Suppose finally that A is an algebra which separates the points of X.

Fact 2. The set B ¼ {f 2 C(X) : fn !! f for some sequence {fn}n2o � A} is also an

algebra.

Proof. If f, g 2 B, fix sequences {fn}, {gn} � A such that fn !! f and gn !! g. Then
{fn þ gn} � A because A is algebra and fn þ gn !! f þ g by Problem 035. This

shows that f þ g 2 B. The sequence {fn · gn} also lies in A because A is an algebra.

We will prove that fn · gn !! f · g.

Let us prove first that there exists K 2 R such that j f(x) j b K, j fn(x) j b K and

j gn(x) j b K for all n 2 o and x 2 X. Since f is continuous and X is compact, the

functions f and g are bounded on X, i.e., there existsM 2R such that j f(x) jbM and

j g(x) j bM for all x 2 X. Applying the relevant uniform convergences we can find

m 2 o such that j fn(x) � f(x) j < 1 and j gn(x) � g(x) j < 1 for all n r m and x 2 X.
The functions f1, . . . , fm and g1, . . . , gm are bounded on X which implies that there

is N 2 R such that j fi(x) j þ j gi(x) j b N for all i b m and x 2 X. It is easy to verify

that the number K ¼ M þ N þ 1 is as promised.

Given an arbitrary e > 0, we can find l 2 o such that j fn(x) � f(x) j < e
2K and

j gn(x) � g(x) j < e
2K for all n r l and x 2 X. Then

jfnðxÞgnðxÞ� f ðxÞgðxÞj ¼ jgnðxÞðfnðxÞ� f ðxÞÞþ f ðxÞðgnðxÞ�gðxÞÞj
bjgnðxÞjjfnðxÞ� f ðxÞjþjf ðxÞjjgnðxÞ�gðxÞj<K � e

2KþK � e2K¼ e

for all n r l and x 2 X which proves that fn · gn !! f · g and hence f · g 2 B. Since B
contains A and A contains all constant functions, the set B also contains all constant

functions and hence B is an algebra.

Note that B is the closure of A in the space Cu(X) (see Problem 084) and hence it

is closed in Cu(X), i.e., B is an algebra closed with respect to uniform convergence.

We have proved already that B has to be equal to C(X) and this implies precisely

that any f 2 C(X) is a uniform limit of a sequence from A.
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S.192. Let X be an arbitrary space. Prove that, if A � Cp(X) is an algebra which
separates the points of X, then A is dense in Cp(X).

Solution. Take any finite P� X. Observe that pP(Cp(X))¼ Cp(P)¼ RP by Problem

034. Here pP : Cp(X)! Cp(P) is the restriction map. It is immediate that B ¼ pP(A)
is an algebra in Cp(P) which contains all constant functions and separates the points
of P. The space P being compact, we can apply Problem 191 to conclude that the set

B is uniformly dense inRP i.e., for any f 2RP and any e> 0, there is g 2 B such that

j f(x) � g(x) j < e for all x 2 P.

To prove that A is dense in Cp(X) fix f 2 Cp(X), x1, . . . , xn 2 X and e > 0.

Applying the observation of the first paragraph to the set P ¼ {x1, . . . , xn} we can
find g 2 A such that j pP(g)(xi) � pP(f)(xi) j < e for all i b n. Therefore j g(xi) �
f(xi) j< e for all i b n and hence g 2 O(f, x1, . . . , xn, e) \ A which proves that

f 2 A. The function f being taken arbitrarily, we have A ¼ Cp(X) i.e., A is dense

in Cp(X).

S.193. Prove that, for any f 2 C([a, b]), there exists a sequence of polynomials
{pn : n 2 o} such that pn !! f on [a, b].

Solution. The space [a, b] is compact (Problem 131) and the set P of all poly-

nomials on [a, b] is, evidently, an algebra in C([a, b]). Observe that P separates

the points of [a, b] because even the polynomial p(x) ¼ x separates them.

Therefore Problem 191 is applicable to conclude that P is uniformly dense in

C([a, b]).

S.194. Prove that, for any f 2 Cp(R), there exists a sequence of polynomials {pn :
n 2 o} such that pn! f.

Solution. Apply Problem 193 to find a polynomial pn such that j pn(x) � f(x) j < 1
n

for all x 2 [�n, n]. Given x 2R and e> 0 there ism 2o such that j x jbm and 1
m < e.

Then x 2 [�n, n] for each n r m and therefore j pn(x) � f(x) j < 1
n b

1
m < e which

shows that the numeric sequence {pn(x)} converges to f(x). The point x being taken
arbitrarily, we can apply Problem 143 to conclude that pn! f.

S.195. Is it true that, for any f 2 Cp(R), there exists a sequence of polynomials {pn :
n 2 o} such that pn !! f ?

Solution. No, this is not true. To see this, let f(t) ¼ 0 for all t 2 R \ I. If t 2 [�1, 0]
then f(t)¼ tþ 1 and f(t)¼ 1� t for all t 2 [0, 1]. It is clear that f 2 Cp(R). It turns out
that f cannot be a uniform limit of polynomials. To prove this, we will use the

following fact well known in algebra (we will prove it anyway).

Fact 1. For any e> 0, if a polynomial is bounded on R \ (�e, e) then it is a constant
function.

Proof. Suppose not and let n r 1 be the minimal possible degree of a polynomial

p which is bounded on R \ (�e, e). If n ¼ 1 then the function p(x) ¼ ax þ b, a 6¼ 0

cannot be bounded on R \ (�e, e) so n r 2. Let p(x) ¼ a0 þ a1x þ � � � þ anx
n. Since

p(x) is bounded on R \ (�e, e), the function p(x)� a0¼ x(a1þ � � � þ anx
n�1) is also
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bounded on the same set. The function g(x) ¼ 1
x being bounded on R \ (�e, e) as

well, the polynomial q(x)¼ g(x) · (p(x)� a0) is also bounded on R \ (�e, e) and deg
(q) b n � 1 which is a contradiction with n being the minimal degree of a bounded

polynomial on R \ (�e, e). Fact 1 is proved.

To finish our proof, suppose that pn !! f for some sequence {pn} of polynomials.

There is m 2 N such that j pn(x) � f(x) j < 1 for all x 2 R and n r m. Therefore
j pn(x) j b j f(x) j þ 1 b 2 for all x 2 R and n r m. Thus the polynomials pn
are bounded for all n r m and hence they are all constant by Fact 1. Let cn be the
constant value of the polynomial pn. Since pn(x) ! f(x) ¼ 0 for any x r 2

(see Problems 184 and 143), we have cn ! 0. However, pn(0) ! f(0) ¼ 1 and

hence cn! 1 which is a contradiction.

S.196. Let us call a function ’ : Cp(X) ! R a linear functional if we have
’(af þ bg) ¼ a’(f) þ b’(g) for any f, g 2 Cp(X) and a, b 2 R. The functional
’ is called trivial if ’(f) ¼ 0 for any f 2 Cp(X). Prove that, for any x1, . . . , xn 2 X
and l1, . . . , ln 2 R, the function l2ex1 þ � � � þ lnexn is a linear continuous func-
tional on Cp(X). Recall that ex : Cp(X) ! R is defined by ex(f) ¼ f(x) for all f 2
Cp(X).

Solution. Note first that, for any point x 2 X, we have the equalities ex(af þ bg) ¼
(afþ bg)(x)¼ (af)(x)þ (bg)(x)¼ af(x)þ bg)(x)¼ aex(f)þ bex(g) and therefore ex
is a linear functional for any x 2 X. Continuity of ex was proved in Problem 166.

To finish the proof observe that any finite sum of continuous linear functionals is a

continuous linear functional and l’ is a continuous linear functional whenever ’ is

a continuous linear functional with l 2 R.
S.197. Prove that, for any continuous linear functional ’ : Cp(X)! R, there exist
x1, . . . , xn 2 X and l1, . . . , ln 2 R such that ’ ¼ l2ex2 þ � � � þ lnexn .

Solution. Since ’ is continuous, there exist distinct x1, . . . , xn 2 X and e > 0 such

that ’(O(h, x1, . . . , xn, e)) � (�1, 1). Here h � 0 and hence ’(h) ¼ 0 2 (�1, 1).
Observe that ’(f) ¼ 0 for any f 2 Cp(X) with f(xi) ¼ 0 for all i b n. Indeed, for each
k 2 N, we have k · f 2 O(h, x1, . . . , xn, e) and hence j ’(kf) j< 1 whence j ’(f) j< 1

k.

Since this is true for any k 2 N, we have ’(f) ¼ 0. An evident consequence of

this fact and the linearity of ’ is the equality ’(f) ¼ ’(g) for any f, g 2 Cp(X) with
f(xi) ¼ g(xi) for all i b n.

Choose disjoint open sets U1, . . . , Un such that xi 2 Ui for all i b n. There exist
functions fi 2 C(X, [0, 1]) such that fi(xi) ¼ 1 and fi(X \ Ui) ¼ {0} for all i b n. Let
li ¼ ’(fi) for all i b n. We will prove that ’ ¼ l2ex2 þ � � � þ lnexn . Take any

f 2 Cp(X) and note that, for any ib n, we have g(xi)¼ f(xi) where g ¼
Pn

i¼1 f ðxiÞ � fi.
Therefore ’ðf Þ¼’ðgÞ¼Pn

i¼1 f ðxiÞ’ðfiÞ¼
Pn

i¼1 lif ðxiÞ¼ðl2ex2 þ � � � þ lnexnÞðf Þ
and hence ’ ¼ l2ex2 þ � � � þ lnexn .

S.198. Give an example of a (discontinuous) linear functional ’ : Cp(R)!R
which cannot be represented as l2ex1 þ � � � þ lnexn for any points x1, . . . , xn 2 X
and l1, . . . , ln 2 R.
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Solution. No discontinuous linear functional ’ : Cp(R) ! R can be represented

as l1ex1 þ � � � þ lnexn by Problem 196 so it suffices to give an example of a

discontinuous linear functional ’ : Cp(R) ! R. Let ’(f) ¼ R 3
0

f(t)dt for any f 2
Cp(R). The linearity of ’ is evident.

Given n 2 N, let fn(t) ¼ 0 for all t 2 [2n, þ 1) [ (�1, 0). If t 2 [0, 1
n] we let

fn(t)¼ n2t and fn(t)¼ �n2(t �2
n) for all t 2 [1n;

2
n]. This gives us a set A¼ {fn : n 2 N}

� Cp(R) and h� 0 belongs to the closure of A. However, ’(fn)¼
R 3
0
fn(t)dt¼ 1 for

all n 2 N and hence 0 ¼ ’(h) =2 ’ðAÞ ¼ f1g ¼ {1}. Now apply Problem 009(vi) to

see that ’ is not continuous.

S.199. A map x : Cp(X)! R is called a linear multiplicative functional if x(f þ g) ¼
x(f) þ x(g) and x(f · g) ¼ x(f) · x(g) for all f, g 2 Cp(X). Prove that, for any
continuous non-trivial linear multiplicative functional x : Cp(X)! R, there exists a
point x 2 X such that x ¼ ex.

Solution. Since x is a continuous linear functional on Cp(X), there exist distinct

x1, . . . , xn 2 X and l1, . . . , ln 2 R such that x ¼ l1ex2 þ � � � þ lnexn (see Problem
197). If li 6¼ 0 6¼ lj for some distinct i, j b n then take functions f, g 2 Cp(X) such
that f(xi)¼ 1, f(xk)¼ 0 for all k 6¼ i and g(xj) ¼ 1, g(xk)¼ 0 for all k 6¼ j. Then (f · g)
(xk)¼ 0 for all kb n and it is easy to see that x(f)¼ li, x(g)¼ ljwhile x(f · g)¼ 0 6¼
x(f) · x(g) ¼ lilj so x is not multiplicative, a contradiction. Thus x ¼ lex for some

x 2 X and l 2 R. Since x is non-trivial, we have l 6¼ 0. Let h(x) ¼ 1 for all x 2 X.
Then h · h ¼ h and therefore x(h · h) ¼ x(h)x(h) ¼ l2 ¼ x(h) ¼ l. This shows that
l ¼ 1 and hence x ¼ ex.

S.200. (Theorem of J. Nagata). Prove that spaces X and Y are homeomorphic if and
only if the algebras Cp(X) and Cp(Y) are topologically isomorphic.

Solution. Suppose that X is homeomorphic to Y and fix some homeomorphism ’ :

X ! Y; let ’�(f) ¼ f 	 ’ for any f 2 Cp(Y). It follows from Problem 163(v) that

the mapping ’� : Cp(Y) ! Cp(X) is a homeomorphism. To prove that the map

’ is also an isomorphism, take any functions f, g 2 Cp(Y) and x 2 X. Then ’�(f þ g)
(x) ¼ (f þ g)(’(x)) ¼ f(’(x)) þ g(’(x)) ¼ ’�(f)(x) þ ’�(g)(x) which shows that

’�(f þ g) ¼ ’�(f) þ ’�(g). Analogously, we have the equalities ’�(f · g)(x) ¼ (f · g)
(’(x))¼ f(’(x)) · g(’(x))¼ ’�(f)(x) · ’�(g)(x) and therefore ’�(f · g)¼ ’�(f) · ’�(g)
whence ’� is a topological isomorphism.

Now suppose that i : Cp(X)! Cp(Y) is a topological isomorphism. The map i� :
Cp(Cp(Y))! Cp(Cp(X)) defined by i�(’) ¼ ’ 	 i, is a homeomorphism by Problem

163 so it suffices to show that i�(E(Y)) ¼ E(X) (see Problem 167), because E(X) is
homeomorphic to X and E(Y) is homeomorphic to Y by Problem 167. Note that any

x 2 E(Y) is a continuous multiplicative linear functional on Cp(Y). Since i is a

topological isomorphism, the map i�(x) ¼ x 	 i is also a linear continuous multi-

plicative functional on Cp(X) and hence i�(x) 2 E(X) by Problem 199. This proves

that i�(E(Y)) � E(X). Now if c 2 E(X) then c 	 i�1 is a linear continuous

multiplicative functional on Cp(Y) and therefore ’ ¼ c 	 i�1 2 E(Y) whence

c ¼ i�(’). Thus i�(E(Y)) ¼ E(X) and our proof is complete.
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S.201. Let (X, d) be a metric space. Show that

(i) The open balls form a base of (X, t(d)).
(ii) (X, t(d)) is Hausdorff and hence T1.

As a consequence, every metrizable space is Hausdorff and hence T1.

Solution. (i) By the definition of t(d), if x 2 U 2 t(d) then B(x, r) � U for some

r > 0 so we only have to prove that every ball B(x, r) is open in (X, t(d)). Take
any y 2 B(x, r) and let s ¼ r � d(x, y) > 0. It suffices to show that B(y, s) � B(x, r).
Given z 2 B(y, s), we have d(z, x) b d(z, y) þ d(y, x) < r � d(x, y) þ d(x, y) ¼ r
and therefore z 2 B(x, r) which proves that B(y, s)� B(x, r) and hence B(x, r) 2 t(d).

(ii) If x, y 2 X and x 6¼ y then r¼ dðx;yÞ
2

> 0. If z 2 B(x, r) \ B(y, r) then d(x, y)b d
(x, z) þ d(z, y) < r þ r ¼ 2r ¼ d(x, y) which is a contradiction. Therefore B(x, r) \
B(y, r) ¼ ; so for the open sets U ¼ B(x, r), V ¼ B(y, r), we have x 2 U, y 2 V and

U \ V ¼ ;.
S.202. Let (X, d) be a metric space. Considering that X has the topology t(d), prove
that the metric is a continuous function on X � X. Deduce from this fact that any
metrizable space is Tychonoff.

Solution. We will denote by X both spaces (X, d) and (X, t(d)). Take an arbitrary

point z0 ¼ (x0, y0) 2 X � X and e > 0. The set U ¼ B(x0,
e
4
) � B(y0,

e
4
) is an open

neighbourhood of the point z0. To prove continuity of the metric d at the point z0 it
suffices to establish that d(U) � (d(x0, y0) � e, d(x0, y0) þ e). So, take any z ¼ (x, y)
2 U. Then d(x, x0) <

e
4
and d(y, y0) <

e
4
and therefore

dðx; yÞb dðx; x0Þ þ dðx0; y0Þ þ dðy0; yÞ<dðx0; y0Þ þ e
4
þ e

4

¼ dðx0; y0Þ þ e
2
< dðx0; y0Þ þ e:

Analogously,

dðx0; y0Þb dðx0; xÞ þ dðx; yÞ þ dðy; y0Þ< dðx; yÞ þ e
4
þ e

4

¼ dðx; yÞ þ e
2
<dðx; yÞ þ e;

and therefore d(x, y) > d(x0, y0) � e. Thus d(z) 2 (d(x0, y0) � e, d(x0, y0) þ e) and
hence d(U) � (d(x0, y0) � e, d(x0, y0) þ e).

An easy consequence of continuity of d is continuity of the function dy : X! R
defined by dy(x) ¼ d(y, x) for all x 2 X. To show that X is Tychonoff we must only

prove complete regularity of X (Problem 201). Take any x 2 X and any closed F� X
with x =2 F. There is r > 0 such that B(x, r) \ F ¼ ;. The function g ¼ 1

r · dx is
continuous on X and g(x)¼ 0. It is easy to see that g(y)r 1 for all y 2 F. Denote by
g1 the function which is identically 1 on X and let h ¼ min(g, g1). The function

h : X! [0, 1] is continuous on X by Problem 028. Evidently, we have h(x) ¼ 0 and

h(F)� {1}. Finally, for the function f : X! [0, 1] defined by f(x)¼ 1� h(x) for all
x 2 X, we have f(x) ¼ 1 and f(F) � {0} which proves that X is Tychonoff.

2 Solutions of Problems 001–500 161



S.203. Let (X, d) be a metric space. Given a subspace Y� X, prove that the function
dY ¼ d j(Y � Y) is a metric on Y which generates on Y the topology of the subspace
of the space (X, t(d)).

Solution. It is immediate that the axioms (MS1)–(MS3) hold for dY so it is a

metric on Y. Let us prove that the topology t(dY) coincides with the topology m
induced on Y by t(d). Take any U 2 t(dY). For any y 2 U fix ry > 0 such that

BdY ðy; ryÞ � U. We proved in Problem 201 that all balls are open in metric

spaces. Therefore the set V ¼ S{Bd(y, ry) : y 2 U} is open in X being a union

of balls. If z 2 V \ U then z 2 Y and z 2 Bd(y, ry) for some y 2 U. This implies

dY(y, z) ¼ d(y, z) < ry and therefore z 2 BdY (y, ry) � U. This shows that V \ Y �
U. Since it is evident that U � V, we have V \ Y ¼ U and hence U 2 m so

t(dY) � m.

To see that m � t(dY), take any U 2 m. Then U ¼ V \ Y for some V 2 t(d). As a
consequence, for any y 2 U we have y 2 V and therefore there exists r > 0 such

that Bd(y, r)� V. Now if z 2 BdY (y, r) then d(z, y)¼ dY(z, y)< r and hence z 2 V \
Y ¼ U. Thus BdY (y, r) � U which proves that U 2 t(dY) and m ¼ t(dY).

S.204. Let X be a discrete space. Prove that the function defined by the formula d(x,

y) ¼ 0; if x ¼ y
1; if x 6¼ y

�
is a complete metric on X which generates the topology of X.

Hence every discrete space is completely metrizable.

Solution. The axioms (MS1) and (MS2), clearly, hold for the function d. Given
points x, y, z 2 X, if d(x, z) ¼ 0 then d(x, z) b d(x, y) þ d(y, z). If d(x, z) ¼ 1 then x
and z are distinct and hence it is impossible that y ¼ x and y ¼ z. As a consequence,
d(x, y) þ d(y, z) r 1 ¼ d(x, z) so the triangle inequality also holds for d. Since B
(x, 1) ¼ {x} for any x 2 X, all points of X are open and hence (X, t(d)) is discrete,
i.e., the metric d generates the topology of X.

The last thing we have to prove is that d is a complete metric on X. Given a

Cauchy sequence s¼ {xn : n 2 o}� X, there exists m 2 o such that d(xi, xj)< 1 for

all i, j r m. This means xi ¼ xm for all i r m and hence the sequence s converges
to the point xm.

S.205. For any points x ¼ (x1, . . . , xn) and y ¼ (y1, . . . , yn) of the space Rn let

rn(x, y) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðxi � yiÞ2
q

. Prove that rn is a complete metric on Rn which

generates the natural topology on Rn. Hence Rn is completely metrizable.

Solution. We proved in S.130 that rn is a metric on Rn such that the open balls

generate the natural topology mn on Rn. Thus every U 2 mn is a union of balls and

henceU 2 t(rn). On the other hand, anyU 2 t(rn) is a union of some family of balls

which belong to mn. Therefore U 2 mn and we proved that t(rn) ¼ mn.

To show that rn is a complete metric on Rn let us prove first that R is com-

plete with the metric r1(x, y) ¼ j x � y j. Assume that s ¼ {xn} is a fundamental

sequence in R. There exists a numberm 2 o such that j xn� xk j< 1 for all n, kr m.
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If K ¼ 1 þ Pm
i¼1 jxij then j xi j < K for any i b m. If i > m then j xi � xm j < 1 and

therefore j xi j < j xm j þ 1 < K. This proves that the sequence s is bounded.
The set A¼ {t 2 R : (�1, t] \ s is finite} is non-empty and has an upper bound

Kwhich implies that there exists x¼ sup A. Given e> 0 there are only finitely many

elements of s in (�1, x � e]. Thus there exists m1 2 N such that xn > x � e for all
n r m1. Take any m2 2 N with j xn � xk j < e

2
for all n, k r m2. The set (�1, x þe

2
]

\ s is infinite and hence there is k > m2 for which xk < x þe
2
. Therefore, for any

n r m2 we have xn < xk þ e
2
< x þ e

2
þ e

2
¼ x þ e. Now, if n r m ¼ m1 þ m2 then

j xn � x j < e which proves that xn! x and hence R is complete.

Now fix n 2 N to prove that Rn is complete. Let s ¼ {xk} be a fundamental

sequence in Rn. Fix ib n and consider the sequence {xk(i)} of ith coordinates of the
elements of the sequence s. Given e > 0, there exists m 2 N for which dn(xk, xl) < e
for all k, lr m. Then j xk(i)� xl(i) j b d(xk, xl) < e for all k, l r m and therefore the

sequence {xk(i)} � R is fundamental. The completeness of R being proved, the

sequence {xk(i)} converges to some xi 2 R. Let us show that xk! x ¼ (x1, . . . xn).
Given e > 0 there exists m 2 N such that jxk(i) � xij < effiffi

n
p for all k r m. As a

consequence dnðxk; xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðxkðiÞ � xiÞ2
q

<
ffiffiffiffiffiffiffiffiffi
n � e2n

q
¼ e, and hence xk! x.

S.206. Let (X, d) be a metric space. Given x, y 2 X consider the function

d�ðx; yÞ ¼ dðx; yÞ if dðx; yÞb1;
1; if dðx; yÞ>1:

�
Prove that

(i) d� is a metric on X which generates the same topology on X; hence the metrics d
and d� are equivalent.

(ii) If d is a complete metric then d� is also complete.

As a consequence, every (complete) metric space has an equivalent (complete)
metric which is bounded by 1.

Solution. (i) The axioms (MS1) and (MS2), evidently, hold for the function d�.
Take any points x, y, z2 X. If d(x, y)< 1 and d(y, z)< 1 then it follows grom d�(x, z)b
d(x, z) b d(x, y) þ d(y, z) ¼ d�(x, y) þ d�(y, z) that the triangle inequality holds for

this case. Now, if d(x, y) r 1 or d(y, z) r 1 then d�(x, y) ¼ 1 or d�(y, z) ¼ 1 and

therefore d�(x, z)b 1b d�(x, y)þ d�(y, z) and hence d� is a metric. To see that d� is
equivalent to d, observe that, for any r 2 (0, 1) the balls Bd(x, r) and Bd�ðx; rÞ
coincide for each x 2 X. Another observation is that any U 2 t(d) is a union

of d-balls of radius <1 and hence each one of these balls belongs to t(d�) whence
U 2 t(d�). Analogously, any U 2 t(d�) is a union of d�-balls of radius<1 and hence

each one of these balls belongs to t(d) whence U 2 t(d). This shows that t(d) ¼
t(d�), i.e., the metrics d and d� are equivalent.

(ii) Suppose that d is a complete metric and take an arbitrary d�-Cauchy
sequence {xn} � X. Given e > 0, take any d > 0 with d < min{e, 1}. There exists
a number m 2 N such that d�(xn, xk) < d for all n, k r m. Since d < 1, we have

d(xn, xk) ¼ d�(xn, xk) < d < e which shows that the sequence {xn} is also Cauchy

with respect to the metric d. The metric d being complete, the sequence {xn}
converges to some point x. But we proved in (i) that t(d) ¼ t(d�) and the
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convergence is a topological notion so the convergence of {xn} proves that d
� is also

complete.

S.207. Let (Xn, dn) be a (complete) metric space such that dn(x, y) b 1 for all n 2 N
and x, y 2 Xn. For arbitrary points x, y 2 X ¼Q{Xn : n 2 N}, consider the function
d(x, y) ¼ P1n¼1 2�n · dn(x(n), y(n)). Prove that d is a (complete) metric on X which
generates the product topology on X.

Solution. Since 0 b dn(x(n), y(n)) b 1 for all n 2 N, the series in the definition of

d(x, y) converges being bounded by the convergent series
P1

i¼1 2
�i. This shows

that the function d is well defined. To check that d is a metric, note that d(x, y) r 0

because all terms of the respective series are non-negative. If d(x, y) ¼ 0 then

dn(x(n), y(n)) ¼ 0 and hence x(n) ¼ y(n) for each n 2 N. This means, of course, that

x ¼ y so (MS1) holds. It is evident that the axiom of symmetry also holds for d.
Now, if x, y, z 2 X then 2�n dn(x(n), z(n))b 2�n dn(x(n), y(n))þ 2�n dn(y(n), z(n)) by
the triangle inequality for each dn. Summing the respective series we obtain the

triangle inequality for d so d is a metric.

Denote by t the product topology on X. Take any U 2 t. Let us prove that

U 2 t(d), i.e., for any x 2 U there is r > 0 with Bd(x, r) � U. There exist m 2 N and

Ui 2 t(Xi), i b n such that x 2 W ¼ U1 � � � � � Um �
Q
{Xn : n > m} � U. Since

t(Xi) ¼ t(di) for all i b n, there is s > 0 such that Bdi (x(i), s) � Ui for every i b n.
Let r ¼ s · 2�n and take any y 2 Bd(x, r). For any i b n we have di(x(i), y(i)) b 2i d
(x, y)b 2n d(x, y)< 2n · r¼ s. As a consequence y(i) 2 Bdi (x(i), s)�Ui for all ib n.
Thus y 2 U1 � � � � � Um �

Q
{Xn : n > m} ¼W and therefore Bd(x, r) �W � U so

U 2 t(d) and we proved that t � t(d).
Suppose now that x 2U 2 t(d). Fix r> 0 such that Bd(x, r)�U and choose k 2N

with 2�k < r
2
. The set Vi ¼ BdiðxðiÞ; r2Þ is open in Xi for each i b k and therefore

Vx¼ V1� � � � � Vk �
Q
{Xi : i > k} 2 t. Given y 2 Vx, we have di(x(i), y(i)) <

r
2
for

all i b k. As a consequence,

dðx; yÞ ¼
Xk

i¼1 2
�idiðxðiÞ; yðiÞÞ þ

X1
i¼kþ1 2

�idiðxðiÞ; yðiÞÞ
< r

2

Xk

i¼1 2
�i

� �
þ
X1

i¼kþ1 2
�i ¼ r

2
ð1� 2�kÞ þ 2�k< r

2
þ r

2
¼ r;

which proves that y 2 Bd(x, r) � U. It turns out that, for any x 2 U there is Vx 2 t
such that x 2 Vx � U. Therefore U ¼ S{Vx : x 2 U} belongs to t being a union of

t-open sets. This shows that t ¼ t(d), i.e., the metric d generates the topology of the
product on X.

Suppose finally that each metric dn is complete and take a Cauchy sequence {xn}
� X. Given k 2N and e> 0 there exists m 2N such that d(xi, xj)<

e
2k
for all i, jr m.

Therefore dk(xi(k), xj(k)) b 2k · d(xi, xj) < e which shows that the sequence

{xi(k)}i2N is fundamental for every k 2 N. The space (Xk, dk) being complete for

each k, we can find wk 2 Xk such that xi(k)! wk when i!1. Letting x(k)¼ wk for

all k 2Nwe obtain a point x 2 X. To prove that xn! x take anyU 2 t(x, X). There is
e > 0 such that Bd(x, e) � U. Fix k 2 N with 2�k < e

2
. Since xn(i) ! x(i) for each
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i b k, there is m 2 N such that di(xn(i), x(i)) <
e
2
whenever n r m and i b k. As a

consequence,

dðxn; yÞ ¼
Xk

i¼1 2
�idiðxnðiÞ; xðiÞÞ þ

X1
i¼kþ1 2

�idiðxnðiÞ; xðiÞÞ
< e

2

Xk

i¼1 2
�i

� �
þ
X1

i¼kþ1 2
�i ¼ e

2
ð1� 2�kÞ þ 2�k< e

2
þ e

2
¼ e;

which proves that xn 2 Bd(x, e) � U for all n r m and therefore xn! x.

S.208. Show that any countable or finite product of (completely) metrizable spaces
is a (completely) metrizable space.

Solution. Let (Xn, rn) be a metric space for all n 2 N. If dn ¼ r�n then the

topology generated by dn coincides with t(rn) (Problem 206) and dn(x, y) b 1

for all x, y 2 Xn. If rn is a complete metric then dn is complete too: this was also

proved in Problem 206. It follows from Problem 207 that the topology of X ¼Q
{Xn : n 2 N} is generated by the metric d introduced in Problem 207 which is

complete if all dn’s are complete. Thus X is metrizable (by a complete metric if

all metrics rn’s are complete). To see that the same is true for finite products,

observe that any finite product X1 � � � � � Xn is homeomorphic to the countable

product
Q
{Xi : i 2 N} where Xi is a one-point space for all i > n. Since any

one-point space is metrizable by a complete metric (Problem 204), the product X1

� � � � � Xn is metrizable (by a complete metric if all metrics d1, . . . , dn are

complete).

S.209. Prove that the following conditions are equivalent for any infinite space
X and an infinite cardinal k:

(i) w(X) b k.
(ii) X embeds in Ik.
(iii) X embeds in Rk.

Deduce from these equivalencies that any second countable space is metrizable.

Solution. It is clear that Rk is homeomorphic to Cp(D(k)). Apply Problem 169 to

conclude that w(Rk) ¼ j D(k) j ¼ k. Now apply Problem 159(i) to see that any

subspace of Rk has weight b k. This proves (iii)) (i). Since I � R, the space Ik
embeds in Rk. This settles (ii)) (iii).

To prove that (i)) (ii) fix a base B in X of cardinalityb k. Call a pair p¼ (U, V)
2 B � B special if there exists hp 2 C(X, [0, 1]) such that hp(U)� {0} and hp(X \ V)
� {1}. Denote by A the set of all special pairs. Then j A j b j B � B j b k. For an
arbitrary x 2 X, let ’(x)(p)¼ hp(x) for any p 2 A. Then ’(x) 2 IA. We will prove that

’ : X ! Y ¼ ’(X) � IA is a homeomorphism. For any p 2 A, denote by pp the

pth projection of IA onto I. Recall that pp(f) ¼ f(p) for any f 2 IA. Note that ’ is

continuous because, for any p 2 A, we have pp 	 ’ ¼ hp and the map hp is

continuous (see Problem 102).
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If x 6¼ y then take any set V 2 B such that x 2 V� X \ {y}. There exists a function
f 2 C(X, [0, 1]) such that f(x) ¼ 0 and f(X \ V) ¼ {1}. Choose any U 2 B such that

x 2 U � f�1 ([0, 1
2
)). Let r(t) ¼ 0 if t 2 [0, 1

2
] and r(t) ¼ 2t � 1 for t 2 (1

2
, 1]. Then

r : [0, 1]! [0, 1] is a continuous function and hence g¼ r 	 f is also continuous. It is
straightforward that g(U)� {0} and g(X \ V)¼ {1} so the pair p¼ (U, V) is special.
Therefore ’(x)(p) ¼ hp(x) ¼ 0 and ’(y)(p) ¼ hp(y) ¼ 1 which proves that

’(x) 6¼ ’(y) and ’ is a bijection.

To show that ’�1 is continuous, take any point y 2 Y and let x¼ ’�1(y). Given a
set W 2 t(x, X) there exists V 2 B such that x 2 V � W. There exists a function

f 2 C(X, [0, 1]) such that f(x) ¼ 0 and f(X \ V) ¼ {1}. Choose any U 2 B such that

x 2 U � f�1([0, 1
2
)). The function g ¼ r 	 f : X ! [0, 1] is continuous (see the

previous paragraph) and it is straightforward that g(U)� {0} and g(X \ V)¼ {1} so

the pair p ¼ (U, V) is special. The set O ¼ p�1p ([0, 1)) \ Y is open in Y and y 2 O
because pp(y)¼ hp(x)¼ 0. If z 2 ’�1(O) then ’(z) 2 O which implies hp(z)< 1 and

therefore z 2 V � W. The point z was chosen arbitrarily, so ’�1(O) �W and hence

’�1 is continuous at the point y.
To finish our solution, observe that Ro is metrizable by Problems 205 and 208.

If X has countable weight then it is metrizable because it embeds into the metrizable

space Ro.

S.210. Prove that any metrizable space is first countable. As a consequence, Cp(X)
is metrizable if and only if X is countable.

Solution. Let (X, d) be a metric space. Given any x 2 X it suffices to prove that the

family Bx ¼ {B(x, 1n) : n 2 N} is a local base at the point x. Indeed, if x 2 U 2 t(X)
then there is e > 0 such that B(x, e) � U. For any n 2 N with 1

n < e we have B(x, 1n)� B(x, e) � U and therefore Bx is a local base at x. If Cp(X) is metrizable

then w(Cp(X)) ¼ o so we can apply Problem 169 to conclude that X has to be

countable.

S.211. Given an arbitrary space X and functions f, g 2 Cu(X), let d(f, g) ¼ 1 if j f(x)
� g(x) j r 1 for some x 2 X. If j f(x) � g(x) j < 1 for all x 2 X then let d(f, g) ¼ sup

{jf(x) � g(x) j : x 2 X}. Prove that d is a metric on Cu(X) which generates the
topology of Cu(X). In particular, the space Cu(X) is metrizable for any space X.

Solution. It is clear that d(f, g) r 0 for all f, g 2 Cu(X). If d(f, g) ¼ 0 then j f(x) �
g(x) j ¼ 0 for all x 2 X and hence f ¼ g so the first axiom of metric is fulfilled. It

is clear from the definition that always d(f, g) ¼ d(g, f) so we only have to check

the triangle inequality. Take any f, g, h 2 Cu(X). Observe first that d(f, h) b 1 so

d(f, h) b d(f, g) þ d(g, h) if d(f, g) ¼ 1 or d(g, h) ¼ 1. Now if d(f, g) < 1 and

d(g, h) < 1 then, for any x 2 X, we have

jf ðxÞ � hðxÞjb jf ðxÞ � gðxÞj þ jgðxÞ � hðxÞjb dðf ; gÞ þ dðg; hÞ:

Thus d(f, h) b sup{ j f(x) � h(x) j : x 2 X} b d(f, g) þ d(g, h) (the second

inequality is true because j f(x)� h(x) jb d(f, g)þ d(g, h) for all x 2 X). This proves
that d is a metric on Cu(X).
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Given U 2 tu, to prove thatU 2 t(d) we must show that for any f 2U there exists

r> 0 such that Bd(f, r)�U. Suppose not. Then, for any n2N, we can find a function
fn 2 Bd( f,

1
n) \ (Cu(X) \ U). We have j fn(x) � f(x) j b d(f, fn) <

1
n for each x 2 X

and hence fn !! f which implies f 2 CuðXÞ=Uu
which is a contradiction. Therefore

tu � t(d).
Assume now that U 2 t(d). To prove that U 2 tu, it suffices to show that the

set Cu(X) \ U is tu-closed. Striving for contradiction suppose that it is not closed.

Then there is a sequence {fn : n 2 N} � Cu(X) \ U such that fn !! f for some f 2 U.
Since U is t(d)-open, we can find r 2 (0, 1) such that Bd(f, r) � U. Choose any m 2
N with j fm(x)� f(x) j< r

2
for all x 2 X. It is evident that d(fm, f)b r

2
< r and hence fm

2 Bd(f, r) \ (Cu(X) \ U), a contradiction. This proves that tu ¼ t(d) and our

solution is complete.

S.212. Show that, for any metrizable space X, the following are equivalent:

(i) X is compact.
(ii) X is countably compact.
(iii) X is pseudocompact.
(iv) There exists a complete and totally bounded metric d on X with t(d) ¼ t(X).
(v) X embeds as a closed subset into Io.
Solution. It is clear that (i))(ii)) (iii).

Fact 1. Take any metric d on X with t(d) ¼ t(X). Given any set A � X, let dA(x) ¼
inf{d(x, a) : a 2 A}. Then the map dA : X! R is continuous.

Proof. For any x0 2 X and e > 0, let U ¼ B(x0,
e
2
). It is sufficient to show that dA(U)

� (r0 � e, r0 þ e) where r0 ¼ dA(x0). To do so, take any x 2 U. The infimum

condition in the definition of dA implies the existence of a point y 2 A such that

d(x0, y) < dA(x0) þ e
2
. Then

dðx; yÞ b dðx; x0Þ þ dðx0; yÞ < e
2
þ dAðx0Þ þ e

2
¼ dAðx0Þ þ e:

Therefore dA(x) b d(x, y) < r0 þ e. To prove that dA(x) > r0 � e suppose not.

Then dA(x) < r0 � e
2
and hence we can find z 2 A such that d(x, z) < r0 �e

2
. Now,

d(x0, z) b d(x0, x) þ d(x, z) < e
2
þ r0 � e

2
¼ r0 and, as a consequence, dA(x0) b

d(x, z) < r0 which is a contradiction. Thus dA(x) 2 (r0 � e, r0 þ e) and Fact 1 is

proved.

Fact 2. Every metrizable space is normal.

Proof. Take any closed disjoint non-empty F, G � X. Fact 1 implies that the

function ’ ¼ dF � dG : X ! R is continuous. Letting U ¼ ’�1((�1, 0)) and

V ¼ ’�1((0, þ1)), we obtain open disjoint sets U, V such that F � U and G � V.

Returning to our solution, note that (iii))(ii) because X is normal (Fact 2) and

every normal pseudocompact space is countably compact (Problem 137).

Next we will prove that (ii) ) (iv). Suppose that X is countably compact and

take any metric d on Xwhich generates the topology of X. If d is not totally bounded

2 Solutions of Problems 001–500 167



then there is e> 0 such that
S
{B(x, e) : x 2 A} 6¼ X for any finite A� X. This makes

it possible to construct by induction the set S ¼ {xn : n 2 o} � X such that xnþ1 =2S
{B(xi, e) : i b n} for each n 2 o. As a consequence, d(xi, xj) r e whenever i 6¼ j.

For any x 2 X the set B(x, e
2
) can contain at most one point of the set S. Indeed, if xi,

xj 2 B(x,e
2
) then d(xi, xj) b d(xi, x) þ d(x, xj) <

e
2
þ e

2
¼ e which is a contradiction

when i 6¼ j. This implies that S is closed in X. Since {xi} ¼ B(xi, e) \ S, the set S is

also discrete which is a contradiction with countable compactness of X (Problem

132(ii)). This contradiction proves that the metric d is totally bounded.

To see that d is complete, take any fundamental sequence {xn : n 2 o} � X. The
sets Fn ¼ fxi : irng are closed, non-empty and Fnþ1 � Fn for any n 2 o. By
countable compactness of X, there is x 2 T{Fn : n 2 o} (Problem 132(iv)).

Fix r > 0 and choose m 2 o such that d(xi, xj) <
r
2
for all i, j r m. Since x 2 Fm,

we have B(x, r
2
) \ {xi : ir m} 6¼;. Pick any kr m with xk 2 B(x, r

2
). If nr k then d

(xn, xk)<
r
2
and therefore d(x, xn)b d(x, xk)þ d(xk, xn)<

r
2
þ r

2
¼ r which shows that

xn 2 B(x, r) for all nr k. Thus xn! x and the proof of the implication (ii)) (iv) is

complete.

Now we take to the proof of (iv)) (i).

Fact 3. Any totally bounded metric space Z is second countable.

Proof. Fix a totally bounded metric r on Z with t(r)¼ t(Z). For each n 2 N we can

find a finite set An� Z such that
S
{B(a, 1n) : a 2 An}¼ Z. The set A¼S{An : n 2N}

is countable and dense in Z. Indeed, if z 2 Z and e> 0 then take any n> 1
e and a 2 An

with z 2 B(a,1n). Then d(z, a) <
1
n < e and hence B(z, e) \ A 6¼ ;. As a consequence,

U \ A 6¼ ; for any U 2 t(z, Z) and therefore z 2 A. The point z 2 Z was taken

arbitrarily so A ¼ Z.

We claim that the family B ¼ {B(a, r) : a 2 A, r 2 Q \ (0, þ1)} is a base of Z.
To see this, take any z 2 Z and U 2 t(z, Z). There is e > 0 with B(z, e) � U and a

point a 2 B(z, e
2
) \ A. Take any rational r 2 (d(a, z), e

2
) and observe that z 2 V ¼ B

(a, r) 2 B. If w 2 V then d(w, z)b d(w, a)þ d(a, z)< e
2
þ e

2
¼ e and therefore w 2 B

(z, e) which implies V � B(z, e) � U. This proves that B is a base of Z. Since B is

countable, Fact 3 is proved.

Returning to the proof of (iv)) (i), observe that X is second countable by Fact 3

and hence Lindel€of by Observation one of S.140. By Problem 138 it suffices to

show that X is countably compact.

Assume that X is not countably compact and fix an infinite closed discreteD� X.

Fact 4. The set D can contain no non-trivial convergent sequence.

Proof. If S¼ {xn}�D and xn! x then T¼ S \ {x} is a non-closed (in X) subset ofD.
But D is closed and discrete which implies that T is closed in D and hence in X,
a contradiction.

Fact 5. For every infinite F � D and any e > 0 there exists an infinite G � F such

that diam(G) < e.
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Proof. By total boundedness of the space X, there exists a finite set A � X such

that X ¼ S{B(a, e
3
) : a 2 A}. Since F � S{B(a, e

3
) : a 2 A}, there is a 2 A such that

G ¼ B(a, e
3
) \ F is infinite. Given any points x, y 2 B(a, e

3
) we have the inequalities

d(x, y) b d(x, a) þ d(a, y) < e
3
þ e

3
¼ 2e

3
which imply that diam(G) b diam(B(a, e

3
))

b 2e
3
< e so Fact 4 is proved.

Using Fact 5 it is easy to construct by induction a sequence {Di : i 2 o} of

infinite sets such that D ¼ D0 � D1 � � � � � Dn � . . . , and diam(Dn) <
1
n for each

n 2 N. Pick an arbitrary d0 2 D0. If we have distinct points di 2 Di for all i b n,
choose any dnþ1 2 Dnþ1 {d0, . . . , dn}. This choice is possible because Dnþ1 is

infinite. The sequence S¼ {di} is non-trivial and contained in D. Given e> 0, there

exists m 2 N such that 1
m < e. If n, k r m then xn, xk 2 Dm and therefore d(xn, xk) b

diam(Dm) <
1
m < e. As a consequence, the sequence S is fundamental and hence

convergent because the metric d is complete. The contradiction with Fact 4 finishes

the proof of (iv)) (i).

Now that we proved that all properties (i)–(iv) are equivalent, let us show that

(iv) ) (v). Assume that (iv) holds for X. By Fact 3 X is second countable and

compact by (iv)) (i). Now apply Problem 126 to conclude that X is homeomorphic

to a closed subspace of IA for some countable A. Of course, IA is homeomorphic to

Io and therefore (iv)) (v) is established. Finally, observe that any closed subspace

of Io is compact by Problems 131, 125 and 120. Thus (v)) (i) and our solution is

complete.

S.213. Let X be a compact space. Prove that X is metrizable if and only if Cp(X) is
separable.

Solution. If X is metrizable then it is second countable by Problem 212. Applying

Problem 174, we can see that d(Cp(X)) ¼ iw(X) b w(x) ¼ o and hence the space

Cp(X) is separable. Now if Cp(X) is separable then iw(X) ¼ d(Cp(X)) b o by

Problem 174. Thus there is a condensation f : X ! Y onto a second countable

space Y. Apply Problem 123 to conclude that f is a homeomorphism and hence

w(X) b o. Now Problem 209 implies that X is metrizable.

S.214. Prove that ext(X) ¼ s(X) ¼ c(X) ¼ d(X) ¼ nw(X) ¼ w(X) ¼ l(X) for any
metrizable space X. Hence, for a metrizable space X being Lindel€of or separable or
having the Souslin property, is equivalent to X being second countable.

Solution. Fix a metric d on X with t(d) ¼ t(X). Suppose that ext(X) b k. Given
a discrete D � X, let F ¼ D \ D. It is an easy exercise that F is closed in X. For any
x 2 X let dF(x) ¼ inf{d(x, y) : y 2 F}. The function dF : X ! R is continuous

(see Fact 1 of S.212) and x 2 F if and only if dF(x) ¼ 0. As a consequence,

D ¼ S
{Dn : n 2 N} where Dn ¼ {d 2 D : dF(d) r 1

n}. Since the set

DnDn ¼ d�1F ðð�1
n;

1
nÞÞ \ D is open in D, the set Dn is closed in D and hence in X.

Being the setDn closed and discrete, we have jDn jb k for each n 2N and therefore

j D j b o · k ¼ k. This proves that

(1) s(X) b ext(X).
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Suppose that c(X) b k. For each n 2 N, let Bn ¼ {B(x, 1
n) : x 2 X} and choose a

maximal disjoint subfamily gn of the family Bn. Given U¼ B(x,1n) 2 gn, let a(U)¼ x
and An ¼ {a(U) : U 2 gn}. We claim that the set A ¼ S{An : n 2 o} is dense in X.
Indeed, if z 2 W 2 t(z, X) take r > 0 with B(z, r) � U and n 2 N such that 1

n <
r
2
.

Since B(z, 1n) 2 Bn, there is V 2 gn with V \ B(z, 1n) 6¼ ; because gn is a maximal

disjoint subfamily of Bn. Now V ¼ B(y, 1
n) and there is w 2 B(y, 1

n) \ B(z, 1
n).

Consequently, d(z, y) b d(z, w) þ d(w, y) < 1
n þ 1

n ¼ 2
n < r. Thus y ¼ a(V) 2 A \ U

which proves that z 2 A. Since the point z 2 X was chosen arbitrarily, we have A ¼
X. Observe that the map U! a(U) is a surjection of gn onto An. Since gn is disjoint,
we have jAnjb j gn jb k for each n 2N. Therefore jAjbo · k¼ kwhich shows that

d(X) b k and hence we have

(2) d(X) b c(X).

Now assume that d(X)b k. Fix a dense A� X with j A jb k and let B ¼ {B(x, r) : x
2 A, r 2 Q \ (0, þ1)}. It is immediate that j B j b k. Let us prove that the family

B is a base in the space X. To see this, take any x 2 X and U 2 t(x, X). There is e> 0

with B(x, e) � U and a point a 2 B(x, e
2
) \ A. Take any rational r 2 (d(a, x), e

2
) and

observe that x 2 V¼ B(a, r)2 B. Ifw 2 V then d(w, x)b d(w, a)þ d(a, x)< e
2
þ e

2
¼ e

and therefore w 2 B(x, e) which implies V� B(x, e)�U. This proves that B is a base
of Z and we have

(3) w(X) b d(X).

Recall that we have the inequalities ext(X) b l(X) b nw(X)b w(X) and c(X)b s(X)
for any space X (see Problem 156). Applying the properties (1)–(3) we convince

ourselves thatw(X)b d(X)b c(X)b s(X)b ext(X)b w(X) which shows that ext(X)¼
l(X) ¼ nw(X) ¼ w(X) ¼ d(X) ¼ c(X) ¼ s(X) and this is what we had to prove.

S.215. Let X be a metrizable space. Prove that the following properties are
equivalent:

(i) Cp(X) is Lindel€of.
(ii) Cp(X) is normal.
(iii) The extent of Cp(X) is countable.
(iv) All compact subspaces of Cp(X) are metrizable.
(v) X is second countable.

Solution. Suppose that the space X is second countable. By Problem 172 we have

nw(Cp(X)) ¼ nw(X) b w(X) ¼ o. Apply Problem 156(ii) to verify that Cp(X) is
Lindel€of and hence ext(Cp(X)) ¼ o. By Problem 124 the space Cp(X) is normal.

If K is a compact subset of Cp(X) then iw(K) b nw(K) b nw(Cp(X)) ¼ o and hence

K condenses onto a second countable space. But every condensation of K is a

homeomorphism (Problem 123) so X has countable weight. Applying Problem 209

we conclude that K is metrizable. This shows that (v)) (i)) (ii), (v)) (iii) and

(v)) (iv). Fix a metric d on X with t(d) ¼ t(X).

Fact 1. Let (X, d) be a metric space. If ext(X) > o then Ro1 embeds in Cp(X) as a
closed subspace.
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Proof. Take a closed discrete A� Xwith jAj ¼o1. For any a2 A there is r¼ r(a)> 0

such that B(a, r) \ A¼ {a}. Then A¼S{An : n 2N} where An¼ {a 2 A : r(a)> 1
n}.

As a consequence, jAnj ¼o1 for some n 2N. It is clear that d(x, y)> 1
n for distinct x,

y 2 An. Given a 2 An, letUa¼ B(a, 1
5n). We claim that the family g¼ {Ua : a 2 An} is

discrete. Indeed, if x 2 X then Ux ¼ B(x, 1
5n) cannot intersect more than one element

of the family g. To see this, take any points a, b 2 An, a 6¼ b and suppose y 2 Ux \
Ua, z 2 Ux \ Ub. Then d(a, b) b d(a, y) þ d(y, x) þ d(x, z) þ d(z, b) < 4

5n <
1
n, a

contradiction which shows that g is discrete.

For any a 2 D ¼ An, fix a continuous function fa : X! [0, 1] such that fa(a) ¼ 1

and fa(X \ Ua) � {0}. Given an arbitrary function f 2 RD and x 2 X, let ’(f)(x) ¼P
{f(a) · fa(x) : a 2 D}. Let us check that ’(f) is a continuous function for each f

2 RD. Given x 2 X, the open set Ux contains x and intersects at most one element of

g, say Ua. Then ’(f)jUx ¼ (f(a) · fa) j Ux is a continuous function on Ux and this

easily implies continuity of ’(f) at the point x. We claim that ’ : RD! Cp(X) is a
continuous map. Since Cp(X) � RX, it suffices to show that ex 	 ’ is continuous for

any x 2 X. Here ex(f)¼ f(x) for any f 2 Cp(X), i.e., ex is the projection onto the factor
determined by x. We saw already that there is at most one a 2 D with x 2 Ua and

hence ’(f)(x) ¼ f(a) · fa(x). If pa : RD ! R is the projection onto the factor

determined by a then ex 	’ ¼ fa(x) · pa is continuous being a product of the

continuous map pa and a constant fa(x). This proves that ’ is a continuous map.

It is immediate that pD(’(f))¼ f for any f 2 RD, where pD : Cp(X)! Cp(D)¼ RD is

the restriction map. Therefore ’ is an embedding.

Let us prove that E ¼ ’(RD) is closed in Cp(X). Take any f 2 Cp(X) \ E.
Then g ¼ ’(pD(f)) 2 E and there are open disjoint sets U, V � Cp(X) such that

f 2 U, g 2 V and ’(pD(U)) � V. If h 2 U \ E then h ¼ ’(pD(h)) 2 ’(pD(U)) � V
which is a contradiction with U \ V ¼;. Hence U \ E ¼ ; and E is closed in

Cp(X). Since E is homeomorphic to RD which in turn is homeomorphic to Ro1 , Fact

1 is proved.

Fact 2. The spaces No1 and Ro1 are not normal.

Proof. Since No1 is a closed subspace of Ro1 , it suffices to prove that No1 is not

normal. Let F ¼ {x 2 No1 : x�1(i) has at most one element for each i 6¼ 1} and

G¼ {x 2 No1 : x�1(i) has at most one element for each i 6¼ 2}. The sets F and G are

closed; let us establish this for F, the proof for G is identical. If x 2 No1 \ F then

there are distinct a, b 2o1 such that x(a)¼ x(b)¼ i 6¼ 1. Then the setUx¼ {y2No1 :

y(a) ¼ y(b) ¼ i} is open in No1 , x 2 Ux and Ux \ F ¼ ;.
The sets F and G are disjoint, for if x 2 F \ G then x 2 F and hence there are

distinct a, b 2 o1 such that x(a)¼ x(b)¼ 1 which shows that x =2 G, a contradiction.
Let us show that F and G cannot be separated by disjoint open sets, i.e., there exist

no U, V 2 t(No1 ) such that F� U, G� V and U \ V¼ ;. Assume, on the contrary,

that such U and V exist. Call a setW� No1 standard if there exist n 2N, a1, . . . , an
2o1 and i1, . . . , in 2N such thatW¼ [a1, . . . , an; i1, . . . , in]¼ {x2No1 : x(ak)¼ ik
for all k b n}. It is clear that standard sets constitute a base of the space No1 .
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Let g be a maximal disjoint family of standard sets contained in U. It is evident
that

S
g ¼ U. Since c(No1 ) ¼ o (Problem 109), the family g is countable. If

W ¼ [a1, . . . , an; i1, . . . , in] 2 g, let supp(W) ¼ {a1, . . . , an}. The set A ¼S
{supp(W) : W 2 g} is countable. Denote by pA : No1 ! NA the natural projection

defined by pA(x) ¼ x jA for all x 2 No1 .

We claim that p�1A (pA(U)) ¼ U. It is evident that the only non-trivial inclusion

is p�1A (pA(U)) � U, so take any point x 2 No1 such that pA(x) 2 pA(U). Fix any

standard set W ¼ [a1, . . . , an; i1, . . . , in] 3 x. Pick some y 2 U such that pA(y) ¼
pA(x). Without loss of generality we may assume that a1, . . . , ak 2 A and akþ1, . . . ,
an 2 o1A for some k 2 {0, . . . , n}. The set O ¼ [a1, . . . , ak; i1, . . . , ik] is an open

neighbourhood of y 2 U ¼ S g and hence there is H 2 g such that O \ H 6¼ ;, i.e.,
there exists z 2 Hwith z(am)¼ im for allmb k. Define z0 2 No1 as follows: z0 j A¼ z,
z0(am) ¼ im for all m ¼ k þ 1, . . . , n and z0(a) ¼ 1 for all a 2 o1 \ (A [ supp(W)).

Observe now that supp(H) � A implies p�1A (pA(H)) ¼ H and therefore z0 2 H.
It follows from z j A ¼ z0 j A that z0(am) ¼ im for all m b k as well and therefore

z0 2 H \ W �W \ U which proves that x 2 U and hence the proof of the equality

p�1A (pA(U)) ¼ U is complete.

Let {an : n 2o} be a faithful enumeration of the set A. Define x 2No1 as follows:

x(b)¼ 2 for all b 2o1A and x(an)¼ n for each n 2o. It is clear that x 2G. Now, let
y(b) ¼ 1 for all b 2 o1A and y(an) ¼ n for each n 2 o. We have y 2 F � U.
Therefore y 2 U and pA(y) ¼ pA(x). It follows from the equality p�1A (pA(U)) ¼ U
that x 2 U. However, x 2 G � V which implies U \ V 6¼ ;, a contradiction.

This contradiction shows that F and G cannot be separated by disjoint open set so

No1 is not normal and Fact 2 is proved.

Fact 3. We have ext(No1 ) ¼ ext(Ro1 ) ¼ o1.

Proof. Observe that the space Ro1 is homeomorphic to Cp(D(o1)) and hence

w(Ro1 ) ¼ jD(o1)j ¼ o1 by Problem 169. Since No1 is a closed subspace of Ro1 ,

it suffices to prove that ext(No1 )r o1.

Given an ordinal x 2 o1 \ o, the space Nx is the set {a : a< x} endowed with the
discrete topology. It is clear that No1 is homeomorphic to the space N ¼ Q{Nx :

o b x < o1}. For each x 2 o1 \ o, fix an injection fx : Nxþ1 ! o. For every x 2
o1 \ o, define dx 2 N as follows: dx(a)¼ fx(a) for every a 2 (xþ 1) \ o and dx(a)¼ x
for all a 2 o1 \ (x þ 1). We claim that the set D ¼ {dx : x 2 o1 \ o} is closed and

discrete in N. To prove this, observe first that it suffices to show that, for any x 2 N
there isU 2 t(x, N) such thatU contains at most one element ofD. So, fix x 2 N. We

have x(a)2 Na for each a 2 o1 \ o and hence x is a function from o1 \ o to o1 such

that x(a) < a for all a 2 o1 \ o. If x is injective then let P0 ¼ o and Pnþ1 ¼ x�1(Pn)

for each n 2 o. It follows from the injectivity of x that the set P ¼S{Pn : n 2 o} is
countable. Take any a0 2o1 \ P and let anþ1¼ x(an) for each n 2o. It follows from
a =2 P that an > o for each n 2 o and hence a0 > a1 > . . . is an infinite decreasing

sequence of ordinals which cannot exist, a contradiction. This contradiction shows

that there are distinct a, b 2 o1 \ o such that x(a) ¼ x(b) ¼ d. The set U ¼ {y 2 N :

y(a) ¼ y(b) ¼ d} is open in N and contains x. If dx 2 U then dx(a) ¼ dx(b) which
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implies a > x and b > x because dx is an injection on (x þ 1) \ o and dx(g0) 6¼ dx(g)
for any g b x and g0 > x. As a consequence, dx(a) ¼ x ¼ dx(b) ¼ d and hence the

only x for which dx 2U is possible, is x¼ d. Thus D is a closed discrete subspace of

N of cardinality o1 and Fact 3 is proved.

Returning to our solution, let us prove that (ii) ) (v). By Problem 214 it

is sufficient to show that ext(X) b o. Suppose not. Then Ro1 embeds in Cp(X) as
a closed subspace. Since Cp(X) is assumed to be normal, the space Ro1 has to

be normal too, a contradiction with Fact 2. Thus ext(X) b o and the implication

(ii) ) (v) is established.

To see that (iii)) (v) suppose that ext(X) > o. Then Ro1 embeds in Cp(X) as a
closed subspace. Since Cp(X) is assumed to have countable extent, the space Ro1

has to have countable extent too, a contradiction with Fact 3. Thus ext(X) b o and

we have the implication (iii)) (v).

To finally prove that (iv)) (v) observe that A(o1) is a compact space (Problem

129) and w(A(o1)) ¼ o1 (this is an easy exercise). Applying Problem 126, we

conclude that A(o1) embeds in Ro1. Besides, the space A(o1) is not metrizable by

Problem 212. Now, if ext(X) > o then Ro1 embeds in Cp(X) (Fact 1) and hence a

non-metrizable compact space A(o1) embeds in Cp(X) which is a contradiction.

S.216. Let X be a metrizable space such that Cp(X) is separable. Is it true that
X must be second countable?

Solution. No, this is not true because X¼ D(c) is a metrizable space (Problem 204)

which is not second countable while Cp(X) is homeomorphic to Rc which is

separable by Problem 108.

S.217. Suppose that Z is a space and Y is a dense subspace of Z. Prove that, for any
point y 2 Y, we have w(y, Y) ¼ w(y, Z). Deduce from this fact that, if Cp(X) has a
dense metrizable subspace, then it is metrizable and hence X is countable.

Solution. If B0 is a local base of Z at y then B ¼ {U \ Y : U 2 B0} is a local base of
Y at y with jBj b jB0j which shows that w(y, Y) b w(y, Z). Note that here we used

neither density of Y in Z nor the Tychonoff property of the space Z.

Fact 1. If X is any space and D is a dense subspace of X then U ¼ U \ D for any

U 2 t(X).

Proof. We only have to prove that U � U \ D. Take any point x 2 U and any set

W2 t(x, X). ThenW \ U 6¼ ; because x 2 U. SinceD is dense inX, we have (W \ U)
\ D ¼ W \ (U \ D) 6¼ ; and therefore x 2 U \ D. The point x 2 U having been

chosen arbitrarily, we have U ¼ U \ D and Fact 1 is proved.

Now take any local base B of Y at the point y. For each U 2 B there is U0 2 t(Z)
such that U0 \ Y ¼ U. We claim that the family B0 ¼ fU0 : U 2 Bg is a local base
of Z at y. Indeed, assume that y 2 W 2 t(Z). By regularity of X there is V 2 t(y, Z)
such that V � W. We have V \ Y 2 t(y, Y) and therefore there existsU 2 B withU�
V \ Y. Then U

0 ¼ U by Fact 1 and therefore U0 � U
0 ¼ U � V � W which proves

that B0 is a local base of Z at y. Since jB0jbjBj, we conclude that w(y, Z) b w(y, Y)
and hence w(y, Z) ¼ w(y, Y).
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Suppose, finally, that M is a dense metrizable subspace of Cp(X). Since

w(f, M) ¼ o for any f 2 M (Problem 210), we have w(f, Cp(X)) ¼ o. As a

consequence w(Cp(X)) ¼ o and hence jXj ¼ w(Cp(X)) ¼ o (169). Finally, apply

Problem 209 to conclude that Cp(X) is metrizable.

S.218. (The Stone Theorem) Prove that every open cover of a metrizable space has
an open refinement which is s-discrete and locally finite at the same time. In
particular, every metrizable space is paracompact.

Solution. Take any metric space (X, d) and an open cover S ¼ {Us : s 2 S} of the

space X. We consider that a well order < is fixed on the set S. We will need the set

Hs ¼ Us \ (
S
{Ut : t < s}) for each s 2 S. Given i 2 o and s 2 S, let Bs,i ¼ {c 2 Hs :

B(c, 3/2i)�Us}. Next, we define by induction on i 2o the sets Vs,i for all s 2 S. The
first step is to define Vs,0¼

S
{B(c,1) : c 2 Bs,0} for all s 2 S. If we have constructed

Vs,j for each j< i and s 2 S, consider the sets Vs,i¼
S
{B(c, 1/2i) : c 2 Bs,i \ (

S
{Vs,j :

s 2 S, j < i})} for all s 2 S. Observe that Vs,i � Us is an open set for all s 2 S and

i 2 o. Let Bi ¼ {Vs,i : s 2 S} and B ¼ S{Bi : i 2 o}. For any x 2 X there is a

minimal s 2 S with x 2 Us. This implies x 2 Hs. Pick any i 2 o such that B(x, 3/2i)
� Us; for this i we have x 2 Bs,i. Now, if x 2

S
{Vs,j : s 2 S, j < i} then x 2 SB. If

not, then B(x, 1/2i) � Vs,i and again x 2 SB. This yields X ¼ SB and hence B is a

refinement of S.
We will prove that B is s-discrete and locally finite; this will finish our solution.

To establish s-discreteness of B it suffices to show that each Bi is discrete.
Claim. If x 2 Vs,i, y 2 Vt,i where s < t then d(x, y) > 1/2i.

Proof of the claim. There exists c 2 Bs,i such that x 2 B(c, 1/2i) and c0 2 Bt,iwith y 2
B(c0, 1/2i). We have B(c, 3/2i) � Us while c0 =2 Us. Thus d(c, c0) r 3/2i and if

d(x, y) b 1/2i then

dðc; c0Þbdðc; xÞ þ dðx; yÞ þ dðy; c0Þ<1=2i þ 1=2i þ 1=2i ¼ 3=2i;

this is a contradiction which proves our claim.

Now take any point z 2 X and Uz ¼ B(z, 1/2iþ1) 2 t(z, X). If there exist s,t 2 S
such that s< t and Uz \ Vs,i 6¼ ; 6¼ Uz \ Vt,i then pick any points x 2 Uz \ Vs,i and

y 2Uz \ Vt,i; our claim implies that d(x, y)> 1/2i. However, d(x, y)b d(x, z)þ d(z, y)
b 1/2iþ1þ 1/2iþ1¼ 1/2iwhich is a contradiction. As a consequence, each z 2 X has

a neighbourhoodUzwhich intersects at most one element of Bi. Therefore each Bi is
discrete.

Finally, to see that B is locally finite, fix any z 2 X. There exist k,j 2 o such that

B(z, 1/2k) � Vt,j for some t 2 S. Since each Bm is discrete, it suffices to prove that

B(z, 1/2kþjþ1) \ (
SBi) ¼ ; for all i r j þ k þ 1 because this implies that the set

Wz ¼ B(z, 1/2kþjþ1) intersects at most j þ kþ1 elements of B. So take any i r k þ
j þ 1 and s 2 S. If Wz \ Vs,i 6¼ ; then there is c 2 Bs,i with B(c, 1/2i) \ Wz 6¼ ;.
However, c =2 Vt,j and B(z, 1/2k) � Vt,j which implies d(z, c) r 1/2k. On the other

hand, if we pick any point y 2Wz \ Vs,i then d(z, c)b d(z, y)þ d(y, c)< 1/2kþjþ1þ
1/2kþjþ1 b 1/2kþ1 þ 1/2kþ1 ¼ 1/2k which is a contradiction.
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S.219. Let X be an arbitrary space. Prove that Cp(X) is paracompact if and only if it
is Lindel€of.

Solution. We will use the following statement.

Fact 1. Every Lindel€of space is paracompact.

Proof. Let Z be a Lindel€of space. If U is an open cover of Z, for each z 2 Z find Uz,

Vz 2 t(z, Z) such that Vz � Uz � W for some W 2 U. Since Z is Lindel€of, we can
choose a countable set A ¼ {zi : i 2 o} � Z such that Z ¼ S{Vzi : i 2 o}. Letting
W0 ¼ Uz0 and Wn ¼ UznnðVz0 [ � � � [ Vzn�1Þ for each n 2 N we obtain a family

W ¼ {Wn : n2o}� t(Z). It is clear that, for each n2o, there isW 2 U withWn�W
so it suffices to prove that W is a locally finite cover of Z. Given z 2 Z, let

n ¼ minfk 2 o : z 2 Vzkg. It is immediate that z 2 Wn and hence W covers Z,
i.e.,W is a refinement of U. There exists m 2 o such that z 2 Vzm ; we have Vzm \
Wk ¼ ; for each k > m which shows that Vzm 2 t(z, Z) meets at most (m þ 1)-many

elements ofW. ThereforeW is locally finite so Fact 1 is proved.

Fact 2. If Z is a paracompact space with c(Z) ¼ o then Z is Lindel€of.

Proof. If g is an open cover of Z choose a locally finite open refinement m of the

cover g. It is sufficient to show that m is countable. Let d be a maximal disjoint

family of open sets each one of which intersects only finitely many elements of m.
The set

S
d is dense in X because, otherwise we can take x 2 U ¼ X nS d and V 2

t(x, X) which intersects only finitely many elements of m. The disjoint family

d0 ¼ d [ {U \ V} is strictly larger than d and every element of d’ intersects only
finitely many elements of m, a contradiction with the maximality of d. The family

d is countable because c(Z)¼ o and the familyAU¼ {V 2 m : V \ U 6¼ ;} is finite
for each U 2 d. It follows from density of

S
d that m ¼ S{AU : U 2 d} and hence

m is countable. Fact 2 is proved.

By Fact 1, if Cp(X) is Lindel€of then it is paracompact. Now assume that Cp(X) is
paracompact. Since Cp(X) has the Souslin property, we can apply Fact 2 to conclude
that Cp(X) is Lindel€of.

S.220. Suppose that Cp(X) has a dense paracompact subspace. Must Cp(X) be
Lindel€of?

Solution. Not necessarily. If X ¼ D(o1) then Cp(X) ¼ Ro1 is separable (Problem

108) so there is a countable dense Y � Cp(X). It is evident that Y is Lindel€of
and hence paracompact (Fact 1 from S.219). However, Cp(X) ¼ Ro1 is not para-

compact because, otherwise it would be Lindel€of by problem 219 and hence normal

by Problem 124. However, Ro1 is not normal (Fact 2 from S.215). This contradic-

tion shows that our solution is complete.

S.221. Prove that the following conditions are equivalent for any space X:

(i) X is metrizable.
(ii) X has a s-discrete base.
(iii) X has a s-locally finite base.
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The equivalence (i) , (ii) is known as the Bing metrization theorem. The
statement (i), (iii) is the Nagata–Smirnov metrization theorem.

Solution. Since every discrete family is locally finite, we have (ii)) (iii). If X is a

metrizable space, take any metric d on X such that t(d) ¼ t(X) and consider the

family gn ¼ fBðx; 1nÞ : x 2 Xg for each n 2N. Apply Problem 218 to find a s-discrete
open refinement Bn of the cover gn. It is evident that the family B ¼S{Bn : n 2 N}�
t(X) is s-discrete. Let us prove that B is a base of the space X. If x 2 U 2 t(X) then
B(x, r)� U for some r> 0. Pick any n 2 N with 1

n<
r
2
. Since Bn is a cover of X, there

is V 2 Bn such that x 2 V. There is W ¼ Bðy; 1nÞ 2 gn for which V � W. If z 2 W
then dðx; zÞb dðx; yÞ þ dðy; zÞ< 1

nþ 1
n ¼ 2

n < r which shows that we have x 2 V �
W� B(x, r)�U. Since V 2 B we proved that B is a s-discrete base of X and hence (i)

) (ii) holds.

The proof of (iii)) (i) is difficult and will be split in several steps.

Fact 1. Given an arbitrary (not necessarily Tychonoff) space X, suppose that for any
closed F� X and anyW 2 t(F, X) there exists a family {Wi : i 2o}� t(X) such that
F � S{Wn : n 2 o} and Wn � W for each n 2 o. Then X is normal.

Proof. Take any closed F, G � X such that F \ G ¼ ;. For the set W ¼ X \ G � F
find a sequence {Ui : i 2 o} of open sets such that F � S{Ui : i 2 o} and

Ui \ G ¼ ; for all i 2 o. If we let W ¼ X \ F � G then we can find a sequence

{Vi : i 2 o} � t(X) for which G � S{Vi : i 2 o} and Vi \ F ¼ ; for all i 2 o. Let
U0n ¼ Unnð

SfVi : ib ngÞ and V0n ¼ Vnnð
SfUi : Ib ngÞ for all n 2 o. The sets

U ¼ S fU0n : n 2 og and V ¼ S fV0n : n 2 og are what we are looking for, i.e.,

they are open, F � U, G � V and U \ V ¼ ;. It is clear that U, V 2 t(X). For any
x 2 F, there is n 2 o with x 2 Un; it is evident that x 2 U0n � U which proves that

F � U. If y 2 G then y 2 Vk for some k 2 o so y 2 V 0n � V and therefore G � V.

To finally prove that U \ V ¼ ;, suppose not. Then U0k \ V0l 6¼ ; for some k, l 2
o. If k b l then V0l � XnUk � XnU0k which is a contradiction. If l b k then

U0k � XnVl � XnV0l and this contradiction shows that U \ V ¼ ;. Fact 1 is proved.
Fact 2. A locally finite family in any (not necessarily Tychonoff) space is closure-

preserving.

Proof. Let {As : s 2 S} be a locally finite family in a space X. If T� S and we have a
point x 2 S fAs : s 2 Tg then find a set U 2 t(x, X) such that the set Px ¼ {s 2 S :

U \ As 6¼ ;} is finite. It is clear that x =2 SfAs : s 2 TnPxg and therefore

x 2 S fAs : s 2 Px \ Tg. The set Px \ T being finite, we have x 2 As for some

s 2 Px \ T and the proof of Fact 2 is complete.

Fact 3. If a regular (not necessarily Tychonoff) space X has a s-locally finite base

then X normal.

Proof. Fix a base B ¼ S{Bn : n 2 o} in X such that all Bn’s are locally finite. Take

any closed F� X and anyW 2 t(F, X). For every point x 2 F there is a number n(x) 2
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o andUx2 Bn(x) such that x 2 Ux � Ux � W. For each n 2o letUn¼
S
{Ux : n(x)¼

n}. This gives us a sequence {Un : n 2 o} of open sets with F � S{Un : n 2 o} and
Un ¼

S fUx : nðxÞ ¼ ng � W. The last equality is true because the family {Ux : n(x)
¼ n} is closure-preserving by Fact 2. Thus X is normal by Fact 1 and Fact 3 is proved.

Call a function d : X� X! R a pseudometric if d(x, y)r 0, d(x, y)¼ d(y, x) and
d(x, z) b d(x, y) þ d(y, z) for all x, y, z 2 X. In other words the axioms of a

pseudometric are those of a metric except that the distance equal to zero does not

imply coincidence of the respective points.

Fact 4. Assume thatD¼ {di : i 2 o} is a family of pseudometrics on a space X with

the following properties:

(1) The function di : X � X! R is continuous for all i 2 o.
(2) di(x, y) b 1 for all x, y 2 X and i 2 o.
(3) For every x 2 X and every non-empty closed A� X with x =2 A there exists i 2 o

such that di(x, A) ¼ inf{di(x, a) : a 2 A} > 0.

Then the space X is metrizable and the function dðx; yÞ ¼P1i¼0 ð1=2iÞdiðx; yÞ is
a metric on X which generates t(X).

Proof. It is evident that d(x, y)r 0 for all x, y 2 X. If x¼ y then all summands in the

definition of d are equal to zero and hence d(x, y) ¼ 0. If x 6¼ y then F ¼ {y} is a

closed set with x =2 F so (3) is applicable and di(x, F) ¼ di(x, y) > 0 for some i 2 o,
therefore d(x, y)> 0 and we checked the axiom (MS1) for d. The axioms (MS2) and

(MS3) hold for d because they hold for every di and summing preserves them.

Hence d is a metric on X.

It follows easily from (2) that the convergence of the series in the definition of

d is uniform so (1) implies that d : X � X! R is a continuous function. Thus, for

any x 2 X, the function dx : X ! R defined by dx(y) ¼ d(x, y), is also continuous.

This means that Bðx; rÞ ¼ d�1x ðð�1; rÞÞ is an open set in X. Since any U 2 t(d) is a
union of balls, any U 2 t(d) is open, i.e., t(d) � t(X).

Let us prove that, for each A� X, the function dA : X!R defined by the formula

dA(x)¼ inf{d(x, a) : a 2 A} for each x 2 X, is also continuous. By Fact 1 of S.212 the
function dA is continuous on the space (X, t(d)). Thus, for any U 2 t(R), we have
d�1A ðUÞ 2 tðdÞ � tðXÞ and hence d�1A ðUÞ is open in X, i.e., the function dA is

continuous.

To prove that t(X) � t(d) take any U 2 t(X) and x 2 U. Then F ¼ X \ U is a

closed set and x =2 F. The property (3) implies that di(x, F) ¼ r > 0 for some i 2 o.
As a consequence dðx;FÞr r

2i
and therefore Bdðx; r

2i
Þ � U which proves that U 2

t(d). Thus t(X) ¼ t(d) and Fact 4 is proved.

Returning to our solution, take a base B ¼S{Bn : n 2o} in the space X such that

every Bn ¼ {Us : s 2 Sn} is a locally finite family. Fix any numbers i, j 2 o and, for

any index s 2 Si, let gs ¼ fW 2 Bj : W � Usg. The family gs is closure-preserving
by Fact 2 and hence we have the inclusion Fs ¼

S
gs � Us. The space X is normal

by Fact 3 so there exists a continuous function fs : X ! [0, 1] such that fs(Fs) �
{1} and fs(X \ Us) � {0}. Define a function gi,j : X � X ! R as follows:

2 Solutions of Problems 001–500 177



gi;jðx1; x2Þ ¼
P

s2Si jfsðx1Þ � fsðx2Þj for every (x1, x2) 2 X � X. Observe that this

definition makes sense because, for any x 2 X there is O(x) 2 t(x, X) and a finite

set S(x) such thatUs \ O(x)¼ ;whenever s 2 Si \ S(x). This implies fs(x)¼ 0 for all

s 2 Si \ S(x) and therefore gi;jðx1; x2Þ ¼
P

s2Sðx1Þ[Sðx2Þ jfsðx1Þ � fsðx2Þj which makes

sense because the last sum is finite.

Note also that the equality gi;jðxÞ ¼
P

s2Sðx1Þ[Sðx2Þ jfsðx1Þ � fsðx2Þj holds for all
x ¼ (x1, x2) 2 O ¼ O(x1) � O(x2) and hence gi,j is continuous at the point x. The
point x having been taken arbitrarily, we proved that gi, j is a continuous function.

It is easy to check that gi,j is a pseudometric on X and hence the function di,j : X�
X! R defined by di,j(x, y) ¼ min{1,gi,j(x, y)} is also a continuous pseudometric on

X (this is proved exactly as was proved in S.206 the same fact for metrics). The

family D ¼ {di,j : i, j 2 o} is countable and consists of continuous pseudometrics

bounded by 1. Thus the properties (1) and (2) of Fact 4 are satisfied for D. To prove
that X is metrizable it suffices to show that D satisfies (3) as well.

Take any x 2 X and any closed A � X such that x =2 A. There exist sets U, V 2 B
with x 2 V� V �U� X \ A. It is clear thatU¼Us 2 Bi and V 2 Bj for some i,j 2o.
Therefore x 2 Fs and we have gi,j(x, A) r 1 because fs(x) ¼ 1 and fs(y) ¼ 0 for all

y 2 A. As a consequence, di,j(x, A) ¼ 1 > 0 and we checked the condition (3) of

Fact 4 for the family D. This proves that X is metrizable settling the implication

(iii)) (i) so our solution is complete.

S.222. Let Ia¼ (0, 1]� {a} for each a< k and J(k)¼S{Ia : a< k} [ {0}.Given x,
y2 J(k), x¼ (t, a), y¼ (s, b), let r(x, y)¼ j t� s j if a¼ b. If a 6¼ b then r(x, y)¼ tþ s.
Let r(x, 0) ¼ t, r(0, y) ¼ s and r(0, 0) ¼ 0. Prove that

(i) (J(k), r) is a complete metric space (called Kowalsky hedgehog with k spines).
(ii) Any metrizable space embeds into (J(k))o for some k.

Solution. (i) We omit the trivial verification of the fact that r is a metric on J(k). Let
us prove that r is complete. Take any fundamental sequence S ¼ {xn} � J(k). It is
an easy exercise to show that if a fundamental sequence has a convergent sub-

sequence then it is convergent. So let us assume that no subsequence of S is

convergent. In particular, no subsequence of S converges to 0. Therefore there

exists e > 0 such that B(0, e) \ S is finite. Thus, without loss of generality we may

assume that S \ B(0, e) ¼ ;. Suppose first that the set {a : S \ Ia 6¼ ;} is infinite.
Then there is a subsequence {xnk} � S such that xnk and xnm do not belong to the

same Ia if m 6¼ k. This implies r(xnk ; xnm ) r e for all k 6¼ m, a contradiction with

the fact that S is fundamental. This contradiction shows that there is a subsequence

S0 � S which lies in Ia for some a.

Observe that the map ia : Ia [ {0}! [0, 1] given by ia((t, a)) ¼ t for t > 0 and

ia(0)¼ 0, is an isometry. The space I¼ [0, 1] is complete being closed in a complete

space R. Since Ia [ {0} is isometric to I, it is also complete and therefore the

fundamental sequence S0 is convergent. This implies convergency of S, this last

contradiction proving that r is complete.

(ii) If X is a metrizable space, fix a base B S{Bn : n 2 o} in X such that every

Bn is discrete (see Problem 221). For the cardinal k ¼ jBj choose An � k and
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a faithful enumeration fUn
a : a 2 Ang for each Bn. Fix n, k 2 o. For each Un

a 2 Bn
let Va ¼

S fV : V 2 Bk and V � Un
ag. Since the family Bk is discrete, we have

Va � Un
a and hence there exists fa 2 C(X, [0, 1]) such that fa (Va) � {1} and

faðXnUn
aÞ � f0g. Define a function gn,k : X! J(k) as follows: if there exists a 2 An

such that fa(x) 6¼ 0 then gn,k(x) ¼ (fa(x),a) 2 Ia and gn,k(x) ¼ 0 if fa(x) ¼ 0 for all

a 2 An. Note that this definition is consistent because, for any x 2 X, there can be at
most one a 2 An with fa(x) 6¼ 0.

To see that gn,k is continuous at any point x 2 X, take any Ux 2 t(x, X) which
intersects at most one element of Bn, say, Un

a . Then fbðUn
aÞ � f0g for all b 6¼ a and

therefore gn,k(Ux) � Ia [ {0} which shows that gn;kjUx ¼ ði�1a 	 faÞjUx. Since

i�1a 	 fa is continuous, the map gn,k is continuous at the point x.
Let {hm :m2o} be some enumeration of the countable set {gn,k : n, k2o}. Given x

2 X, let h(x)(m)¼ hm(x) for each m 2 o. Then h(x) 2 (J(k))o and the map h : X! (J
(k))o is continuous because pm 	h ¼ hm where pm : (J(k))o ! J(k) is the natural

projection onto themth factor. Let us prove that h : X! Y¼ h(X) is a homeomorphism.

If we are given distinct points x, y 2 X then there exist U, V 2 B such that

x 2 V � V � U � Xnfyg. There exist n, k 2 o such that V 2 Bk and U ¼ Un
a 2 Bn

for some a 2 An. Since V � Va, we have gn,k(x) ¼ (1, a) and gn,k(y) ¼ 0 6¼ gn,k(x).
This proves that h is a bijection.

To see that h�1 is continuous, take any y 2 Y and any O 2 t(x, X) where x ¼
h�1(y). Pick U, V 2 B for which x 2 V � V � U � O. There exist n, k 2 o such that

V 2 Bk and U ¼ Un
a 2 Bn for some a 2 An. There is m 2 o such that gn,k ¼ hm. Let

W0 ¼ {z 2 J((k))o : z(m) 2 Ia}. The setW
0 is open in (J(k))o and henceW¼W0 \ Y

is open in Y. Note that y(m) ¼ hm(x) ¼ gn,k(x) ¼ (1, a) 2 Ia and therefore y 2W. To

finish our proof it suffices to show that h�1(W)� O. So take any z 2W. If t¼ h�1(z)
then we have gn,k(t) ¼ z(m) 2 Ia. As a consequence fa(t) 6¼ 0 and hence

t 2 Un
a ¼ U � O. The point z 2 W having been taken arbitrarily, we proved that

h�1(W)� O and hence h�1 is continuous at the point y. This, of course, implies that

h�1 is continuous and hence h is a homeomorphism. Our solution is complete.

S.223. Show that a space is first countable if and only if it is an open continuous
image of a metrizable space.

Solution. Our first step is to establish the following fact.

Fact 1. Any open image of a first countable space is first countable.

Proof. Assume that Y is first countable and f : Y! Z is an open map. Given z 2 Z and

any y 2 Y with f(y) ¼ z take any countable local base B of Y at the point y. Observe
that C ¼ {f(U) : U 2 B} is a countable family of open subsets of Z so it suffices to

show that C is a local base of Z at z. To do so, take anyW 2 t(z, Z). ThenW0 ¼ f�1(W)

is open in Y and y 2 W0. Now if U 2 B and U � W0 then V ¼ f(U) 2 C and V � W.

Hence C is a countable local base at z and therefore Z is first countable. Fact 1 is

proved.

Any metrizable space is first countable (Problem 210) so if X is an open image of

a metrizable space then X is first countable by Fact 1.
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Now suppose that X is a first countable space and denote by T the set t(X) with
the discrete topology. Then T is metrizable as well as To (Problems 204 and 208).

LetM¼ {f 2 To : {f(n) : n 2 o} is a base at some point x 2 X}. Given f 2M, let ’(f)
2 X be the point at which the family {f(n) : n 2 o} is a local base. It is clear that a
given family can be a local base at one point at most, so the definition of ’ is

consistent.

Let us prove that ’ : M! X is an open map. Given x 2 X, take any countable

local base {Un : n 2 o} at the point x and let f(n) ¼ Un for every n 2 o. Then f 2M
and ’(f) ¼ x whence ’ is surjective. If ’(f) ¼ x 2 U 2 t(X) then there is n 2 o
such that f(n) � U because {f(n) : n 2 o} is a local base at x. The set V ¼ {g 2 M :

g(n) ¼ f(n)} is open inM and f 2 V. For any g 2 V we have ’(g) 2T{g(k) : k 2 o}
� g(n) ¼ f(n) � U and therefore ’(V) � U which proves continuity of the map ’.

To prove that ’(O) is open for any O 2 t(M) observe that it suffices to establish

that ’( f) 2 Int(’(O)) for any f 2O. Recalling the definition of the product topology,
we can see that there is n 2o such thatW¼ {g 2M : g(i)¼ f(i) for all ib n}�O. It
suffices to prove that V ¼ f(0) \ � � � \ f(n) � ’(O) because V is open in X and

hence ’( f) 2 V� Int(’(O)). Take any y 2 V and choose a local base {Vn : n 2 o} at
the point y in such a way that Vi¼ f(i) for all i b n. This is possible because we can
always add the sets {f(0), . . . , f(n)} to any given countable local base at y and

choose a relevant enumeration of the obtained family. If g(n)¼ Vn for all n 2o then

g 2 W � O and ’(g) ¼ y which shows that ’(O) � V so our solution is complete.

S.224. Show that a space is sequential if and only if it is a quotient image of a
metrizable space.

Solution. Let us first prove that sequentiality behaves well with respect to quotient

maps.

Fact 1. Any quotient image of a sequential space is sequential.

Proof. Suppose that Y is a sequential space and f : Y! Z is a quotient map. If A� Z
is not closed then B ¼ f�1(A) is not closed in Y and hence there is a sequence {yn}
� B such that yn! y 2 Y \ B. It is clear that {f(yn)} � A and f(yn)! f(y) 2 Z \ A so

Z is sequential. Fact 1 is proved.

Fact 2. Suppose that Xt is a metrizable space for each t 2 T. Then the space X¼ L
{Xt : t 2 T} is metrizable (see Problem 113 for the definition of the discrete union).

Proof. Fix a metric dt on the set Xtwith t(dt)¼ t(Xt). We can assume without loss of

generality that dt(x, y) b 1 for all t 2 T and x, y 2 Xt (Problem 206). We will

identify Xt with the respective open subspace of X and consider that X is a disjoint

union of Xt’s where each Xt is closed and open in X (see Problem 113(iii)).

Given x, y 2 X, let d(x, y) ¼ dt(x, y) if x, y 2 Xt. In case when x 2 Xt and y =2 Xt,

we let d(x, y)¼ 1. We leave to the reader the simple verification of the fact that d is a
metric on X. Since dj(Xt � Xt) ¼ dt, the topology induced from (X, t(d)) on Xt

coincides with t(Xt) so it suffices to prove that each Xt is open in (X, t(d)). Given
x 2 Xt the set Ux ¼ Bd(x, 1) is open in (X, t(d)) and y 2 Ux implies y 2 Xt for

180 2 Solutions of Problems 001–500



otherwise d(x, y) ¼ 1. Thus Ux � Xt and hence Xt is open in (X, t(d)) so Fact 2 is

proved.

Observe that any metrizable space is first countable (Problem 210) and hence

sequential. Thus, if X is a quotient image of a metrizable space then X is sequential

by Fact 1. To prove necessity, suppose that X is sequential and consider the space

M ¼ L
{S : S � X is a convergent sequence (with its limit included)}. We will

again identify each convergent sequence S � X with the respective open subset of

M. It is immediate that any convergent sequence is homeomorphic to the subspace

f0g [ f1n : n 2 Ng of the space R. Since R is metrizable (Problem 205), every

convergent sequence S � X is metrizable. Applying Fact 2 we convince ourselves

that M is a metrizable space.

If S � X is a convergent sequence then every x 2 S also belongs to M so if x 2
S�M, we denote by x0 is twin in X. This makes it possible to define a map ’ :M! X
by ’(x) ¼ x0 for each x 2 M. To finish our solution it suffices to prove that ’ is a

quotient map. Given y 2 X note that xn! y if xn ¼ y for all n 2 o. Hence S ¼ {xn :
n 2 o} is a convergent sequence in X so xn 2 M and ’(xn) ¼ y for each n which

proves that ’ is onto.

To see that ’ is continuous, take a closed F � X and x 2 M \’�1(F). We have

x 2 S where S is open in M and S is a convergent sequence of X. If x is an isolated

point of S then {x} is an open neighbourhood of x which does not meet ’�1(F).
If x is the limit of S then A ¼ S \ F must be finite for otherwise S \ F! ’(x) and
hence ’(x) 2 FnF, a contradiction. Thus S \A is an open neighbourhood of x which
does not meet ’�1(F). We proved that ’�1(F) is closed in M and hence ’ is

continuous.

Finally, take a non-closed P � X. Since X is sequential, there is a sequence {pn :
n 2 o}� P with pn! x 2 X \P. It is clear that S¼ {pn : n 2 o} [ {x} is a subspace
ofM and ’�1(P) \ S ¼ {pn : n 2 o} whence x 2 ’�1ðPÞn’�1ðPÞ so ’�1(P) is not
closed in M. This proves that ’ is a quotient map and our solution is complete.

S.225. A continuous onto map f : X! Y is called pseudo-open if, for any y 2 Y and
any U 2 t(X) such that f�1(y) � U, we have y 2 Int(f(U)). Show that

(i) A map f : X! Y is pseudo-open if and only if it is hereditarily quotient, i.e.,
f j(f�1(Z)) : f�1(Z)! Z is quotient for any Z � Y.

(ii) A composition of pseudo-open maps is a pseudo-open map.
(iii) Any open map as well as any closed one is pseudo-open.
(iv) If X is a Fréchet–Urysohn space and f : X! Y is a pseudo-open map then Y is

Fréchet–Urysohn.
(v) A space is Fréchet–Urysohn if and only if it is a pseudo-open image of a

metrizable space.

Solution. (i) Suppose that f is pseudo-open, fix any Z� Y and let T¼ f�1(Z). Denote
the map fjT by fT. Note first that f

�1
T ðAÞ ¼ f�1ðAÞ for any A � Z. To prove that fT is

quotient, take any W � Z such that U ¼ f�1T ðWÞ 2 tðZÞ. Take any z 2 W. Then

f�1ðzÞ ¼ f�1T ðzÞ � U. Take any V 2 t(X) such that V \ T ¼ U. Since f is pseudo-
open, we have z 2 O¼ Int(f(V)) (the interior is taken in Y). Since V \ f�1(Z \W)¼ ;,
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we have z 2 Oz ¼ O \ Z � W. It turns out that every z 2 W is contained in W
together with its neighbourhood Oz. HenceW is open and the map fT is proved to be
quotient.

Now assume that f is hereditarily quotient. Take any point y 2 Y and any set

U 2 t(f�1(y), X). It suffices to prove that y =2 Ynf ðUÞ. Assume the contrary and let

Z¼ (Y \ f(U)) [ {y}. The map g¼ fjT : T¼ f�1(Z)! Z is quotient and the set Y \ f(U)
is not closed in Z. Therefore g�1(Y \ f(U)) ¼ f�1(Y \ f(U)) is not closed in T which

implies f�1ðyÞ \ f�1ðYnf ðUÞÞ 6¼ ;, a contradiction with f�1(y) � U � X \ f�1

(Y \ f(U)).
(ii) Assume that f : X! Y and g : Y! Z are pseudo-open maps. Given a point

z 2 Z and a set U 2 t((g 	 f)�1(z), X), we have f�1(y) � U for any y 2 g�1(z) and
therefore y 2 IntY(f(U)). Since we have chosen a point y 2 g�1(z) arbitrarily, we can
conclude that g�1(z) � V ¼ IntY(f(U)). As an immediate consequence, y 2 IntZ(g(V))
� IntZ(g(f(U))) ¼ IntZ((g 	 f)(U)) which proves that g 	 f is pseudo-open.

(iii) Let f : X! Y be an open map. If y 2 Y and U 2 t(f�1(y), X) then y 2 f(U) ¼
IntY(f(U)) which proves that f is pseudo-open. If f is closed, then F ¼ X \U is a

closed set which does not meet f�1(y). Therefore y =2 G ¼ f(F) and hence y 2 V ¼
Y \G � IntY(f(U)) and we are done.

(iv) Take any A� Y and y 2 A. If y 2 A then there is nothing to prove. If y 2 A \A
then A is not closed in Z ¼ A [ {y}. The map f is hereditarily quotient by

(i) and hence f�1(A) is not closed in f�1(A) [ f�1(y). This implies that there is

x 2 f�1ðAÞ \ f�1ðyÞ. Since X is Fréchet–Urysohn, we can choose a sequence

{xn} � f�1(A) which converges to the point x. It is immediate that {f(xn)} � A
and fn(x)! y which proves that Y is a Fréchet–Urysohn space.

(v) Any metric space is Fréchet–Urysohn, so any pseudo-open image of any

metric space is a Fréchet–Urysohn space by (iv). This proves sufficiency. Now

take any Fréchet–Urysohn space X and consider the space M ¼ L {S : S � X is a

convergent sequence (with its limit included)}. We will identify each convergent

sequence S � X with the respective open subset of M. It is immediate that any

convergent sequence is homeomorphic to the subspace {0}[ f1n : n 2 Ng of the
space R. Since R is metrizable (Problem 205), every convergent sequence S � X
is metrizable. Applying Fact 2 of S.224 we convince ourselves that M is a

metrizable space.

If S � X is a convergent sequence then every x 2 S also belongs toM so if x 2 S
�M, we denote by x0 is twin in X. This makes it possible to define a map ’ : M! X
by ’(x) ¼ x0 for each x 2 M. To finish our solution it suffices to prove that ’ is a

pseudo-open map. Given y 2 X note that xn ! y if xn ¼ y for all n 2 o. Hence
S ¼ {xn : n 2 o} is a convergent sequence in X so xn 2 M and ’(xn) ¼ y for each
n which proves that ’ is onto.

To see that’ is continuous, take a closedF�X and x2M\’�1(F).We have x2 S
where S is open inM and S is a convergent sequence ofX. If x is an isolated point of S
then {x} is an open neighbourhood of xwhich does not meet ’�1(F). If x is the limit

of S then A ¼ S \ F must be finite for otherwise S \ F! ’(x) and hence ’(x) 2
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FnF, a contradiction. Thus S \A is an open neighbourhood of x which does not meet

’�1(F). We proved that ’�1(F) is closed in M and hence ’ is continuous.

To show that ’ is pseudo-open, take any x 2 X and any U 2 t(’�1(x),M). If x =2
IntX (f(U)) then x 2 Xnf ðUÞ and hence there is a sequence {xn} � X \ f(U) with
xn ! x. The sequence S ¼ {xn} [ {x} is also contained in M; denote its twin

sequence by {yn} [ {y}. We have x ¼ y0 and xn ¼ y0n for any n. Observe that

’(y)¼ x and hence y 2 U. However, ’(yn)¼ xn =2 f(U) for all n and hence yn =2U for

each n which is a contradiction with the fact that yn ! y and U 2 t(y, M). The

obtained contradiction shows that x 2 IntX (f(U)) and hence f is pseudo-open.

S.226. Prove that a perfect image of a metrizable space is a metrizable space.

Solution. Our first step is to prove the following fact.

Fact 1. Let g : Z! T be a closed map. Given t 2 T and U 2 t(g�1(t), Z), let g#(U)¼
T \ g(X \U). Then V ¼ f #(U) is an open set, y 2 V and g�1(V) � U.

Proof. The set X \U is closed and hence so is g(X \U). This shows that g#(U) must be

open. Since g�1(y)�U, we have y =2 g(X \U) whence y 2 V. Finally, if z 2 V then z =2
g(X \U) and therefore g�1(z) � U. Fact 1 is proved.

Fact 2. Let Z be a paracompact space. Given an open cover U ¼ {Us : s 2 S}, there
exists a closed locally finite cover {Fs : s 2 S} such that Fs � Us for each s 2 S.

Proof. Given any point z 2 Z, there is s 2 S with z 2 Us. Use regularity of Z to find

Wz 2 t(z, Z) with Wz � Uz. By paracompactness of Z there exists a locally finite

refinement g of the open cover {Wz : z 2 Z} of the space Z. It is easy to see that the

family F ¼ {W : W 2 g} is a locally finite refinement of U. For each F 2 F choose

s ¼ s(F) 2 S such that F � Us. Let Fs ¼
S
{F 2 F : s(F) ¼ s} for each s 2 S. It is

straightforward that the family {Fs : s 2 S} is as promised and hence Fact 2 is

proved.

Fact 3. If every open cover of a space Z has a locally finite closed refinement then

Z is paracompact.

Proof. Let U be an open cover of the space Z; take a locally finite refinement

A ¼ {As : s 2 S} of U and for every z 2 Z fix Vz 2 t(z, Z) which intersects only

finitely many elements of A. Find a locally finite closed refinement F of the open

cover {Vz : z 2 Z} and let Ws ¼ X \
S
{F 2 F : F \ As ¼ ;} for any s 2 S. Observe

that

(�) for any s 2 S and any F 2F we haveWs 2 t(As, Z) andWs \ F 6¼ ; if and only if
As \ F 6¼ ;.

For every s 2 S chooseU(s) 2 U such that As�U(s) and let Vs¼U(s) \ Ws. The

family {Vs : s 2 S} is an open refinement of U. If z 2 Z then, there is O 2 t(z, Z)
which intersects only finitely many elements of F , say F1, . . . , Fn. Each Fi

intersects only finitely many elements of A and by (�) it intersects but finitely

many elements of {Ws : s 2 S}. As a consequence, the set O intersects only finitely

many elements of the cover {Vs : s 2 S} and Fact 3 is proved.
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Fact 4. A perfect image of a paracompact space is a paracompact space.

Proof. Suppose that h : Z ! T is a perfect map. Take an arbitrary open cover

V ¼ {Vs : s 2 S} of the space T. Then {h�1(Vs) : s 2 S} is an open cover of the space
X. Apply Fact 2 to find a locally finite closed cover F ¼ {Fs : s 2 S} of X such that

Fs� h�1(Vs) for each s 2 S. We have f(Fs)� Vs for each s 2 S and hence G ¼ {f(Fs) :

s 2 S} is a closed refinement of V. By Fact 3 it suffices to show that G is locally

finite. So take any t 2 T. For any z 2 h�1(t) there is Oz 2 t(z, Z) such that Oz meets

only finitely many elements of F . By compactness of h�1(t) there are z1, . . . , zn 2
h�1(t) such that h�1(t) � O ¼ Oz1 [ � � � [ Ozn. Now, we can apply Fact 1 to find

W 2 t(t, T) with h�1(W) � O. It is immediate that W intersects only finitely many

elements of G and hence G is locally finite. Fact 4 is proved.

Returning to our solution let f : X ! Y be a perfect map of a metrizable space

X onto a space Y. Then the space Y is paracompact by Problem 218 and Fact 4. Fix a

metric d on the space X such that t(d)¼ t(X). Given a point y 2 Y letUi(y)¼ {x 2 X :

df�1ðyÞðxÞ ¼ inf{d(x, z) : z2 f�1(y)}< 1/i}. The function df�1ðyÞ : X!R is continuous

(Fact 1 of S.212) and hence Ui(y) is an open set for any y 2 Y and i 2 N.
The family By ¼ {Ui(y) : i 2 N} is an outer base of the set f�1(y). Indeed, let

U 2 t(f�1(y), X). For F ¼ X \U the function dF is continuous and dF(x) > 0 for any

x 2 f�1(y). The subspace f�1(y) being compact, there is e> 0 such that dF(x)> e for
each x 2 f�1(y). This impliesUi(y)�U for any i> 1

e which proves that By is an outer
base of f�1(y).

Now, let Wi(y) ¼ f #(Ui(y)) and Vi(y) ¼ f�1(Wi(y)) � Ui(y) for each y 2 Y and

i 2 N. Observe that Uj(y) � Ui(y), Wj(y) � Wi(y) and Vj(y) � Vi(y) whenever j r i.
Besides, the family {Wi(y) : i 2 N} is a local base in Y at any y 2 Y. To see this,

take any V 2 t(y, Y), find i 2 N with Ui(y) � f�1(V) and observe that Wi(y) �
f(Ui(y)) � V. The following property is crucial.

(��) For every y 2 Y and i 2 N there exists j 2 N such that Wj(z) �Wi(y) whenever
y 2 Wj(z).

To prove it, find j r 2i such that Uj(y) � V2i(y); this is possible because By is an
outer base of f�1(y). Take any z 2 Y such that y 2 Wj(z). Then f�1(y) � Vj(z) �
Uj(z), i.e., there exist x 2 f�1(z) and x0 2 f�1(y) such that d(x, x0) < 1/j. As a

consequence, Uj(y) \ f�1(z) 6¼ ; and f�1(z) � V2i(y) because the last set contains
the fibre f�1(f(x)) together with any point x 2 V2i(y).

To prove that Wj(z) � Wi(y) take any t 2 Wj(z). Then f�1(t) � Uj(z) and hence

for any x 2 f�1(t) there is x0 2 f�1(z) such that d(x, x0) < 1/j b 1/(2i). We have

shown that f�1(z)� V2i(y)� U2i(y) which implies that there exists x00 2 f�1(y) such
that d(x0, x00) < 1/(2i). By the triangle inequality, we have d(x, x00) < 1/i and hence

x 2 Ui(y). The point x 2 f�1(t) having been chosen arbitrarily, we have f�1(t) �
Ui(y) whence t 2 Wi(y) and the proof of (��) is concluded.

For each i 2 N the familyW i ¼ {Wi(y) : y 2 Y} is an open cover of Y and hence

there is a locally finite open refinement Bi of the cover W i. We claim that the

family B ¼ S{Bi : i 2 N} is a base of Y. To prove this assume that y 2 U 2 t(Y).
There exists i 2 N such that Wi(y) � U. By (��) there is j 2 N such that y 2 Wj(z)
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impliesWj(z)�Wi(y). TakeW 2 Bj such that y 2W. Since Bj is a refinement ofW j,

there is z 2 Y for which W � Wj(z). Therefore y 2 Wj(z) and hence y 2 W � Wj(z)
�Wi(y)�U and we are done. As a consequence B is a s-locally finite base of Y and

hence Y is metrizable by Problem 121(iii).

S.227. Show that a closed image of a countable second countable space is not
necessarily a metrizable space.

Solution. Let S ¼ f0g [ f1n : n 2 Ng � R be the usual convergent sequence. The

space X ¼ S � N is countable and second countable (the topology of N is discrete).

Now, let the underlying set of Y be {(0,0)} [ (N � N). Denote by Tm the set N �
{m}� Y for all m 2 N. All points of N� N are isolated in Y and a set U 3 x¼ (0, 0)

is open in Y if and only if Tm \U is finite for all m 2 N. The space X is Tychonoff

being a product of Tychonoff spaces. To show that Y is Tychonoff, observe first

that Y is Hausdorff. Indeed, if x, y 2 Y are distinct points then one of them, say x, is
isolated. Then U ¼ {x} and V ¼ Y \ {x} are disjoint open sets which separate the

points x and y. Given A� Y, denote by wA : Y! {0,1} the characteristic function of

A defined by wA(x) ¼ 1 if x 2 A and wA(x) ¼ 0 otherwise.

Suppose that x 2 Y and F 63 x is closed in Y. If x is isolated then the continuous

function w{x} separates x and F. If x¼ x then the set F is open and hence the function

wX \ F is continuous and separates x from F. This proves that Y is Tychonoff.

Now, if x ¼ ð1n;mÞ 2 X then let f(x) ¼ (n, m) 2 Y. For any x ¼ (0, n) we let

f(x) ¼ x. The map f : X! Y is evidently onto, so let us check that f is continuous. It
suffices to verify continuity at all points of the set L ¼ {xm ¼ (0, m) : m 2 N}
because all other points of X are isolated. So take any xm 2 L and any open O 3
f(xm) ¼ x. The set A ¼ Tm \O is finite and hence there is p 2 N such that (n, m) 2 O
for all nr p. The set U ¼ fxmg [ 1

n;m
� �

: n r p
� �

is open in X and f(U)�Owhich

proves continuity at the point xm. Therefore, f is continuous.
To see that f is a closed map, note first that every set A � Y with x 2 A, is closed

in Y. Therefore, f(F) is closed in Y for any F which intersects the set L. Now,
if F \ L ¼ ; then F \ (S � {m}) has to be finite for any m 2 N. This means

that f(F) \ Tm is finite for any m 2 N and therefore Y \ f(F) is open in Y, i.e., f(F) is
closed in Y.

Thus the space Y is a closed image of the countable second countable space X.
To finish our solution it suffices to show that Y is not first countable and hence not

metrizable (Problem 210). Let B ¼ {On : n 2 N} � t(x, Y). For any m 2 N the set

Tm \Om is finite and hence we can choose sm 2 Om \ Tm for each m 2 N. It is
straightforward thatW ¼ Y \ {sm : m 2 N} is an open set such that x 2W. However,

sm 2 Om \W for each m 2 N which shows that no Om is contained in W. As a

consequence, B is not a base of Y at x and our solution is complete.

S.228. Suppose that Cp(X) is a closed image of a metrizable space (that is, there is a
metrizable space M and a closed map ’ : M ! Cp(X)). Prove that Cp(X) is
metrizable and hence X is countable.
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Solution. Call a continuous onto map h : Y! Z irreducible if, for any closed F� Y
with F 6¼ Y, we have h(F) 6¼ Z. For any U � Y let h#(U) ¼ Z \ h(Y \U). A family

B � t�(Y) is called a p-base in Y if, for any U 2 t�(Y), there is V 2 B such that

V � U. The minimal cardinality of all possible p-bases of Y is called p-weight of Y
and is denoted by po(Y).

Fact 1. Assume that h : Y! Z is an irreducible closed map. Then c(Y) ¼ c(Z) and
pw(Y) ¼ pw(Z).

Proof. Apply Problem 157(i) to see that c(Z) b c(Y). If g � t�(Y) is a disjoint

family then m ¼ {h#(U) : U 2 g} � t(Z) is also disjoint (see Fact 1 of S.226) and

h#(U) 6¼ ; for each U 2 g because h is irreducible. This shows that c(Y) b c(Z) and
hence c(Y) ¼ c(Z).

Take any p-base B in Y. Then B0 ¼ {h#(U) : U 2 B} consists of non-empty open

subsets of Z because h is irreducible. GivenW 2 t�(Z), findU 2 B withU� h�1(W).

Then U0 ¼ h#(U) 2 B0 and U0 � W which proves that B0 is a p-base in Z. As a
consequence pw(Z)b pw(Y). Given a p-base B0 in Z, let B ¼ {h�1(U) :U 2 B0}. It is
evident that B � t�(Y). Given any open non-emptyW� Y, the set h#(W) is open in Z
and non-empty because h is irreducible. Find anyU 2 B0 with U� h#(W). Then V¼
h�1(U) 2 B and V � h�1(h#(W)) �W (see Fact 1 of S.226) and hence B is a p-base
of Y. This establishes that pw(Y) b pw(Z) whence pw(Y) ¼ pw(Z) and Fact 1 is

proved.

Fact 2. Let Y be a metrizable space. Then, for any closed discrete D� X there exists

a discrete family {Ud : d 2 D} � t(Y) such that d 2 Ud for any d 2 D.

Proof. Fix a metric r on Y with t(r) ¼ t(X). For any d 2 D find e ¼ e(d) > 0 such

that B(d, e) \ D¼ {d} and let Vd ¼ B d; eðdÞ
3

� �
for each d 2 D. Note first that r(d, c)

rmax{e(c), e(d)} for any distinct c, d 2 D. The family {Vd : d 2D} is disjoint for if
x 2 Vc \ Vd for some distinct c, d 2D then r(c, d)b r(c, x)þ r(x, d) which implies

rðc; dÞ < 2
3
maxfeðcÞ; eðdÞg which is a contradiction. The setsD and F¼ Y \ (

S
{Vd :

d 2 D}) are closed and disjoint. Since the space Y is normal (Fact 2 of S.212),

we can find G, H 2 t(Y) such that D � G, F � H and G \ H ¼ ;. Finally, let Ud ¼
Vd \ G for all d 2D. We claim that the family {Ud : d 2D} is discrete. Indeed, take
any x 2 Y. If x 2 F then x =2 G and hence Y \G is a neighbourhood of x which does

not intersects any of Ud’s. If x =2 F then x 2 Vd for some d 2 D and hence Vd is a

neighbourhood of x which does not intersect any Uc with c 6¼ d. Fact 2 is proved.

Fact 3. Let Y be a metrizable space. Suppose that Z is a space in which any point is

a limit of a non-trivial convergent sequence. Then any closed map h : Y ! Z
is irreducible on some closed subset of Y, i.e., there is a closed F � Y such that

h(F) ¼ Z and hF ¼ hjF is irreducible.

Proof. For every y 2 Z fix a sequence Sy ¼ {yn : n 2 o} � Z \ {y} converging to y.
We will prove first that the set Py ¼ h�1ðyÞ \S fh�1ðynÞ : n 2 og is compact for

every y 2 Z. Indeed, if for some y 2 Z the set Py is not compact, then it is not

countably compact (Problem 212) and therefore there is a countably infinite closed
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discrete setD¼ {xn : n 2o}� Py. Apply Fact 2 to find a discrete family g¼ {Un : n
2 o} � t�(Y) with xn 2 Un \ Py for all n 2 o.

If A is an arbitrary finite subset of o, then for each natural number n, we have

Un \ (
S
{h�1(zk) : k 2 o \ A}) 6¼ ;. This makes it possible to choose a point zn 2 Un

\ (
S
{h�1(zk) : k 2 o}) in such a way that h(zm) 6¼ h(zn) if n 6¼ m.

The family g being discrete the set D ¼ {zn : n 2 o} is closed and discrete in Y.
The set h(D) is also closed because h is a closed map. Note that h(D) has also to be

discrete because h(C) is closed for any C � D. However, h(D) is a non-trivial

sequence converging to y, a contradiction with the fact that h(D) is closed and

discrete. This proves Py is compact for all y 2 Z.

Claim. Suppose that H is a closed subset of Y such that h(H)¼ Z. Then H \ Py 6¼ ;
for all y 2 Z.

Proof of the claim. Fix y 2 Z with H \ Py ¼ ;. It follows from h(H) ¼ Z that it

possible to choose tn 2 H \ h�1(yn) for all n 2 o. The map h is closed, so

ftn : n 2 og \ h�1ðyÞ 6¼ ;. But H � ftn : n 2 og and ftn : n 2 og \ h�1ðyÞ � Py.

Therefore, we have H \ Py 6¼ ; and the claim is proved.

Suppose that we have a family F of closed subsets of Y such that F is totally

ordered by inclusion and h(H) ¼ Z for every H 2 F . Then h(
TF ) ¼ Z. Indeed,

H \ Py 6¼ ; for any y 2 Z and H 2 F . We proved that the set Py is compact so

(
TF ) \ h�1(y)� (

TF ) \ Py 6¼ ; for all y 2 Z and we are done. Finally, use Zorn’s

lemma to find a closed F � Y which is maximal (with respect to the inverse

inclusion) in the family of all closed sets H � Y such that h(H) ¼ Z. It is evident
that hF is irreducible and Fact 3 is proved.

Now we are ready to present the solution. Given f 2 Cp(X) observe that the

sequence ff þ 1
ng is non-trivial and converges to f. Therefore Fact 3 is applicable to

the map ’ : M! Cp(X) to obtain a closed F�M such that ’(F)¼ Cp(X) and ’jF is

irreducible. Apply Fact 1 to conclude that c(F) ¼ c(Cp(X)) ¼ o. As a consequence
o(F) ¼ o by Problem 214. Use Fact 1 once more to conclude that po(Cp(X)) ¼
po(F)bw(F)¼o. Observe that any p-base of Cp(X) is also a p-base at any point of
Cp(X) (see Problem 171). Hence Cp(X) has a countable p-base at any of its points

and therefore X is countable by Problem 171. To finish the solution observe that

Cp(X) is metrizable by Problem 210.

S.229. Suppose that Cp(X) is an open image of a metrizable space (that is, there is a
metrizable space M and an open map ’ : M ! Cp(X)). Prove that Cp(X) is
metrizable and hence X is countable.

Solution. Apply Problem 223 to show that Cp(X) is first countable. This means X is

countable (Problem 169). Applying Problem 210 we can conclude that Cp(X) is
metrizable.

S.230. Prove that the following conditions are equivalent for any space X.

(i) X is paracompact.
(ii) Every open cover of X has a (not necessarily open) locally finite refinement.
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(iii) Every open cover of X has a closed locally finite refinement.
(iv) Every open cover of X has a s-locally finite open refinement.
(v) Every open cover of X has a s-discrete open refinement.
(vi) Every open cover of X has an open closure-preserving refinement.
(vii) Every open cover of X has a closure-preserving refinement.
(viii) Every open cover of X has a closed closure-preserving refinement.
(ix) Every open cover of X has a s-closure-preserving open refinement.
(x) Every open cover of X has a barycentric open refinement.
(xi) Every open cover of X has an open star refinement.

Solution. The implication (i)) (ii) is obvious. If (ii) holds and U is an open cover

of X then, for each x 2 X, take U 2 U with x 2 U. By regularity of X there is Ux 2
t(x, X) such that Ux � U. IfF is a locally finite refinement of the cover {Ux : x 2 X}
then G ¼ fA : A 2 Fg is a locally finite closed refinement of U and (ii) ) (iii) is

proved. The implication (iii)) (i) is precisely Fact 3 from S.226.

The implication (i)) (iv) is evident. Suppose that (iv) holds and take any open

cover U of the space X. Let B ¼ SfBi : I 2 og be an open refinement of U such

that all Bi’s are locally finite. For any n 2 o let U0 ¼ U \ (
S
{
SBi : i < n}) for every

U 2 Bn. Let B0n ¼ fU0 : U 2 Bng and B0 ¼ SfB0n : n 2 og. We claim that B’ is
a locally finite refinement of U. To see this, take any x 2 X and let n ¼ min{i 2 o :
x 2S Bi}. There is U 2 Bn with x 2 U. It is clear that x 2 U’ 2 B0 and hence B0 is a
refinement of U. To see that B’ is locally finite take any x 2 X. If x 2 U 2 Bn then
U is an open neighbourhood of xwithU \ ðSB0mÞ ¼ ; for anym> n. Since each B0i
is locally finite, there is W 2 t(x, X) such thatW meets only finitely many elements

of each Bi, i b n. It is clear that V ¼ U \ W 2 t(x, X) and V intersects only finitely

many elements of B0. This settles (iv) ) (ii) and hence the properties (i)–(iv) are

equivalent.

Now suppose that X is paracompact and take any open cover U of the space X.
Let {Ft : t 2 T} be a closed locally finite refinement of U. For every t 2 T pick any

Ut 2 U with Ft�Ut. For any x 2 X denote by T(x) the (finite) set {t 2 T : x 2 Ft}. Let

Ux ¼
T
{Ut : t 2 T(x)} \ (

S
{Ft : t 2 T \ T(x)}). It is clear that Ux 2 t(x, X) and hence

the family g ¼ {Ux : x 2 X} is an open refinement of U. To show that g is a

barycentric refinement of U take any x0 2 X and any t0 2 T(x0). If x0 2 Ux for some

x 2 X then t0 2 T(x) and hence Ux� Ut0. This proves that St(x0, g)� Ut0 2 U. Thus g
is a barycentric refinement of U and we proved (i))(x).

To show that (x))(xi) take any open cover U of the space X. Choose an open

barycentric refinement C of the cover U and an open barycentric refinement B of

the cover C. We claim that B is a star refinement of U. Indeed, pick any W 2 B
and x 2 W. There is U 2 U with St(x, C) � U. Now, if W0 2 B and W0 \ W 6¼ ;,
take any y 2 W0 \ W and observe that W [ W0 � St(y, B). There exists G 2 C
such that St(y, B) � G which implies x 2 W [ W0 � St(y, B) � G and therefore

G � St(x, C ) � U. As a consequence, W0 � U. Since the set W0 2 B with W0 \
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W 6¼ ; has been chosen arbitrarily, we have St(W, B) � U and hence (x))(xi) is

settled.

Let us prove that (xi))(v). Take any open cover U ¼ {Us : s 2 S} of the space X
and construct a sequence {Un : n 2 o} of open covers of X such that U0 ¼ U and

Unþ1 is a star refinement of the cover Un for each n 2 o. For each s 2 S and i 2 N let

Us,i ¼
S
{V 2 t(X) : St(V, U i) � Us}. Since every U i is a star refinement of U, the

family {Us,i : s 2 S} is an open refinement of U for each i 2 N. It is also clear that

Us,i� Us,iþ1 for any s 2 S and i 2 N. We will use the following important property:

(�) If x 2 Us,i and y =2 Us,iþ1 then no U 2 Uiþ1 can contain both points x and y.
Indeed, if x 2 U 2 U iþ1 then take any V 2 U i such that St(U, U iþ1) � V. Then

x 2 V and hence V � St(x, U i) � Us. As a consequence St(U, U iþ1) � Us and

therefore U � Us,iþ1.
Take any well order < on S and let Vs;i ¼ Us;in

S fUt;iþ1 : t < sg for every s 2 S
and i 2 N. The family Bi ¼ {Vi,s : s 2 S} is discrete for each i 2 N. To see this, take
any x 2 X and any U 2 U iþ1 with x 2 U. If t< s then Vs,i� X \Ut,iþ1 and (�) implies

that U cannot intersect both sets Vt,i � Ut,i and Vs,i � X \Ut,iþ1. Therefore U can

intersect at most one element of Bi so Bi is discrete. To conclude the proof it suffices
to show that B ¼ SfBi : I 2 Ng is a cover of X. Take any x 2 X and let s(x) to be the
minimal s 2 S such that x 2 Us,i for some i 2 N. The existence of s(x) follows from
the fact that {Us,i : s 2 S} is a cover of X for all i 2N. Since x =2Us,i+2 for all s< s(x),
it follows from (�) that St(x, U i+2) \ (

S
{Us,iþ1 : s < s(x)}) ¼ ; which implies x 2

Vs(x),i and the implication (xi)) (v) is proved.

Since the implication (v) ) (iv) is obvious and (iv) , (i) we proved that

the properties (i)–(v), (x) and (xi) are equivalent. Every locally finite family is

closure-preserving (Fact 2 of S.221), so we have (i)) (vi). The implication (vi))
(vii) is evident. Note that if F is a closure-preserving family then the family

fA : A 2 Fg is also closure-preserving. Now assume that we have (vii) and U is

an open cover of the space X. For each x 2 X, take U 2 U with x 2 U. By regularity
of X there is Ux 2 t(x, X) such that Ux � U. If F is a closure-preserving refinement

of the cover {Ux : x 2 X} then G ¼ fA : A 2 Fg is a closure-preserving closed

refinement of U and hence (vii)) (viii).

We will now prove that (ix) ) (vii). It is easy to verify that the following

statement holds:

(��) If C is a closure-preserving family of closed subsets of X and F is closed in X
then the family CF ¼ {C \ F : C 2 C} is also closure-preserving.

Let U be an open cover of X. For each x 2 X, take U 2 U with x 2 U. By
regularity of X there is Ux 2 t(x, X) such that Ux � U. Take an open refinement

B ¼ SfBn : n 2 og of the family {Ux : x 2 X} such that Bn is closure-preserving
for each n 2 o. For any n 2 o let U0 ¼ UnðSfSBi : i < ngÞ for every U 2 Bn.
Let B0n ¼ fU0 : U 2 Bng and B0 ¼

SfB0n : n 2 og. We claim that B0 is a closure-

preserving refinement of U. To see this, observe first that (��) implies that B0n is

closure-preserving because so is fU : U 2n Bng. Now take any x 2 X and let n ¼
min{i 2 o : x 2 S Bi}. There is U 2 Bn with x 2 U. It is clear that x 2 U0 2 B0 and
hence B0 is a refinement of U. To see that B0 is closure-preserving take any C � B0
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and any x 2 S C. If x 2 U 2 Bn then U is an open neighbourhood of x with

U \ ðSB0mÞ ¼ ; for any m > n. As a consequence x 2 C0 [ � � � [ Cn where

Ci ¼
SðC \ B0iÞ for each i b n. Therefore there is j b n with x 2 Cj ¼S ðC \ B0jÞ. Since the family B0j is closure-preserving, there is W 2 C \ B0j such

that x 2 W. The point x having been chosen arbitrarily, we proved that B0 is closure-
preserving and hence (ix)) (vii).

Since (v))(ix))(vii) and (v))(vi))(vii))(viii), we will finish our solution

proving that (viii))(v).

Claim 1. If (viii) holds for X then X is normal.

Proof. Assume that F, G are closed disjoint subsets of X. Find a closure-preserving

closed refinementF for the open cover U ¼ {X \F, X \G} of the space X. Let U¼ X
\ (
S
{P 2 F : P \ F¼ ;}) and V¼ X \ (

S
{P 2 F : P \ G¼ ;}). It is clear that F�

U andG� V so it suffices to prove that U \ V¼ ;. By definition ofU, if x 2U then

P \ F 6¼ ; for every P 2 F with x 2 P. Analogously, if x 2 V then P \ G 6¼ ; for
any P 2 F with x 2 P. Thus, if x 2 U \ V then there is P 2 F such that P \ F 6¼ ;
6¼ P \ G which is a contradiction with the fact that each P 2 F lies in X \F or in X
\G. Claim 1 is proved.

Claim 2. Suppose that {Us : s 2 S} � t(X) and X ¼ S{Us : s 2 S}. Then there exist
closed sets Fs, s 2 S such that Fs � Us for all s 2 S and

S
{Fs : s 2 S} ¼ X.

Proof. Take any closure-preserving closed refinementF of the cover {Us : s 2 S}
of the space X. For each P 2 F fix s¼ s(P) 2 S such that P� Us and let Fs¼

S
{P 2

F : s(P)¼ s} for each s 2 S. Each Fs is closed because F is closure-preserving. It is

obvious that Fs � Us for each s 2 S and
S
{Fs : s 2 S} ¼ S F ¼ X so Claim 2 is

proved.

Now take any open cover U ¼ {Us : s 2 S} of the space X. We will consider the

set S to be well ordered by <. We are in position to apply Claim 2 to find a closed

cover F 1¼ {Fs,1 : s 2 S} of the space X such that Fs,1 � Us for each s 2 S. Suppose
that we have closed covers F 1; � � � ;F n of the space X such that

(1) F i ¼ {Fs,i : s 2 S}.
(2) Fs,iþ1 � Us \ (

S
{Ft,i : t < s} for all s 2 S and i < n.

Let Vs ¼ Us \ (
S
{Ft,n : t < s}) for each index s 2 S. Then, the family {Vs : s 2 S}

is an open cover of the space X. Indeed, for any point x 2 X, let s(x) be the minimal

of the elements s 2 S such that x 2 Us. It follows from x =2 S{Us : s < s(x)} �S
{Fs,n : s < s(x)} that x 2 Vs(x). Apply Claim 2 once more to find a closed cover

F nþ1¼ {Fs,nþ1 : s 2 S} of the space X such that Fs,nþ1� Vs for each s 2 S. It is clear
that the closed covers F 1, . . . , F n, F nþ1 satisfy (1) and (2) so the inductive

construction goes on. Once we have the sequence {F i : i 2 N}, let Ws,i ¼ X
\ (
S
{Ft,i : t 6¼ s}) for each s 2 S and i 2 N. Note first that the familyWi¼ {Ws,i : s 2

S} is disjoint for each i 2 N because Ws,i � Fs,i for all s 2 S. We claim that the

familyW ¼S{Wi : i 2N} is a refinement of U. Of course, we must only prove that
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SW ¼ X. So take any x 2 X and denote by t the minimal among all s 2 S such that x
2 Fs,i for some i 2 N. Take any j 2 N with x 2 Ft,j.

Observe that (2) implies that x =2 Fs,jþ1 for all s > t. On the other hand x =2 Fs,jþ1
for any s< t by the choice of t. Since F jþ1 is a cover of X, we have x 2 Vt,jþ1 which
proves thatW is a cover of X. If Oi ¼

SW i for each i 2 N then {Oi : i 2 N} is an

open cover of X. Apply Claim 2 once more to find closed Pi � Oi such that
S
{Pi :

i 2 N} ¼ X. The space X is normal by Claim 1 so there exist Gi 2 t(Pi, X) such that

G i � Oi for all i 2 N. Let V i¼ {Ws,i \ Gi : s 2 S}. Since Pi �
S Vi for each i 2 N,

the family V ¼S{V i : i 2N} is a cover of X. It is clear that V is a refinement of U so

it suffices to show that Vi is discrete for each i.
Take any x 2 X. If x =2 Oi then X \G i is a neighbourhood of x which meets no

elements of V i. Now, if x 2 Oi then x 2 Ws,i for some s 2 S and hence Ws,i is a

neighbourhood of x which meets only one element of V i. Thus V is a s-discrete
refinement of U. We proved that (viii)) (v) and hence our solution is complete.

S.231. Prove that any paracompact space is collectionwise normal. In particular,
every metrizable space is collectionwise normal.

Solution. Suppose that X is a paracompact space and take any discrete family F ¼
{Fs : s 2 S} of closed subsets of X. For any x 2 X fix an open Vx 3 x which meets at

most one of the elements of F . Let B be a closure-preserving closed refinement of

the open cover {Vx : x 2 X} (see Problem 230(viii)). It is clear that any B 2 B
intersects at most one element of F . If Us¼ X \ (

S
{B 2 B : B \ Fs ¼ ;}) then Us is

open and Fs � Us for any s 2 S.

The family U ¼ {Us : s 2 S} is disjoint. Indeed, if s 6¼ t and x 2 Us \ Ut then

take any B 2 B with x 2 B. It is immediate from the definition of Us and Ut

that B \ Fs 6¼ ; 6¼ B \ Ft which is a contradiction. This proves, in particular, that

X is normal and hence we can chooseW 2 t(X) such that F�W�W �S U, where
F ¼ S{Fs : s 2 S}.

Now ifWs¼Us \ W then Fs�Ws 2 t(X) for each s 2 S so it suffices to show that

the familyW ¼ {Ws : s2 S} is discrete. Given x 2 X suppose that x =2SU. Then X \W
is a neighbourhood of X which does not intersect any element of W. If x 2 U then

x 2 Us for some s 2 S and hence Us 2 t(x, X) intersects at most one element ofW.

Hence W is discrete and we proved collectionwise normality of each paracompact

space. To finish our solution, observe that every metrizable space is paracompact

(Problem 218) and hence collectionwise normal.

S.232. Give an example of a space which is collectionwise normal but not
paracompact.

Solution. The underlying set of our space X will be the set o1 of all countable

ordinals, i.e., X ¼ {a : a < o1}. Given a, b < o1 we will need the intervals (a, b)¼
{g : a < g < b}, [a, b) ¼ {g : a b g < b}, (a, b] ¼ {g : a < g b b} and [a, b] ¼ {g :
a b g b b}. Note that some of the defined intervals can be empty. For example,

(a, b)¼ ; if ar b. The topology of X is generated by the family B ¼ {0} [ {(a, b) :
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a < b < o1} as a base. This generation makes sense because any non-empty

intersection of two elements of B belongs to B and
S B ¼ X.

The space X is Hausdorff. To see this, take distinct a, b 2 X. We may assume that

a < b. If a ¼ 0 then the open sets U ¼ {0} and V ¼ (0, b þ 1) separate the points

a and b. If a > 0 then the open sets U ¼ (0, a þ 1) and V ¼ (a, b þ 1) separate the

points a and b.
Note that (b, a þ 1) ¼ (b, a] for all b < a < o1. As a consequence, the family

Ba ¼ {(b, a] : b < a} is a local base at a for any a > 0. It is easy to see that every

element of Ba is clopen (� closed-and-open) subset of X. Since {0} is a clopen local
base at 0, the space X has a base which consists of clopen sets. We will call such

spaces zero-dimensional.

Fact 1. Any zero-dimensional T0-space Y is Tychonoff.

Proof. Take distinct x, y 2 Y. There exists an open set U such that U \ {x, y}
consists of exactly one point. Suppose, for example that U \ {x, y} ¼ {x}. Then x
2 U and there is a clopen V such that x 2 V � U. Then V and W ¼ Y \V are disjoint

open neighbourhoods of the points x and y, respectively. The case when U \ {x, y}
¼ {y} is considered in the same way so we proved that Y is Hausdorff and, in

particular, Y is a T1-space.

Now, assume that x 2 Y and F is a closed set such that x =2 F. Since U ¼ Y \F 2
t(x, Y), we can find a clopen setW with x 2W� U. If f(z)¼ 1 for z 2W and f(z)¼ 0

for all z 2 Y \W then f : Y! [0, 1] is a continuous function, f(x) ¼ 1 and f(F) � {0}

so Y is Tychonoff and Fact 1 is proved.

The space X is zero-dimensional, so it is Tychonoff by Fact 1.

Fact 2. The subspace [0, a] is compact for any a < o1.

Proof. It is clear that [0, a] is countable and hence Lindel€of. Thus it is sufficient to
prove that [0, a] is countably compact (see Problem 138). Assume the contrary.

Then there is a closed discrete infinite D � [0, a]. Let a0 ¼ min{b : b b a and

[0, b] \ D is infinite}. Since D¼D \ [0, a] is infinite, the ordinal a0 is infinite and
well defined. Take any U 2 t(a0, X). There exists b < a0 such that (b, a0] � U. If
(b, a0] \ D is finite then [0, b] \ D is infinite while b< a0, a contradiction. Hence
U \ D� (b, a0] \ D is infinite for any U 2 t(a0, X) which contradicts the fact that
D is closed and discrete. Fact 2 is proved.

Fact 3. The space X is normal.

Proof. Let F and G be disjoint closed subsets of X. If one of them is empty then the

proof is trivial so we assume that F 6¼ ; 6¼ G. We claim that one of the sets F, G is

countable. To see this, assume that jFj ¼ jGj ¼ o1 and take a0 2 F. Since G is

uncountable, there is b0 2G such that b0> a0. Suppose that we constructed ordinals
{ai, bi, ib n} such that ai 2 F, bi 2G for all ib n and a0< b0< a1< � � �< an< bn.

The set F being uncountable we can find anþ1 2 F with anþ1 > bn. By the same

property of G there is bnþ1 2 G with bnþ1 > anþ1 and the inductive construction
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can go on. Once we have the sequences {an : n 2 o} � F and {bn : n 2 o} � G, let
g ¼ min{d : an < d for all n 2 o}. Note that g is well defined because the set

A¼S{[0, an] : n 2 o}¼S{[0, bn] : n 2 o} is countable and hence any d 2 X \A is

greater that all an’s. Since bn< anþ1 < g for all n 2 o, we have bn < g for all n 2 o.
Observe that, for any d < g there exists m 2 o such that am r d and hence an 2

(d, g] for all n>m. Since bn> an> d for all n>m, we have bn 2 (d, g] for all n>m
which proves that an! g and bn! g. The sets F and G being closed we have g 2
F \ G, a contradiction. Hence one of our sets, say F, is countable. Consequently,
the set AF ¼

S
{[0, a] : a 2 F} is countable so F � [0, b] for any b 2 X \AF. The

set U0 ¼ [0, b] is compact by Fact 2 and open because [0, b] ¼ [0, b þ 1). The set

G0 ¼ G \ U0 is closed and disjoint from F is the compact space U0. Therefore there
are open sets U, V0 (in U0 and hence in X) such that F� U, G0 � V0 and U \ V0 ¼ ;.
Then V ¼ (X \ [0, b]) [ V0 is open in X, contains G and U \ V ¼ ; which yields

normality of X. Fact 3 is proved.

Fact 4. The space X is countably compact.

Proof. If D is a countably infinite closed discrete subspace of X then there is a< o1

such that D � [0, a]. The space [0, a] being compact by Fact 2, the set D cannot be

closed and discrete in [0, a]; this contradiction proves Fact 4.

Fact 5. Any countably compact normal space Y is collectionwise normal.

Proof. Let F be a discrete family of non-empty closed sets of Y. If F is infinite,

then, choosing xF 2 F for any F 2 F we obtain an infinite closed discrete

D ¼ {xF : F 2 F} � X which contradicts the countable compactness of X.
Hence F is finite, say F ¼ {F0, . . . , Fn}. Letting f(x) ¼ i for any x 2 Fi, we obtain

a continuous function f : F ¼ SF ! R. By normality of X there is g 2 C(X)
such that gjF¼ f (Problem 032). Consider the sets Ui ¼ g�1 i� 1

3
; iþ 1

3

� �� �
for each

i b n. It is immediate that Fi � Ui for each i b n and the family fU0; . . . ;Ung is
disjoint. It is easy to check that the family {U0, . . . ,Un} is discrete and Fact 5 is

proved.

Returning to our solution, we can conclude that X is collectionwise normal by

Facts 3–5, so we only have to show that X is not paracompact.

Assume that X is paracompact. Then any open cover of X has a locally finite

refinement which has to be finite by Fact 4 and Problem 136. Therefore X is

compact. However, the family {[0, a) : a < o1} is an open cover of X which has

no finite subcover; this contradiction shows that our solution is complete.

S.233. Let N ¼ {(x, y) 2 R2 : y r 0}. Given z ¼ (a, b) such that b > 0, let

Bz ¼ {Un(z) : n 2 N, n > 1
b } where Un(z) ¼ {(x, y) 2 N : (x � a)2 þ (y � b)2 < 1

n2 }

for each n 2 N, n > 1
b. If z ¼ (a, 0) then Bz ¼ {Un(z) : n 2 N} where Un(z) ¼ {z} [

{(x, y) : (x � a)2 þ (y � 1
n)
2 < 1

n2 }. Show that

(i) The families {Bz : z 2 N} generate a topology t on N as local bases. The
resulting space N ¼ (N, t) is called the Niemytzki plane.

(ii) N is a separable Tychonoff space with iw(N) ¼ o.
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(iii) ext(N) ¼ c and hence N is not normal.
(iv) N is a locally metrizable non-metrizable space.

Solution. The underlying set of N is contained in R2 so we have the metric d ¼ r2
on N introduced in Problem 205. This metric does not generate the topology of N
but comes in handy for quite a few useful considerations.

(i) Let L ¼ {(x, 0) : x 2 R} � N and P ¼ N \L. The property (LB1) is evident for
any Bz (see Problem 007). For each z 2 N there is m 2 N such that Bz ¼ {Un(z) :
n 2N, nrm} whereUnþ1(z)�Un(z) for all nrm. ThusU \ V 2 Bz for anyU, V2
Bz and hence (LB2) is also fulfilled. Now assume that z 2 U 2 Bt. If z¼ t then there is
nothing to prove. If z 6¼ t then z =2 L because (

SBt) \ L � {t} for any t 2 N.
Therefore, z¼ (x, y) where y> 0. By definition of Bt the setU \ {t} is a circle if t 2 L
and a circle without center otherwise. In both cases the set U \ {t} 3 z is open in

R2 (see Problems 201 and 205) and hence there is e > 0 such that Bd(z, e) � U \ {t}.
Then, for any n > 1

e we have Un(z) � Bd(z, e) � U so the property (LB3) holds as

well. Finally, apply Problem 007 to conclude that the family {Bz : z 2 N} generates
a topology on N for which Bz is a local base at z for every point z 2 N.

(ii) Let us check first thatN is Hausdorff and hence T1. Observe that, for any z 2 N,
we have dðz; z0Þ < 2

n for any z0 2 Un(z). Indeed, if z 2 P then z is the center of the
circle Un(z) so dðz; z0Þ < 1

n. If z 2 L then for the center c of the circle Un(z) \ {z} we
have dðz; z0Þbdðz; cÞ þ dðc; z0Þ < 1

nþ 1
n ¼ 2

n. Now take any z, t 2 N with z 6¼ t and
find n 2 N such that n > 4

dðz;tÞ. We claim that Un(z) \ Un(t) ¼ ;. Indeed, by our

observation, if z0 2 Un(z) \ Un(t) then dðz; z0Þ < 2
n and dðt; z0Þ < 2

n which implies

dðz; tÞb dðz; z0Þ þ dðz0; tÞ< 4
n <dðz; tÞ which is a contradiction.

We will denote by N0, L0 and P0 the respective sets N, L and P with the

topology induced from R2. Let us prove that the map id : N! N0 defined by id(z)¼
z, is continuous. Given any z 2 N and any U 2 t(z, N0) there is e> 0 such that Bd(z, e)
� U. Take any n 2 N with n> 2

e. If t 2 Un(z) then dðt; zÞ< 2
n< e by the observation

before. Therefore t¼ id(t) 2U for any t 2Un(z) whence id(Un(z))�U, i.e., the map

id is continuous at the point z. This immediately implies

Fact 1. Any map continuous on N0 (at a point z 2 N0) is continuous on N (at the same

point z 2 N, respectively).

Fact 2. The map id is a condensation of N onto a second countable space N0 and
hence iw(N) b o.

Proof. We only have to prove that w(N0) b o. But this is immediate from the fact

that N0 � R2 and Problem 209.

Now it is easy to prove complete regularity at the points of P. Take any z 2 P and

any closed F � N with z =2 F. There is n 2 N such that Un(z) \ F¼ ;. The set Un(z)
is open in N0 being the ball of radius 1

n centered at z. Since N0 is completely regular

(Problem 202), there is a continuous function f : N0 ! [0, 1] such that f(z) ¼ 1 and

f(N0 \ Un(z)) � {0}. The function f : N! [0, 1] is also continuous by Fact 1 and we

have f(z) ¼ 1 and f(F) � {0} so complete regularity is verified at all points of P.
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Now take any z¼ (x, 0) 2 L. Given a closed F� N with z =2 F, there exists n 2 N
such that Un(z) \ F ¼ ;. Consider the set C ¼ {(a, b) 2 R2 : ða� xÞ2þ
ðb� 1

nÞ2b 1
n2gnfzg endowed with the topology induced from N0. In other words,

C is a closed circle centered at ðx; 1nÞ of radius 1
n without the point z. We will

need the subspaces E ¼ fða; bÞ 2 R2 : ða� xÞ2 þ ðb� 1
nÞ2 ¼ 1

n2gn fzg and

D ¼ fða; bÞ 2 R2 : ða� xÞ2 þ ðb� 1
2nÞ2b 1

4n2gnfzg of the space C. It is clear that

E and D are closed and disjoint in C. The space C is normal being second countable

(see Problems 209 and 231) and hence there is a continuous function g : C! [0, 1]

such that g(E)� {0} and g(D)� {1} (Problem 031). Define a function f : N! [0, 1]

by f(z) ¼ 1, f(t) ¼ g(t) for all t 2 C and f(t) ¼ 0 for all t 2 N \Un(z). Since F � N
\Un(z), we have f(F)� {0}. Thus, to finish the proof of the Tychonoff property of N,
we must only show that f is continuous.

The function f is continuous at z because D [ {z} contains z in its interior and f(D
[ {z})¼ {1}. Take any t 2 N \ (C [ {z}). The set C [ {z} is a closed circle of radius
1
n centered at w ¼ x; 1n

� �
so dðt;wÞ ¼ r > 1

n. If s ¼ r � 1
n then the set Bd(w, s) is open

in N0 and does not meet C [ {z}. This shows that the set C [ {z} is closed in N0 and
hence in N. The set W ¼ N \ (C [ {z}) is open in N and f(W) ¼ {0}. Therefore f is
continuous at any point of W.

Note that the set P is open in N because for any t¼ (a, b) 2 P we have Un(t)� P
for everyUn(t) 2 Bz. Therefore continuity of f at every point of t 2 P is equivalent to

continuity of fjP at the point t. By Fact 1 it suffices to prove continuity of fjP0 at
every point t 2 C. If t 2Un(z) \ {z} then f is continuous at t becauseW¼Un(z) \ {z} is
an open subset of P0 and fjW¼ gjW and the function g is continuous. Finally, if t 2 E
then, by continuity of g, for any e> 0 there is V0 2 t(C) such that t 2 V0 and g(V0)�
[0, e). Take any V 2 t(P0) such that V \ C ¼ V0 and observe that f(V \C) ¼ {0} and

therefore f(V) � [0, e) so f is continuous at the point t. This proves that N is

Tychonoff.

To finish the proof of (ii) we must show that N is separable. Since P is dense in N,
it suffices to prove that P is separable. Note that P is homeomorphic to P0; the same

map id : P! P0 is a homeomorphism. To see this we must only show that id : P0 ! P
is continuous. This follows from the fact that the family B ¼S{Bt : t 2 P} is a base
in P and id�1(U) ¼ U is an open circle which is open in P0. Applying Problem 009

(ii) we conclude that id : P0 ! P is continuous and hence P is homeomorphic to P0.
Since P0 �R2, we have d(P0)bo(P0)bo (see Problems 209 and 156(i)). Thus P is

separable and hence so is N.
(iii) We already saw that L is closed. Since U1(z) \ L ¼ {z} for each z 2 L, the

subspace L is discrete. Since jLj ¼ c, we have ext(N) ¼ c. Applying Problem 164,

we can conclude that N is not normal.

(iv) Since N is not normal, it cannot be metrizable (Problem 231). To see that N
is locally metrizable, take any z 2 N. If z 2 P then any W ¼ Un(z) 2 Bz is an open

neighbourhood of z and lies in a metrizable space P0. Thus W is metrizable and

hence N is locally metrizable at z. Now take any z 2 L. The space P is separable and

metrizable so we can fix a countable base C in P. It is clear that the family C [ Bz is a
base in the space P[{z} and therefore P[{z} is a second countable (and hence
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metrizable) neighbourhood of z. This proves that N is locally metrizable and our

solution is complete.

S.234. Prove that any paracompact locally metrizable space is metrizable.

Solution. Let X be a paracompact locally metrizable space. For each x 2 X fix a

metrizable Ux 2 t(x, X) and find a locally finite closed refinement F ¼ {Fs : s 2 S}
of the open cover {Ux : x 2 X} of the space X. It is evident that Fs is metrizable for

each s 2 S.

Fact 1. Suppose that Yt is a metrizable space for each index t 2 T. Then the space

Y ¼ L {Yt : t 2 T} is metrizable (see Problem 113 for the definition of the discrete

union).

Proof. For each t 2 T fix a base Bt in the space Yt such that Bt ¼
S fBnt : n 2 og and

each Bnt is a discrete family (see Problem 221). We will identify each Yt with the

respective clopen summand of Y. Then the family Bn ¼
S fBnt : t 2 Tg is discrete

for each n 2 o and B ¼ S{Bn : n 2 o} is a base in Y. Applying Problem 221 once

more we can conclude that Y is metrizable. Fact 1 is proved.

For each s 2 S let is : Fs ! X be the respective identity map, i.e., is(x) ¼ x for

each s 2 S. The space F ¼ L {Fs : s 2 S} is metrizable by Fact 1. We also identify

each Fswith the respective clopen subspace of F. Given x 2 F take s 2 Swith x 2 Fs

and let f(x)¼ is(x). The resulting map f : F! X is perfect. Indeed, the family F is a

cover of X which implies that f is onto. Since F is point-finite, every f�1(x) is finite
and hence compact. Given a closed P � X we have f�1(P) ¼ S{P \ Fs : s 2 S}
(here each Fs is considered to be the respective subspace of F). The last set is closed
in F because each P \ Fs is closed and the family {P \ Fs : s 2 S} is discrete in F.
This shows that the map f is continuous.

To finally see that f is closed, take any closed Q � F. Then Q \ Fs is closed for

each s 2 S and henceS{Q \ Fs : s 2 S} is closed in X (here each Fs is considered to

be the respective subspace of X) because the family {Q \ Fs : s 2 S} is locally finite
and hence closure-preserving (Fact 2 of S.221). Since f(Q)¼S{Q \ Fs : s 2 S}, we
proved that the map f is closed and hence perfect. A perfect image of a metrizable

space is metrizable (Problem 226) so our solution is complete.

S.235. Let N be the Niemytzki plane. Prove that ext(Cp(N)) ¼ c. Deduce from this
fact that Cp(N) is not normal.

Solution. For any t 2 [0, 1], we will define a (discontinuous) function ft : R! R.
First let ft(x) ¼ 0 for any x 2 (�1, �1) [ [�t, 0) [ [t, þ 1). If x 2 [�1, �t) then
ftðxÞ ¼ � 1

tþx and ftðxÞ ¼ 1
t�x for all x 2 [0, t).

Fact 1. The set D ¼ {ft : t 2 [0, 1]} is closed and discrete in RR.

Proof. Observe that ft(t) ¼ ft(�t) ¼ 0 for all t 2 [0, 1]. Given s > t we have

fsðtÞ ¼ 1
s�t r

1
s r 1. If s < t then fsð�tÞ ¼ � 1

s�t ¼ 1
t�s r

1
t r 1. As a consequence,

the set Vt ¼ ff 2 RR : ff ðtÞ; f ð�tÞg � ð�1
2
; 1
2
Þg is open in RR and Vt \ D ¼ {ft}

which shows that D is discrete.
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Let h be the function equal to zero at all points of R. Note that h 2 V1 and V1 \
D ¼ {f1} 6¼ h. This shows that h =2D. Suppose now that g 2 DnD and g 6¼ h. It is
evident that g(x) r 0 for all x 2 R.
Claim. Suppose that x0 2 [0, 1), g(x0) > 0 and g(x0) ¼ ft(x0) for some t 2 [0, 1].

Then g(x) ¼ ft(x) for any x 2 [0, 1). Analogously, if x0 2 [�1, 0), g(x0) > 0 and

g(x0) ¼ ft(x0) for some t 2 [0, 1], then g(x) ¼ ft(x) for any x 2 [�1, 0).
Proof of the Claim. Let x02 [0, 1). Then gðx0Þ ¼ ftðx0Þ ¼ 1

t�x0 and x0< t. Take any x2
[0, t) for which g(x) 6¼ ft(x) and consider e ¼ jg(x) � ft(x) j > 0. If d > 0 and

jfsðx0Þ � ftðx0Þj ¼ j 1
s�x0 � 1

t�x0j< d then jt� sj< djðs� x0Þðt� x0Þjb d. If d is suffi-
ciently small and j t� s j< d then j (s� x)(t� x)jrA> 0,whereA is a constantwhich

does not depend on d. For such d we have jfsðxÞ � ftðxÞj ¼ jt�sj
jðs�xÞðt�xÞj<

d
A. This proves

that for a sufficiently small d> 0 we have jfsðxÞ � ftðxÞj< e
2
for any s 2 (t� d, tþ d).

Observe that g 2 D implies that, for the found d > 0, there is an s 2 [0, 1] such

that jfs(x0)� g(x0)j ¼ jfs(x0)� ft(x0)j< d and jfsðxÞ � gðxÞj< e
2
. We saw already that

js � tj < d and hence jfsðxÞ � ftðxÞj< e
2
. Therefore e ¼ jg(x) � ft(x)j b jg(x) � fs(x)j

þ jfs(x) � ft(x)j < e
2
þ e

2
¼ e which is a contradiction proving that g(x) ¼ ft(x)

for all x 2 [0, t). We must also show that g(x) ¼ 0 for all x r t. Suppose not. Since
fs(x) ¼ 0 or fsðxÞ ¼ 1

s�xr
1

1�x for each s 2 [0, 1], we have gðxÞr 1
1�x ¼ f1ðxÞ. Thus

there exists s 2 [0, 1] with fs(x) ¼ g(x). Evidently, s 6¼ t. The first part of the

proof of this claim shows that fs(y) ¼ g(y) for all y 2 [0, s) and hence

gð0Þ ¼ fsð0Þ ¼ 1
s ¼ ftð0Þ ¼ 1

t whence s ¼ t, a contradiction. The case x0 2 [0, 1) is

settled and the proof is analogous for x0 2 [�1, 0). The claim is proved.

Returning to the proof of Fact 1 observe that g(x0) > 0 for some x0 2 [�1, 1).
Suppose first that x0r 0. We already saw that ft(x0)¼ 0 or ftðx0Þ r 1

1�x0 for each t 2
[0, 1] which means gðx0Þ r 1

1�x0. This implies that g(x0)¼ ft(x0) for some t 2 [0, 1].

Our claim shows that g(x) ¼ ft(x) for each x r 0 and, in particular, g(t) ¼ 0. If

g(�t) ¼ 0 then g 2 Vt and Vt \ D has only one point which contradicts g 2 DnD.
Therefore g(�t) > 0 and there is s 6¼ t with g(�t) ¼ fs(�t). Applying again our

claim we conclude that g(x) ¼ fs(x) for any x < 0.

If x0 < 0 the same reasoning shows that there are distinct s, t 2 [0, 1] such that

g(x) ¼ fs(x) for all x < 0 and g(x) ¼ ft(x) for every x r 0. Now observe that g 2 D
implies that for any e > 0 there exists o 2 [0, 1] with jfw(�1) � g(�1)j < e and
jfw(0) � g(0)j < e. In other words j 1

1�w� 1
1�sj< e and j1t � 1

wj< e. However, these
inequalities cannot both be fulfilled for sufficiently small e because they imply

jw � sj < e and jw � tj < e which gives a contradiction for e< js�tj
3
. Fact 1 is

proved.

Now let N be the Niemytzki plane. We will use the notation from Problem 233.

Let L ¼ {(x, 0) : x 2 R} � N and P ¼ N \L. We will denote by N0, L0 and P0 the
respective sets N, L and P with the topology induced from R2.

Fact 2. For every number t 2 [0, 1] there exists a function gt 2 Cp(N) such that

ft ¼ gtjL. The functions ft are the ones from Fact 1 and we identify the sets L and R
considering (x, 0) 2 L and x 2 R to be the same point.
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Proof. Given any z ¼ (x, 0) 2 L and n 2 N, consider the set Cn(z) ¼ {(a, b) 2 R2 :

ða� xÞ2 þ ðb� 1
nÞ2 b 1

n2gnfzg. In other words, Cn(z) is a closed circle centered

at the point x; 1n
� �

of radius 1
n without the point z. Fix any t 2 [0, 1] and pick n 2 N

such that the sets Cn(�1), Cn(�t), Cn(0) and Cn(t) are disjoint. Denote by Pt the set

{�1,�t, 0, t}� L. The set F¼ (L0 \Pt) [ Cn(�1) [ Cn(�t) [ Cn(0) [ Cn(t) is closed
in the normal space N0 \Pt. Let ’t(z) ¼ ft(z) if z 2 L and ’t(z) ¼ 0 for all z 2 Cn(�1)
[ Cn(�t) [ Cn(0) [ Cn(t). It is easy to see that ’t is a continuous function on F. By
normality of N0 \Pt there exists Ft 2 C(N0 \Pt) with FtjF ¼ ’t. Finally, let gt(z) ¼
Ft(z) for any z 2 N0 \Pt and gt(z) ¼ 0 if z 2 Pt. The function gt is as promised.

Indeed, it is evident that gtjL ¼ ft so we only have to check that gt is continuous
on N. Now gt is continuous at every point of N

0 \Pt and hence at every point of N \Pt

(Fact 1 of S.233). But gt is also continuous (in N!) at all points of Pt because every z
2 Pt has a neighbourhood on which gt is identically zero. This finishes the proof of

Fact 2.

Now it is easy to finish our solution. The restriction map pL : Cp(N) ! RL is

continuous and pL(Cp(N)) � D ¼ {ft : t 2 [0, 1]} by Fact 2. The set D is closed and

discrete in pL(Cp(N)) by Fact 1 and pL(H) ¼ D where H ¼ {gt : t 2 [0, 1]}. It is

immediate from the equality pL(H)¼ D that H is closed and discrete in Cp(N). This
proves that ext(Cp(N)) ¼ c. Since iw(N) ¼ o (Problem 233(ii)), the space Cp(N)
is separable (Problem 174). Now apply Problem 164 to conclude that Cp(N) is not
normal. Our solution is complete.

S.236. Let (X, d) be a metric space. Say that a family F of subsets of X has elements
of arbitrarily small diameter if, for any e> 0, there is F 2 F such that diam(F)< e.
Prove that the following properties are equivalent:

(i) (X, d) is complete;
(ii) for every decreasing sequence F1 � F2 � . . . of closed non-empty subsets of

X such that diam(Fi)! 0 when i!1, we have
T
{Fi : i 2 N} 6¼ ;.

(iii) for any centered family F of closed subsets of X which has elements of arbit-
rarily small diameter, we have

TF 6¼ ;.
Solution. Suppose that (X, d) is complete and {Fi : i 2 N} is a decreasing sequence

of non-empty closed sets with diam(Fi) ! 0. Take any xi 2 Fi for all i 2 N. We

claim that the sequence {xi} is fundamental. Indeed, if e > 0 then find m 2 N such

that diam(Fm) < e and take any n, k r m. We have xn 2 Fn � Fm and xk 2 Fk � Fm

which implies d(xn, xk) b diam(Fm) < e. As a consequence, there is x 2 X such

that xi ! x. For any n 2 N we have {xi : i r n} � Fn and therefore x 2 Fn ¼ Fn.

Thus x 2 T{Fn : n 2 N} and (i))(ii) is proved.

Assume that (ii) holds and take any centered family F as in (iii). For each n 2 N
there is Pn 2 F such that diam ðPnÞ<1

n. For each n 2 N consider the set Fn ¼ P1

\ � � � \ Pn. It is clear that {Fn} is a decreasing family of non-empty closed subsets

of X and diam(Fn) b diam ðPnÞ<1
n. Therefore, diam(Fn) ! 0 and hence (ii) is

applicable: there exists x 2 X with x 2 T{Fn : n 2 N} ¼ T{Pn : n 2 N}. We claim

that x 2TF . Indeed, if not then x =2 P for some P 2 F . Take any e > 0 with B(x, e)
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\ P ¼ ; and any n>1
e. We have x 2 Fn � Pn and for any y 2 Pn, we have d(y, x) b

diam ðPnÞ<1
n<ewhence y 2 B(x, e). This shows that Pn� B(x, e) and therefore Pn \

P¼ ;, a contradiction with the fact thatF is centered. This contradiction shows that

x 2 T F and (ii)) (iii) is proved.

Observe that any sequence {Fi} as in (ii) is a centered family as in (iii). This

shows that (iii))(ii).

Fact 1. Let A be any subset of a metric space (Y, r). Then diamrðAÞ ¼ diamrðAÞ.
Proof. It is absolutely evident that a larger set has a greater diameter which implies

s ¼ diamrðAÞb diamrðAÞ. Now, if e > 0 and x; y 2 A then there are a, b 2 A with

rðx; aÞ< e
2
and rðy; bÞ< e

2
. Therefore

rðx; yÞb rðx; aÞ þ rða; bÞ þ rðb; yÞ< diamrðAÞ þ e:

Since x, y were chosen arbitrarily, we have diamrðAÞ b diamrðAÞ þ e. The number

e > 0 being arbitrary we have diamrðAÞ b diamrðAÞ and Fact 1 is proved.

Returning to our solution, assume that the property (ii) holds and take any

fundamental sequence {xn : n 2 o} � X. Let Fn ¼ fxk : krng for all n 2 o. It is
clear that {Fn} is a decreasing sequence of non-empty closed sets. Given e > 0

there ism 2o such that d(xn, xk)< e for each n, krm. This means exactly that diam

({xn : nr m} )b e and hence diam(Fm) < e by Fact 1. Of course, diam(Fn) b diam

(Fm) b e for each n r m and this shows that diam(Fn)! 0.

Applying (ii) we conclude that there exists x 2 T{Fn : n 2 o}. To show that

xn! x, take any e > 0. There exists m 2 o with diam(Fm) < e. Thus for any n r m
we have x 2 Fn� Fm and xn 2 Fn� Fmwhence d(x, xn)b diam(Fm)< e. We proved

that xn! x so (ii))(i) holds and our solution is complete.

S.237. Show that every metric space X is isometric to a dense subspace of a
complete metric space ~X, which is called the completion of X.

Solution. We will need the following fact.

Fact 1. Let (X, d) be a complete metric space. Then for any closed F� X the metric

space (F, dF) is complete where dF ¼ dj(F � F).

Proof. If S ¼ {xn} � F is a fundamental sequence then S is fundamental considered

as a sequence in X. Therefore xn! x for some x 2 X. It is clear that x 2 F ¼ F and

therefore {xn} converges to x 2 F considered as a sequence in F. Fact 1 is proved.

Fact 2. Let X be an arbitrary space. Given any functions f, g 2 C�(X) let r(f, g) ¼
sup{jf(x) � g(x)j : x 2 X}. Then r is a complete metric on C�(X).

Proof. There exists K 2R such that jf(x)jb K and jg(x)jb K for all x 2 X. Therefore
jf(x) � g(x)j b jf(x)j þ jg(x)j b 2K and hence r(f, g) is well defined. Let us check
that r is a metric on C�(X). If f ¼ g then f(x) � g(x) ¼ 0 for all x 2 X and hence

r(f, g) ¼ 0. If r(f, g) ¼ 0 then f(x) � g(x) ¼ 0 for all x 2 X which implies f ¼ g so

(MS1) holds for r. The axiom of symmetry holds for r because jf(x) � g(x)j ¼
jg(x) � f(x)j for all x 2 X. Finally, if f, g, h 2 C�(X) then, for any x 2 X, we have
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jf(x)� h(x)jb jf(x)� g(x)j þ jg(x)� h(x)jb r(f, g)þ r(g, h). Since r(f, g)þ r(g, h)
does not depend on x, we can pass to the supremum in the last inequality obtaining

r(f, h) b r(f, g) þ r(g, h) i.e., the triangle inequality also holds for r. Hence r is a

metric on C�(X) and we only have to verify that r is complete.

Let {fn : n 2 o} be a Cauchy sequence in (C�(X), r). Given an arbitrary x 2 X
and e > 0 there is m 2 o such that r(fn, fk) < e for all n, k r m. Therefore jfn(x) �
fk(x)j b r(fn, fk) < e and hence the numeric sequence {fn(x)} is fundamental in

R with the usual metric. Since R is complete (Problem 205), the sequence {fn(x)}
converges to a number we will call f(x). To finish the proof of Fact 2 it suffices to

show that f is a limit of the sequence {fn} in the space (C�(X), r).
Given e > 0 there exists m 2 o such that r(fn, fk) < e

2
for all n, k r m. As a

consequence, we have jfn(x)� fk(x)jb r(fn, fk)< e
2
for all x 2 X. Taking the limit of

the sequence {fk(x)} when k!1 we obtain jfn(x)� f(x)jb e
2
< e for any nr m and

x 2 X. This proves that the sequence {fn} converges uniformly to f and hence f is
continuous (Problem 029).

By uniform convergence of {fn} there is m 2o such that jfm(x)� f(x)j< 1 for all

x 2 X. The function fm is bounded so there is K 2 R such that jfm(x)j < K for all

x 2 X. Therefore jf(x)j b jfm(x)j þ 1 < K þ 1 for every x 2 X which proves that f is
also a bounded function, i.e., f 2 C�(X).

Let U be an open set in (C�(X), t(r)) with f 2 U. There is e > 0 such that Br(f, e)
�U. Since fn !! f, there ism 2o such that jfn(x)� f(x)j< e

2
for all x 2 X and nrm.

It is immediate from the definition of r that r(fn, f) b e
2
< e and hence fn 2 Br(f, e)

� U for all n r m. Hence fn! f in the space (C�(X), r) and our proof of Fact 2 is

complete.

Returning to our solution, take any metric space (X, d) and fix a point a 2 X. For
any x 2 X let ’(x)(z) ¼ d(z, x) � d(z, a) for all z 2 X. This gives us a function ’(x) :
X! R. Since d is continuous (Problem 202), the map ’(x) is continuous for each x
2 X. By triangle inequality, we have d(a, z) b d(a, x) + d(x, z) and therefore ’(x)(z)
¼ d(z, x)� d(z, a)r� d(a, x) for any z 2 Z. Analogously, d(x, z)b d(x, a)þ d(a, z)
which shows that ’(x)(z) ¼ d(x, z) � d(z, a) b d(a, x) for all z 2 X. We proved that

�d(a, x) b ’(x)(z) b d(a, x) for all z 2 X, i.e., ’(x) is a bounded function.

Consequently ’ : X ! C�(X). We will prove that ’ is an isometry of (X, d) onto
(Y, rY), where Y ¼ ’(X) and rY ¼ rj(Y � Y). Here r is the metric on C�(X)
introduced in Fact 2.

It suffices to show that r(’(x), ’(y)) ¼ d(x, y) for any x, y 2 X. Given any z 2 X
we have

j’(x)(z)� ’(y)(z)j ¼ jd(z, x)� d(z, a)� d(y, z)þ d(z, a)j ¼ jd(z, x)� d(z, y)jb d
(x, y), and therefore we have r(’(x), ’(y))b d(x, y). On the other hand, the equality
j’(x)(y) � ’(y)(y)j ¼ d(x, y) implies that d(x, y) b r(’(x), ’(y)). Thus r is an

isometry and the space Y is a dense subspace of the space ~X ¼ Y (the closure is

taken in (C�(X), t(r))), which is complete by Facts 1 and 2. Since (X, d) is isometric

to (Y, rY), our solution is finished.
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S.238. Let A be a dense subset of a metric space (X, d). Suppose that (Y, r) is a
complete metric space, B � Y and ’ : A! B is an isometry. Prove that there exists
an isometry f : X! Y0 � Y such that fjA ¼ ’.

Solution. Let us formulate the following easy fact for further references.

Fact 1. Suppose that X is a space, {xn} � X and xn! x. If f : X! Y is a continuous

map then f(xn)! f(x).

Proof. An easy exercise.

Take any x 2 X. Since x 2 A, there is a sequence {an(x)} � A with an(x) ! x
(Problem 210). The sequence {’(an(x))} has to be fundamental because it

is isometric to the convergent sequence {an(x)} and any convergent sequence is

fundamental. The space (Y, r) is complete and hence there is y 2 Y such that

’(an(x))! y. Letting ’(x)¼ ywe obtain a function f : X! Y. Let us show that f is

as promised.

(1) fjA ¼ ’. For any x 2 A we have an(x) ! x and hence ’(an(x)) ! ’(x) by
continuity of ’ and Fact 1. We also have ’(an(x))! f(x) by definition of f(x).
It is easy to see that a convergent sequence in a Hausdorff space has only one

limit, so f(x) ¼ ’(x) and hence fjA ¼ ’.
(2) r(f(x), f(y)) ¼ d(x, y) for any x, y 2 X. Let zn ¼ (an(x), an(y)) 2 X � X for all

n 2 o. It is clear that zn! z ¼ (x, y) so d(an(x), an(y))! d(x, y) by continuity

of d (Problem 202) and Fact 1. Now, r(’(an(x)), ’(an(y))) ! r(f(x), f(y))
by continuity of r and Fact 1. Noting that r(’(an(x)), ’(an(y))) ¼ d(an(x),
an(y))! d(x, y) we convince ourselves that r(f(x), f(y)) ¼ d(x, y).

Letting Y0; ¼ f(X) � Y we have the promised isometry f : X ! Y0, so our

solution is complete.

S.239. Let (X, d) and (Y, r) be complete metric spaces. Suppose that A is dense in X,
and B is dense in Y. Prove that any isometry between A and B (with the metrics
induced from X and Y, respectively) can be extended to an isometry between (X, d)
and (Y, r). In particular, the completion ~X of a metric space X is unique in the sense
that if Z is another completion of X then there is an isometry between ~X and Z which
is the identity restricted to the respective copies of X.

Solution. Let f : A! B be an isometry. It is evident that f is a bijection and g¼ f�1 :
B! A is also an isometry. Apply Problem 238 to obtain an isometry F : X! Y0 � Y
such that FjA ¼ f. It suffices to prove that Y’ ¼ Y so take any y 2 Y. Since y 2 B,
there is a sequence {bn : n 2 o} � B with bn! y. If we let an ¼ g(bn) for all n 2 o
then the sequence {an} is fundamental being isometric to the convergent (and hence

fundamental) sequence {bn}. The space (X, d) being complete there is x 2 X with

an! x. Being an isometry the map F is continuous which implies F(an)! F(x) and
bn ¼ f(an) ¼ F(an)! y whence F(x) ¼ y. The point y was chosen arbitrarily so F is

an isometry between (X, d) and (Y, r).
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To finish our proof suppose that i : X ! M and j : X ! L are isometries, the

spacesM and L are complete (with their respective metrics) and the images i(X) and
j(X) are dense in M and L, respectively. The map f ¼ j 	 i�1 : i(X) ! j(X) is an
isometry, so we can apply what we proved before to the sets A ¼ i(X) and B ¼ j(X)
to obtain an isometry F :M! L such that Fji(x) ¼ f. If we identify X with i(X) and
j(X) then F is an isometry between M and L such that FjX is an identity.

S.240. Given metric spaces (X, d) and (Y, r), call a map f : X! Y a contraction if
there is k 2 (0, 1) such that r(f(x), f(y))b k · d(x, y) for any x, y 2 X. Prove that any
contraction is a uniformly continuous map.

Solution. Given e > 0 let d ¼ e
k. If x, y 2 X are arbitrary points with d(x, y)< d then

r(f(x), f(y)) b k · d(x, y) < k · d ¼ e and we are done.

S.241. Let (X, d) be a complete metric space. Prove that if f : X! X is a contraction,
then it has a unique fixed point, i.e., there is a unique x 2 X such that f(x) ¼ x.

Solution. Let k 2 (0, 1) be the coefficient of contraction for the function f, i.e.,
d(f(a), f(b)) b k · d(a, b) for all a, b 2 X. Fix any point x0 2 X and consider

the sequence x1 ¼ f(x0), x2 ¼ f(x1), . . . , xnþ1 ¼ f(xn) and so on. The sequence

{xn : n 2 o} being constructed, let us establish that

(�) d(xn, xnþ1) b kn · d(x0, x1) for all n 2 N.
We will prove the property (�) by induction on n 2 N. Note that we have

d(x1, x2) ¼ d(f(x0), f(x1)) b k · d(x0, x1) which proves (�) for n ¼ 1. Now, assume

that we proved the inequality (�) for n¼m. Then d(xmþ1, xm+2¼ d(f(xm), f(xmþ1))b k
· d(xm, xmþ1)b k · km · d(x0, x1)¼ km+1 · d(x0, x1) and (�) is proved for n¼mþ 1 and

hence it holds for all n 2 N.
Applying (�) we obtain the following property:

ð��Þ
dðxm; xmþpÞb dðxm; xmþ1Þ þ dðxmþ1; xmþ2Þ þ � � � þ dðxmþp�1; xmþpÞ

b ðkm þ kmþ1 þ � � � þ kmþp�1Þ � dðx0; x1Þ
¼ km � 1�kp

1�k � dðx0; x1Þ b km

1�k � dðx0; x1Þ;

for any m, p 2 N. We are now in position to prove that the sequence {xn} is

fundamental. Given any e > 0 there exists m 2 N such that kn

1�k � dðx0; x1Þ<e for all
n r m. For any n, k r m such that n < k apply (��) to m ¼ n and p ¼ k � n to

conclude that dðxn; xkÞb kn

1�k � dðx0; x1Þ<e. Thus the sequence {xn} is fundamental.

Since (X, d) is complete, there is x 2 X such that xn ! x. The map f being
continuous, we have xnþ1 ¼ f(xn) ! f(x) whence x ¼ f(x), i.e., x is a fixed point

of the function f.
Finally, to see that x is a unique fixed point, suppose that f(y)¼ y for some y 2 X.

Then d(x, y) ¼ d(f(x), f(y)) b k · d(x, y) which immediately implies d(x, y) ¼ 0, i.e.,

x ¼ y so our solution is complete.

S.242. Let (X, d) be a compact metric space. Prove that, for any metric space (Y, r)
and any continuous f : X! Y, the map f is uniformly continuous.

202 2 Solutions of Problems 001–500



Solution. Take any e > 0 and consider the open cover U ¼ Br y; e
2

� �
: y 2 Y

� �
of

the space Y. The family V ¼ {f�1(U) : U 2 U} is an open cover of X. For each x 2 X
fix d(x) > 0 such that Bd(x,2d(x)) � V for some V 2 V. There exist x1, . . . , xn 2 X
such that X ¼ Bd(x1, d(x1)) [ � � � [ Bd(xn, d(xn)). The number d ¼ min{d(x1), . . . ,
d(xn)} is as required. Indeed, suppose that d(a, b)< d. There exists ib n such that a
2 Bd(xi, d(xi)). Then d(xi, b) b d(xi, a) þ d(a, b) < d(xi) þ d b 2d(xi) and therefore

a, b 2 Bd(xi, 2d(xi)) � V for some V 2 V. Take U ¼ Br y; e
2

� � 2 U such that V ¼
f�1(U) and observe that f ðaÞ; f ðbÞ 2 Brðy; e2Þ implies rðf ðaÞ; f ðbÞÞb rðf ðaÞ; yÞþ
rðy; f ðbÞÞ< e

2
þ e

2
¼ e and our solution is complete.

S.243. Let (X, d) be a metric space such that, for any metric space (Y, r), any
continuous map f : X! Y is uniformly continuous. Must X be a compact space?

Solution. No, X need not be compact. Consider X ¼ D(o) with the metric d defined
by d(x, y) ¼ 0 if x ¼ y and d(x, y) ¼ 1 otherwise. Then d generates the discrete

topology of X (Problem 204) and X is not compact. Now take any metric space

(Y, r), any map f : X ! Y and any e > 0. If d ¼ 1
2
and d(x, y) < d then x ¼ y and

therefore r(f(x), f(y)) ¼ 0 < e which shows that f is uniformly continuous.

S.244. Let (X, d) be a compact metric space. Prove that, for any open cover U of the
space X, there is a number d¼ d(U)> 0 such that for each A� X with diamd(A)< d
there exists a set U 2 U such that A � U. The number d(U) is called the Lebesgue
number of the cover U.
Solution. For any x 2 X fix d(x) > 0 such that B(x, 2d(x)) � U for some U 2 U .
Find x1, . . . , xn 2 X such that X ¼ B(x1, d(x1)) [ � � � [ B(xn, d(xn)) and consider d
¼ min{d(x1), . . . , d(xn)} > 0. The number d ¼ d(U) is as required. Indeed, take
any set A � X with diam d(A) < d. If A ¼ ; then there is nothing to prove. If not,

fix a point x 2 A; there is i b n such that x 2 B(xi, d(xi)); by our choice of d(xi)
there is U 2 U such that B(xi, 2d(xi)) � U. We have d(xi, y) b d(xi, x) þ d(x, y) <
d(xi) þ d b 2d(xi) and hence y 2 B(xi, 2d(xi)) � U for any y 2 A so A � U and

we are done.

S.245. Let (X, d) and (Y, r) be metric spaces. A set F � C(X, Y) is called
equicontinuous at a point x 2 X if, for any e > 0, there is d > 0 such that
f(Bd(x, d)) � Br(f(x), e) for every f 2 F . The set F is called an equicontinuous
family if it is equicontinuous at every x 2 X. Prove that every finite F � C(X, Y) is
equicontinuous.

Solution. Let F ¼ {f1, . . . , fn}. Given a point x 2 X and e> 0 we can find, for each

i b n, a positive di such that fi(Bd(x, di)) � Br(fi(x), e). To show that d ¼ min{di :
i b n} is as promised take an arbitrary i b n and observe that fi(Bd(x, d))
� fi(Bd(x, di)) � Br(fi(x), e).

S.246. Given metric spaces (X, d) and (Y, r), a set F � C(X, Y) is called
a uniformly equicontinuous family if, for any e > 0, there exists d > 0 such
that, for any x, y 2 X with d(x, y) < d, we have r(f(x), f(y)) < e for all f 2 F .
Prove that
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(i) Every subset of a uniformly equicontinuous set is uniformly equicontinuous;
(ii) If F is uniformly equicontinuous then every f 2 F is uniformly continuous;
(iii) A finite set of maps F is uniformly equicontinuous if and only if each f 2 F is

uniformly continuous.

Solution. (i) If G � F and e > 0 then there is d > 0 such that d(x, y) < d implies

r(f(x), f(y)) < e for all f 2 F and, in particular, for all f 2 G. Thus G is uniformly

equicontinuous.

(ii) Fix f0 2 F and e > 0. There exists a number d > 0 such that d(x, y) < d
implies r(f(x), f(y)) < e for all f 2 F . In particular, d(x, y)< d implies r(f0(x), f0(y))
< e and hence f0 is uniformly continuous.

(iii) If a set F is uniformly equicontinuous then each f 2 F is uniformly

continuous by (ii). Now suppose that F ¼ {f1, . . . , fn} and each fi is uniformly

continuous. Fix e > 0 and find, for each i b n, a positive di such that x, y 2 X and

d(x, y) < di implies r(fi(x), fi(y)) < e. The number d ¼ min{di : i b n} > 0 is as

needed because if d(x, y) < d then, for any ib n, we have d(x, y) < di and therefore
r(fi(x), fi(y)) < e. This proves that F is uniformly equicontinuous.

S.247. Let (X, d) be a compact metric space. Given a metric space (Y, r) and an
equicontinuous family F � C(X, Y), prove that F is uniformly equicontinuous.

Solution. Fix any e > 0 and find, for any x 2 X, a positive d(x) such that

f(Bd(x, d(x))) � Br(f(x),
e
2
) for any f 2 F . The family U ¼ {Bd(x, d(x)) : x 2 X} is

an open cover of the compact space X. Apply Problem 244 to find d > 0 such that

d(x, y) < d implies {x, y} � U for some U 2 U . We claim that d witnesses the

uniform equicontinuity ofF . Indeed, take any f 2F . If a, b 2 X and d(a, b)< d then
there is U ¼ B(x, d(x)) 2 U such that {a, b} � U. By definition of U we have {f(a),
f(b)} � f(U) � Br(f(x),

e
2
) and therefore r(f(a), f(b)) b r(f(a), f(x)) þ r(f(x), f(b)) <

e
2
þ e

2
¼ e and our solution is over.

S.248. Suppose that X is a space and (Y, r) is a (complete) metric space. For any
functions f, g 2 C�(X, Y) let s(f, g) ¼ sup{r(f(x), g(x)) : x 2 X}. Show that s is a
(complete) metric on C�(X, Y). It is called the metric of uniform convergence.

Solution. Given any f, g 2 C�(X, Y) the sets f(X) and g(X) are bounded in (Y, r).
Consequently, there exist y, z 2 Y and r, s > 0 such that f(X) � B(y, r) and g(X) �
B(z, s). This means r(f(x), g(x)) b r(f(x), y) þ r(y, z) þ r(z, g(x)) < K ¼ r þ s þ
r(y, z). Since K does not depend on x 2 X, we have r(f(x), g(x)) < K and therefore

s(f, g) b K <1, i.e., s(f, g) is well defined for all f, g 2 C�(X, Y).

Let us check that s is a metric on C�(X, Y). If f ¼ g then r(f(x), g(x)) ¼ 0 for all

x 2 X and hence s(f, g) ¼ 0. If s(f, g) ¼ 0 then r(f(x), g(x)) ¼ 0 for all x 2 X which

implies f(x)¼ g(x) for all x 2 X and hence f¼ g. This proves that (MS1) holds for s.
The axiom of symmetry holds for s because r(f(x), g(x)) ¼ r(g(x), f(x)) for all
x 2 X. Finally, if f, g, h 2 C�(X, Y) then, for any x 2 X, we have r(f(x), h(x))b r(f(x),
g(x)) þ r(g(x), h(x)) b s(f, g) þ s(g, h). Since s(f, g) þ s(g, h) does not depend on
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x, we can pass to the supremum in the last inequality obtaining s(f, h) b s(f, g) þ
s(g, h) i.e., the triangle inequality also holds for s and hence s is a metric on

C�(X, Y).
Let (Z, d) be a metric space. If T is an arbitrary space and hn : T! Z is a function

for each n 2o, say that the sequence {hn} converges uniformly to a function h : T!
Z if, for any e> 0 there is m 2 o such that d(hn(x), h(x))< e for all x 2 T and nr m.
This will also be denoted by hn !! h.

Fact 1. Suppose that T is a space and (Z, d) is a metric space. Assume that hn 2
C(T, Z) of each n 2 o and hn!! h for some h : T ! Z. Then the function h is

continuous.

Proof. We will show that h is continuous at every point t 2 T. Take any e > 0 and

find m 2 o such that dðhnðyÞ; hðyÞÞ< e
3
for all nr m and any y 2 T. The function hm

is continuous at t so there exists U 2 t(t, T) such that hmðUÞ � BdðhmðtÞ; e3Þ.
To prove that h(U) � Bd(h(t), e) take any u 2 U. We have the inequalities

dðhðtÞ; hðuÞÞb dðhðtÞ; hmðtÞÞ þ dðhmðtÞ; hmðuÞÞ þ dðhmðuÞ; hðuÞÞ< e
3
þ e

3
þ e

3
¼ e

which shows that h(U) � Bd(h(t), e) and therefore h is continuous at t. The point

t was chosen arbitrarily so h is continuous and Fact 1 is proved.

Now suppose that the metric space (Y, r) is complete. Let {fn : n 2 o} be a

Cauchy sequence in (C�(X, Y), s). Given an arbitrary x 2 X and e> 0 there is m 2 o
such that s(fn, fk) < e for all n, k r m. Therefore r(fn(x), fk(x)) b s(fn, fk) < e and
hence the sequence {fn(x)} � Y is fundamental in (Y, r). Since (Y, r) is complete,

the sequence {fn(x)} converges to some y ¼ f(x) 2 Y. To finish our solution it

suffices to show that f 2 C�(X, Y) and f is a limit of the sequence {fn} in the space

(C�(X, Y), s).
Given e > 0 there exists m 2 o such that sðfn; fkÞ< e

2
for all n, k r m. As a

consequence, we have rðfnðxÞ; fkðxÞÞb sðfn; fkÞ< e
2
for all x 2 X. Taking the limit

of the sequence {fk(x)} when k ! 1 and applying continuity of the metric r
(Problem 202), we obtain rðfnðxÞ; f ðxÞÞb e

2
< e for any nr m and x 2 X. Therefore,

the sequence {fn} converges uniformly to the function f and hence f is continuous by
Fact 1.

By uniform convergence of the sequence {fn} there exists a number m 2 o such

that r(fm(x), f(x)) < 1 for all x 2 X. The function fm is bounded so there is a number

K 2 R such that fm(X)� Br(a, K) for some a 2 X. Therefore, we have the inequalities
r(a, f(x))b r(a, fm(x))þ r(fm(x), f(x))< Kþ 1 for every x 2 Xwhich proves that f(X)
� Br(a, Kþ1), i.e., f is also a bounded function, i.e., f 2 C�(X, Y).

Let U be an open set in (C�(X, Y), t(s)) with f 2 U. There is e > 0 such that

Bs(f, e) � U. Since fn !! f, there is m 2 o such that rðfnðxÞ; f ðxÞÞ< e
2
for all x 2 X

and n r m. It is immediate from the definition of s that sðfn; f Þbe
2
< e and hence fn

2 Bs(f, e)�U for all nr m. Hence fn! f in the space (C�(X, Y), s) and our solution
is complete.

S.249. Let (X, d) be a totally bounded metric space. Suppose that (Y, r) is a metric
space and F � C(X, Y) has the following properties:
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(1) The family F is uniformly equicontinuous.
(2) For any x 2 X, the set F (x) ¼ {f(x) : f 2 F} is totally bounded in (Y, r).

Prove that F � C�(X, Y) and the family F is totally bounded in C�(X, Y). Here
C�(X,Y) is considered with the metric s of uniform convergence.

Solution. It turns out that being a totally bounded set can be expressed as an internal

property.

Fact 1. Let (Z, r) be a metric space. A set A � Z is totally bounded in Z if and only

if the metric space (A, rA) is totally bounded. Here rA is the metric induced from Z,
i.e., rA ¼ rj(A � A).

Proof. Given any z 2 Z and r > 0, we denote by B(z, r) the ball centered at z of
radius r in Z, i.e., B(z, r)¼ {y 2 Z : r(y, z)< r}. If z 2 A then the set BA(z, r)¼ {y 2
A : rA(y, z) < r} is the respective ball in the metric space (A, rA). It is immediate

that BA(z, r) ¼ B(z, r) \ A for any z 2 A and r > 0.

Assume that A is totally bounded in Z. Given e > 0 there exists a finite set F � Z
such that A � S fBðz; e

2
Þ : z 2 Fg. Let {z1, . . . , zn} be an enumeration of all z 2 F

such that Bðz; e
2
Þ \ A 6¼ ;. For each ib n pick ai 2 Bðz; e

2
Þ \ A. The set B ¼ {ai :

ib n}� A is finite and
S
{BA(ai, e) : ib n}¼ A. Indeed, if a 2 A then there is z 2 F

with a 2 Bðz; e
2
Þ. In particular, Bðz; e

2
Þ \ A 6¼ ; and hence z ¼ zi for some i b n.

We have rAðai; aÞ ¼ rðai; aÞbrðai; ziÞ þ rðzi; aÞ < e
2
þ e

2
¼ e. This implies a 2

BA(ai, e) and proves that (A, rA) is totally bounded.

Assume now that (A, rA) is totally bounded. Given any e > 0 there exists a finite

set B � A such that
S
{BA(a, e) : a 2 B} ¼ A. Then

S fBða; eÞ : a 2 Bg � S fBA

ða; eÞ : a 2 Bg ¼ A and hence the same set B witnesses the fact that A is totally

bounded in Z. Fact 1 is proved.

Let us first prove that F � C�(X, Y), i.e., that each f 2 F is bounded. The function

f is uniformly continuous by Problem 246(ii) so there is d > 0 such that a, b 2 X
and d(a, b) < d implies r( f(a), f(b)) < 1. Since the space (X, d) is totally bounded,

there is a finite F� X such that X¼S{Bd(x, d) : x 2 F}. Let K¼max{r( f(x), f(y)) :
x, y 2 F} þ 2 and choose any a 2 F. We claim that f(X) � Br(z, r) where z ¼ f(a)
and r¼ Kþ 2. Indeed, take any x 2 X. There is y 2 F such that d(x, y)< d and hence
r( f(x), f(y)) < 1. Therefore rðz; f ðxÞÞb rðz; f ðyÞÞ þ rðf ðyÞ; f ðxÞÞ < K þ 1 < r
and hence f(X) � Br(z, r) which proves that f is bounded.

Denote by X0 set X endowed with the discrete topology. Then any function f :
X0 ! Y is continuous so C�(X, Y) � C�(X0, Y). If s0 is the metric of uniform

convergence on C�(X0, Y) then s0 induces the metric s of uniform convergence on

the space C�(X, Y). Therefore, the metrics s and s0 induce the same metric ℵ on the

set F . Fact 1 says that total boundedness of F in C�(X, Y) is equivalent to total

boundedness of (F ;@) which in turn is equivalent to total boundedness of F in

C�(X0, Y). Thus it suffices to prove that F is totally bounded in C�(X0, Y).
Take any e > 0. There exists d > 0 such that a, b 2 X and d(a, b) < d implies

rðf ðaÞ; f ðbÞÞ < e
3
for any f 2 F . The space (X, d) being totally bounded there

is a finite set A ¼ {a1, . . . , an} � X such that
S

Bd x; d
2

� �
: x 2 A

� � ¼ X.

206 2 Solutions of Problems 001–500



Let Ui ¼ Bd ai;
d
2

� �
for each ib n. We will need the sets P1¼U1, P2¼U2 \U1, . . . ,

Pn ¼ Un \ (U1 [ � [ Un�1). It is clear that the family H ¼ {Hi : i b n} is disjoint

and
SH ¼ X. Observe that, for any i b n and any a, b 2 Hi � Bd (ai, d/2), we have

d(a, b) < d because dða; bÞb dða; aiÞ þ dðai; bÞ < d
2
þ d

2
¼ d. Recalling the way d

was chosen we obtain

(�) given i b n, we have rðf ðxÞ; f ðyÞÞ < e
3
for any x, y 2 Hi and f 2 F .

Without loss of generality we may assume that Hi 6¼ ; for each ib n because we
can throw away the empty elements of H and enumerate the non-empty ones

obtaining a family of non-empty disjoint sets which still has (�) and whose union

is the space X. Pick xi 2 Hi for all i b n. The set Pi ¼ F (xi) is totally bounded in

(Y, r) by (2) and hence the set P¼S{Pi : ib n} is totally bounded in (Y, r) (it is an
easy exercise to show that a finite union of totally bounded sets is totally bounded).

Therefore we can find a finite T � Y such that

(��) S Br t; e
3

� �
: t 2 T

� � � P.
Let E¼ {g : X0 ! Y : g(X0)� T and g is constant onHi for every ib n}. It is easy

to see that E is finite. Since g(X0) is finite, the function g is bounded for each g 2 E.
Thus E is a finite subset of C�(X0, Y). Now take any f 2 F . For every i b n we have

f(xi) 2 P and hence we can apply (��) to find ti 2 T such that rðti; f ðxiÞÞ < e
3
. Now

let g(x)¼ ti for all x 2 Hi. Having done this for all ib n we obtain a function g 2 E.
Given any point x 2 X there exists i b n with x 2 Hi. We have rðf ðxÞ; gðxÞÞb

rðf ðxÞ; f ðxiÞÞ þ rðf ðxiÞ; gðxÞÞ ¼ rðf ðxÞ; f ðxiÞÞ þ rðf ðxiÞ; gðxiÞÞ < e
3
þ e

3
¼ 2e

3
. The

last inequality takes place because rðf ðxÞ; f ðxiÞÞ < e
3
by (�) and rðf ðxiÞ; gðxiÞÞ ¼

rðf ðxiÞ; tiÞÞ < e
3
by the choice of ti. We proved that rðf ðxÞ; gðxÞÞ < 2e

3
for all x 2 X

and hence s0ðf ; gÞb 2e
3
< e. Therefore f 2 Bs0(g, e) and, the function f 2 F

having been chosen arbitrarily, we have
S
{Bs0(g, e) : g 2 E} � F . This proves

that F is totally bounded in C�(X0, Y) and hence in C�(X0, Y) so our solution is

complete.

S.250. Let X be a compact (not necessarily metrizable) space. Given a metric space
(Y, r), prove that any continuous map f : X ! Y is bounded, i.e., we have the
equality C(X, Y) ¼ C�(X, Y).

Solution. Fix any y 2 Y. The family U ¼ {Br(y, n) : n 2 N} is an open cover of

the compact space f(X)� Y. If g¼ {Br(y, n1), . . . , Br(y, nk)} is a finite subcover of
f(X) then, for n ¼ max{n1, . . . , nk} we have f(X) � S g � Br(y, n) and hence f is
bounded.

S.251. Let (X, d) be a compact metric space. Given a metric space (Y, r) and a family
F � C�(X, Y), prove that F is totally bounded if and only if F is equicontinuous and
F (x) ¼ {f(x) : f 2 F} is totally bounded in (Y, r) for any x 2 X. Here C�(X, Y) is
assumed to be endowed with the metric s of uniform convergence.

Solution. Given e > 0 the open cover {Bd(x, e) : x 2 X} of the compact space X
has a finite subcover. Taking the centers of the balls of this subcover, we

convince ourselves that (X, d) is totally bounded. If F is equicontinuous then it

is uniformly equicontinuous by Problem 247. If, additionally, F (x) is totally
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bounded for every x 2 X then Problem 249 can be applied to conclude that F is

totally bounded.

Now assume thatF is totally bounded. Given x 2 X and e> 0, find a finite P�F
such that

S
{Bs(g, e) : g 2 P} � F . The set P(x)¼ {g(x) : x 2 P} � F (x) is finite. If

y 2 F (x) then y ¼ f(x) for some f 2 F . Pick any g 2 P with s( f, g) < e. Then r(y, g
(x))¼ r( f(x), g(x))b s( f, g)< ewhich shows that [{Br(z, e) : z 2 P(x)}�F (x) and
hence F (x) is totally bounded.

To prove thatF is uniformly equicontinuous, take any e> 0 and fix a finiteQ�F
such that

S fBsðg; e3Þ : g 2 Qg � F . Every f2F is uniformly continuous because X
is compact. Apply Problem 246(iii) to conclude that Q is uniformly equicontinuous

and hence there exists d > 0 such that a, b 2 X and d(a, b) < d implies

rðgðaÞ; gðbÞÞ < e
3
for any g 2 Q. We claim that d witnesses the uniform equiconti-

nuity of F . Indeed, take any a, b 2 X with d(a, b) < d. If f 2 F then there exists

g 2 Q such that sðf ; gÞ < e
3
. As a consequence, rðf ðaÞ; f ðbÞÞb rðf ðaÞ; gðaÞÞþ

rðgðaÞ; gðbÞÞ þ rðgðbÞ; f ðbÞÞb sðf ; gÞ þ e
3
þ sðf ; gÞ < e

3
þ e

3
þ e

3
¼ e. This pro-

ves uniform equicontinuity of F and hence our solution is complete.

S.252.Given a compact metric space (X, d), suppose that (Y, r) is a complete metric
space. Prove that a set F � C�(X, Y) is compact if and only if it is closed,
equicontinuous and F (x) ¼ {f(x) : f 2 F} is compact for any x 2 X. Here
C�(X, Y) is considered to be endowed with the metric s of uniform convergence.

Solution. Assume that F is compact. Then it is closed in C�(X, Y) by Problem

121. Since any compact subset of any metric space is totally bounded, we can apply

Problem 251 to conclude that F is equicontinuous. Now fix any x 2 X. Consider the
map c : C�(X, Y)! Y defined by c( f) ¼ f(x) for any f 2 C�(X, Y). To see that this

map is continuous, fix any function f 2 C�(X, Y) and e > 0. If g 2 U ¼ Bs( f, e) then
r(c(g), c( f))¼ r(g(x), f(x))b s( f, g)< ewhich shows that c(U)� Br(c( f), e) and
hence c is continuous at the point f. Observe that F (x)¼ c(F ) and therefore the set
F (x) is compact being a continuous image of a compact space F . This finishes the
proof of necessity.

To prove sufficiency, suppose that F is closed, equicontinuous and F (x) is

compact (and hence totally bounded) for any x 2 X. Applying Problem 251 we

can see that F is totally bounded in C�(X, Y). The space (C�(X, Y), s) is complete

by Problem 248. As a consequence, (F , sF ) is complete by Fact 1 from S.237.

Here sF ¼ sj(F � F ). Any complete totally bounded metric space is compact by

Problem 212(iv) so F is compact and our solution is complete.

S.253. Let (X, d) and (Y, r) be compact metric spaces. Show that a set F � C(X, Y)
¼ C�(X, Y) is compact if and only if it is closed and equicontinuous. Here C�(X, Y)
is assumed to be endowed with the metric s of uniform convergence.

Solution. It is easy to see that every compact metric space is complete. Therefore

(Y, r) is complete and Problem 252 is applicable to conclude that F is closed and

equicontinuous if it is compact.
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Now suppose that F is closed and equicontinuous. To show that it is compact,

observe that F (x) ¼ {f(x) : x 2 F} is totally bounded being a subset of a totally

bounded space (Y, r). This makes it possible to apply 251 to conclude that F is

totally bounded in C�(X, Y). Since F is closed in C�(X, Y), it has to be complete by

Problem 248 and Fact 1 from S.237. Now we can apply Problem 212(iv) again to

conclude that F is compact.

S.254. Let (X, d) be a compact metric space. Prove that a set F � C�(X) is compact
if and only if it is closed, bounded and equicontinuous. Here the space C� (X) ¼ C
(X) is assumed to be endowed with the metric s of uniform convergence.

Solution. Since R is a complete metric space (Problem 205), we can apply

Problem 252 to see that F is closed and equicontinuous if its is compact. It is an

easy exercise to prove that any compact subspace of any metric space is bounded so

necessity is established.

Now suppose that F � C�(X) is closed, bounded and equicontinuous. Fix x 2 X.
Since F is bounded, we have diam(F ) ¼ K <1. Fix f 2 F and take any g 2 F .
Then jg(x)� f(x)jb s( f, g)bK and therefore g(x)2 [ f(x)�K, f(x)þK ], i.e.,F (x)�
[ f(x)�K, f(x)þ K ]. This shows thatF (x) is bounded inR. Every bounded subset of
R has a compact closure which implies that F (x) is totally bounded in R. Thus we
can apply Problem 251 to assert that F is totally bounded in C�(X). Since C�(X) is
complete (Problem 248), so is F . Every totally bounded complete metric space is

compact by Problem 212(iv), so F is compact and our solution is finished.

S.255. Given a space Xt for each t 2 T, let X ¼S{Xt� {t} : t 2 T}. Define the map
qt : Xt � {t}! Xt by the formula qt(x, t) ¼ x for all t 2 T and x 2 Xt. If U � X, let
U 2 t if qt(U \ (Xt� {t})) is open in Xt for all t 2 T. The family t is a topology on X
(see Problem 113); the space (X, t) is called the discrete (or free) union of the
spaces Xt and we also denote (X, t) by

L
{Xt : t 2 T}. Suppose that X ¼ L {Xt :

t 2 T}, where jXtj b o for each t 2 T. Prove that Cp(X) is homeomorphic to a
product of metric spaces. Give an example of a space Y such that Cp(Y) is homeo-
morphic to a product of metric spaces but Y cannot be represented as a discrete
union of countable spaces.

Solution. Apply Problem 114 to conclude that Cp(X) is homeomorphic to the spaceQ fCpðXtÞ : t 2 Tg. Since Xt is countable, the space Cp(Xt) is metrizable

(see Problem 210) for each t 2 T so Cp(X) is homeomorphic to a product of

metrizable spaces.

To construct our space Ywewill need the setNa ¼ fyan : n 2 ogwhere yan ¼ ðn; aÞ
for each n 2 o and a < o1. Let F ¼

S
{Na : a < o1} [ {0}. All points of

S
{Na :

a < o1} are isolated in F and U 3 0, U � F is open in F if and only if Na \U is finite

for all a < o1. We leave to the reader the trivial verification that F is a Tychonoff

space.

Let D¼ {da : a< o1} be a discrete space of cardinality o1. Then Y¼ F
L

D is

our promised space. Observe that if a space Z is a discrete union of countable spaces
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then every point of Z has a countable neighbourhood. Since any U 2 t(0, Y) is an
uncountable set, the space Y cannot be represented as a discrete union of countable

spaces. So to finish our solution, we will establish that Cp(Y) is a product of metric

spaces.

Given a< o1, let Sa ¼ fxan : n 2 og [ fxag be a faithfully enumerated sequence

converging to the point xa for each a < o1. Take any new point p and let S ¼ L
{Sa : a < o1}

L
{p}. It is evident that S is a discrete union of countable spaces so

Cp(S) is homeomorphic to a product of metric spaces. Thus it is sufficient to show

that Cp(Y) is homeomorphic to Cp(S).
First let i(0)¼ p, i(da)¼ xa and iðyanÞ ¼ xan for any a< o1 and n 2o. It is evident

that i : Y! S is a (discontinuous!) bijection. Given f 2 Cp(S), define a function g ¼
’( f) 2 Cp(Y) as follows: g(0) ¼ f( p) and gðyanÞ ¼ f ðxanÞ � f ðxaÞ þ f ðpÞ for all a <
o1 and n 2 o. Besides, we let g(da) ¼ f(xa) for all a < o1. It is immediate that g is

indeed a continuous function on Y. To see that the mapping ’ : Cp(S) ! Cp(Y)
is continuous, let us check its continuity at an arbitrary point f0 2 Cp(S). So, if
g0 ¼ ’( f0) andW 2 t(g0, Cp(Y)) then there exist a finite set A� Y and e > 0 such that

O(g0, A, e)¼ {g 2 Cp(Y) : jg(y)� g0(y)j< e for all y 2 A}�W. If we make A larger,

the set O(g0, A, e) becomes smaller, so we can assume, without loss of generality,

that 0 2 A and da 2 A whenever yan 2 A for some a < o1 and n 2 o.
The set U ¼ f f 2 CpðSÞ : j f ðxÞ � f0ðxÞj < e

3
for any x 2 i(A)} is an open

neighbourhood of f0 in Cp(S). If f 2 U, g ¼ ’( f) and y 2 A then there are three

possibilities:

(a) y ¼ 0. Then i(y) ¼ p and hence jgðyÞ � g0ðyÞj ¼ j f ðpÞ � f0ðpÞj < e
3
< e.

(b) y ¼ da for some a < o1. Then jgðyÞ � g0ðyÞj ¼ j f ðxaÞ � f0ðxaÞj < e
3
< e.

(c) y ¼ yan for some a < o1 and n 2 o. Then jgðyÞ � g0ðyÞj ¼ j f ðxanÞ�
f ðxaÞ þ f ðpÞ � f0ðxanÞ þ f0ðxaÞ � f0ðpÞjbj f ðxanÞ � f0ðxanÞj þ j f ðxaÞ � f0ðxaÞj þ
j f ðpÞ � f0ðpÞj< e

3
þ e

3
þ e

3
¼ e,

so in all cases g ¼ ’( f) 2 O(g0, A, e) �W whence ’(U) � O(g0, A, e) �W and

therefore ’ is continuous at the point f0.
Given an arbitrary g 2 Cp(Y), define a function f ¼ d(g) 2 Cp(S) as follows:
f(p) ¼ g(0), f(xa) ¼ g(da) and f ðxanÞ ¼ gðyanÞ � gð0Þ þ gðdaÞ for all a < o1 and

n 2o. It is immediate that f : S! R is indeed a continuous function and d is the
inverse map of ’. Let us show that d : Cp(Y) ! Cp(S) is continuous at an

arbitrary point g0 2 Cp(Y). Take any open neighbourhood U of the function

f0 ¼ d(g0) in the space Cp(S). There exists a finite B � S and e > 0 such that

W( f0, B, e) ¼ {f 2 Cp(S) : j f(x) � f0(x)j < e for all x 2 B} � U. If we make

B larger, the setW( f0, B, e) becomes smaller, so we can assume, without loss of

generality, that p 2 B and xa 2 B whenever xan 2 B for some a < o1 and n 2 o.
The set V ¼ Oðg0; i�1ðBÞ; e3Þ is an open neighbourhood of g0 and d(V) �
W( f0, B, e) � U. Indeed, take any g 2 V and let f ¼ d(g). Given x 2 B, we
have three possibilities:

(d) x ¼ p. Then jf ðxÞ � f0ðxÞj ¼ jgð0Þ � g0ð0Þj < e
3
< e.

(e) x ¼ xa for some a < o1. Then j f ðxÞ � f0ðxÞj ¼ jgðdaÞ � g0ðdaÞj < e
3
< e.
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(f) x ¼ xan for some a < o1 and n 2 o. Then jf ðxÞ � f0ðxÞj ¼ jgðyanÞ þ gðdaÞ�
gð0Þ � g0ðyanÞ � g0ðdaÞþ g0ð0Þjb jgðyanÞ� g0ðyanÞjþ jgðdaÞ � g0ðdaÞjþ jgð0Þ�
g0ð0Þj < e

3
þ e

3
þ e

3
¼ e,

so in all cases f ¼ d(g) 2 W( f0, B, e) � U whence d(V) � W( f0, B, e) � U and

therefore d is continuous at the point g0. This proves that ’ is a homeomorphism

and finishes our solution.

S.256. Suppose that Cp(X) is homeomorphic to a product of metrizable spaces.
Prove that, if X is Lindel€of or pseudocompact, then it is countable.

Solution. Suppose that CpðXÞ ¼
Q fMt : t 2 Tg, whereMt is a metrizable space for

each t 2 T. If pt : Cp(X)!Mt is the natural projection then we haveMt ¼ pt(Cp(X))
and hence c(Mt) b c(Cp(X)) ¼ o (see Problems 111 and 157(i)). Since the space

Mt is metrizable, its weight has to be countable (Problem 214) and hence Cp(X) is
homeomorphic to a product of second countable spaces. Note that we can assume

that everyMt has at least two points because a product does not change if we throw

away its one-point factors.

Suppose that X is uncountable. Then w(Cp(X)) > o (see Problem 169) and

hence T has to be uncountable too (see Problem 209, 207 and 210). Choose a set

S � T with jSj ¼ o1 and fix distinct points at, bt 2 Mt for each t 2 T. The space

D ¼ Q ffat; btg : t 2 Sg �Q ffatg : t 2 TnSg is a subspace of the productQ fMt : t 2 Tg ¼ CpðXÞ and has one-point factors for all indices in T \ S. As a

consequence, D is a subspace of Cp(X) homeomorphic to {0, 1}o1 so we will

identify D with {0, 1}o1.

Let B0 ¼ {{0}}; given a b o1, a > 0 let Ba ¼ {(b, a] : b < a}, where (b, a] ¼
{g 2 o1 : b < g b a}.

Fact 1. The families {Ba : a b o1} generate a topology t on o1 þ 1 as local bases;

this topology is Tychonoff and compact.

Proof. We leave it to the reader to check the properties (LB1)–(LB3) from Problem

007; let us prove that the space (o1 þ 1, t) is Tychonoff. Observe first that the set
( , a] ¼ {b < o1 : bb a} is an open neighbourhood of a for any a 2 o1. The next

observation is that any interval I ¼ (b, a] is a clopen(�closed an open) subset of

o1þ 1. Indeed, I2 Ba so I2 t. To see that I is closed note that ( , g] \ I¼ ; if gb b
and (a, g] \ I ¼ ; if a < g. Thus every g 2 (o1 þ 1) \ I has an open neighbourhood
lying in (o1 þ 1) \ I whence I is closed.

Now, if a 2 o1 and F is a closed set, a =2 F then there is b < a such that (b, a]
\ F ¼ ;. Since the set W ¼ (b, a] is clopen, the function f equal to 1 on W and

to zero on (o1 þ 1) \W, is continuous. Since f(a) ¼ 1 and f(F) � {0}, the function

f witnesses the Tychonoff property of o1 þ 1.

To finally see that o1þ 1 is compact, take any open cover U of o1þ 1. Let b0¼
o1 and pick any U0 2 U with b0 2 U0. There is b1 < b0 such that (b1, b0] � U0. If

we have chosen U0, . . . , Un 2 U and b0 > b1 > � � � > bnþ1 such that bi 2 Ui and

(biþ1, bi] � Ui for all i b n, choose Unþ1 2 U with bnþ1 2 Unþ1 and bnþ2 < bnþ1
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such that (bnþ2, bnþ1]� Unþ1. This inductive construction cannot go on for all n 2
o because the set o1 þ 1 is well ordered, so bnþ1 ¼ 0 for some n 2 o which means

that the finite family {U0, . . . , Un} � U covers all points of o1 except, maybe, 0.

Therefore U has a finite subcover which shows that o1 þ 1 is compact. Fact 1 is

proved.

Fact 2. Let r : o1! o1 be a function such that r(a) < a for any a < o1. Then there

is b < o1 such that r�1 (b) is uncountable.

Proof. Assume that jr�1(a)j b o for any a < o1 and let A0 ¼ {0}. If we have a

countable set An � o1 let Anþ1 ¼
S
{r�1(a) : a b sup(An)}. It is easy to see that

the set A ¼ S{An : n 2 o} 6¼ ; is countable and r�1(a) � A for any a 2 A. Observe
that b ¼ sup A =2 A for otherwise there is g > b with r(g) ¼ b so g 2 r�1(b) � A,
a contradiction with g > b ¼ sup A.

Since a ¼ r(b) < b, there is g 2 A such that a < g. If g 2 An for some n 2 o
then r�1(a) � Anþ1 � A which is a contradiction with b 2 r�1(a) \A. Fact 2 is

proved.

Fact 3. There is no Lindel€of subspace of the space Cp(o1 þ 1) which separates the

points of o1 þ 1.

Proof. Let L � Cp(o1 þ 1) be a Lindel€of subspace which separates the points of

o1 þ 1. Since the map f ! (�f) is a homeomorphism of Cp(o1 þ 1) onto itself,

the sets �L ¼ {�f : f 2 L} and L [ (�L) are also Lindel€of (it is an easy exercise

that a union of two (or even countably many) Lindel€of spaces is a Lindel€of space).
This shows that we can assume that (�f) 2 L for any f 2 L.

For each a< o1 fix rational numbers sa, ta and a function fa 2 L such that fa(a)<
sa < ta < fa(o1) or fa(a) > sa > ta > fa(o1). However, if we have the second

inequality then, for the function (�fa) 2 L, we have the first one. Therefore we can
assume that fa(a)< sa< ta< fa(o1) for all a<o1. Since each fa is continuous, there
exists ba < a such that fa(g) < sa for each g 2 (ba, a].

The map r : o1! o1 defined by r(a) ¼ ba satisfies the hypothesis of Fact 2 so

there is b< o1 and an uncountable R� o1 such that ba¼ b for all a 2 R. Passing to
a smaller uncountable subset of R if necessary, we can assume that there are s, t 2Q
such that sa ¼ s and ta ¼ t for all a 2 R.

Given f 2 L we let E ¼ {fa : a 2 R} and Of ¼ LnE if f =2E. Then Of is an open

neighbourhood of f in L such that Of \ E ¼ ;. If f 2 E then f(o1) r t because
g(o1) > t for all g 2 E. Choose any s0 2 (s, t) and observe that, by continuity of f,
there is g > b such that f(g) > s0 > s. The set Of ¼ {g 2 L : g(g) > s0} is an open

neighbourhood of f in L. If a > g then g 2 (b, a] ¼ (ba, a] which implies, by the

choice of ba, that fa(g) < s < s0 whence fa =2 Of. As a consequence, Of \ E � {fa :
a b g} and therefore Of \ E is a countable set.

The family U ¼ {Of : f 2 L} is an open cover of the Lindel€of space L such that

every U 2 U intersects only countably many elements of E. If U0 is a countable

subcover of U then the uncountable set E is contained in
S U0 while U0 is countable
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and every element of U0 contains only countably many elements of E. This

contradiction finishes the proof of Fact 3.

Fact 4. The space o1 þ 1 embeds in D ¼ {0, 1}o1.

Proof. Let fa(b) ¼ 0 if bb a and fa(b) ¼ 1 for all b > a. Then the map fa : (o1 þ 1)

! {0, 1} is continuous for each a < o1. Let pa : {0, 1}
o1! {0, 1} be the natural

projection onto the ath factor.

Given ordinals ab o1 and b< o1 let ’(a)(b)¼ fa(b); this defines a point ’(a) 2
{0, 1}o1. The formula a ! ’(a) defines a map ’ : (o1 þ 1) ! {0, 1}o1 which is

continuous because pa 	 ’ ¼ fajo1 is a continuous map for each a < o1 (see

Problem 102). If a < b b o1 then fa(a) ¼ 0 6¼ 1 ¼ fa(b) which shows that ’(a) 6¼
’(b). Thus the map ’ : (o1 þ 1)! ’(o1 þ 1) is a condensation; the space o1 þ 1

being compact (Fact 1), the map ’ is a homeomorphism (Problem 123) so Fact 4

is proved.

Fact 5. No Lindel€of subspace of Cp(D) separates the points of D ¼ {0, 1}o1.

Proof. Assume that some Lindel€of L � Cp(D) separates the points of D. By Fact 4,

there exists a subspace W � D which is homeomorphic to o1 þ 1. Recall that the

restriction map pW : Cp(D)! Cp(W) is defined by pW( f) ¼ fjW for any f 2 Cp(D).
The map pW is continuous (Problem 152) so pW(L) is a Lindel€of subspace of Cp(W).

It is immediate that pW(L) separates the points of W ¼ o1 þ 1 which contradicts

Fact 3 and proves Fact 5.

Returning to our proof, for any x 2 X, let cx( f) ¼ f(x) for any f 2 D (we now

considerD to be a subspace of Cp(X)). The map c : X! Cp(D) defined by c(x)¼ cx

for all x 2 X, is continuous (Problem 166); it is an easy exercise to see that the set

Y ¼ c(X) � Cp(D) separates the points of D.
If X is Lindel€of then Y is also a Lindel€of subspace of Cp(D) which separates the

points of D, a contradiction with Fact 5.

Now, assume that X is pseudocompact. Since the space D is separable (Problem

108), the space Cp(D) and hence Y, condenses onto a second countable space

(Problem 173). This condensation is a homeomorphism if restricted to Y because

Y is pseudocompact (Problem 140). Thus Y is a second countable (and hence

Lindel€of) subspace of Cp(D) which separates the points of D; this contradiction

with Fact 5 settles the case of a pseudocompact X and makes our solution

complete.

S.257. Let X be any space. Prove that, for any compact space Y and any continuous
map ’ : X! Y, there exists a continuous map F : bX! Y such that FjX ¼ f.

Solution. By Problem 126, there is a set B such that Y embeds in IB and hence we

can assume that Y � IB. For the set A ¼ C(X, I) we can identify X with the subset
~X ¼ {bx : x 2 X} � IA Z, where bx( f) ¼ f(x) for any x 2 X and f 2 A. By definition,

bX is the closure of ~X in IA, so we consider that X � b X ¼ X � IA. Given a

coordinate b 2 B, denote by pb : IB! I is the natural projection onto the bth factor.
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Analogously, the map qf : IA ! I is the natural projection to the fth factor. Observe
that qfjX ¼ f for any f 2 A ¼ C(X, I).

For any b 2 B, the map pb 	 ’ belongs toC(X, I)¼ A so fix fb 2 Awith pb 	 ’¼ fb.
It is clear that qfbjX ¼ fb and therefore qfbjbX : bX! I is an extension of the map

fb to bX. For any x 2 bX letF(x)(b)¼ qfb(x) 2 I ; this defines a pointF(x) 2 IB so we
have a map F : bX ! IB. We claim that the map F is continuous, FjX ¼ ’ and

F(bX) � Y, i.e., F : bX! Y is a continuous extension of the map ’.
The map F is continuous because pb 	 F ¼ qfb is continuous for any b 2 B (see

Problem 102). If x 2 X then F(x)(b)¼ qfb (x)¼ fb(x)¼ pb 	 ’(x)¼ ’(x)(b) for every
b 2 B; this shows that FjX ¼ ’. Finally, X is dense in bX implies that ’(X) is dense
in FðbXÞ so FðbXÞ � ’ðXÞ � Y ¼ Y (the closure is taken in IB and the last equal-

ity holds because Y is compact and hence closed in IB). We proved that the map F :

bX! Y is an extension of ’ so our solution is complete.

S.258. Let cX be a compact extension of a space X. Prove that the following
properties are equivalent:

(i) For any compact space Y and any continuous map f : X ! Y there exists a
continuous map F : cX! Y such that F j X ¼ f.

(ii) For any compact extension bX of the space X there exists a continuous map p :
cX! bX such that p(x) ¼ x for all x 2 X.

(iii) There is a homeomorphism ’ : cX! bX such that ’(x) ¼ x for any x 2 X.

Solution. Take Y¼ bX and f : X! Y defined by f(x)¼ x for any x 2 X. If F : cX! Y
is the extension of f whose existence is guaranteed by (i), then p¼ F satisfies (ii) so

(i)) (ii) is established.

(ii)) (iii). Fix a continuous map p : cX) bX such that p(x) ¼ x for any x 2 X.
It suffices to prove that ’ ¼ p is the required homeomorphism. Observe first that

p(cX) is a compact subset of bX which contains X. Therefore bX ¼ X � pðcXÞ so
p(cX) ¼ bX. Since every condensation of a compact space is a homeomorphism

(Problem 123), it suffices to show that p is an injection.

The map f : X ! cX defined by f(x) ¼ x for all x 2 X, has a continuous

extension F : bX! cX by Problem 257. Suppose that z, t are distinct points of cX
with y ¼ p(z) ¼ p(t). Take sets U 2 t(z, cX) and V 2 t(t, cX) such that U \ V ¼ ;.
The sets U1 ¼ U \ X and V1 ¼ V \ X are open subsets of X for which U1 ¼ U
and V1 ¼ V so U1 \ V1 ¼ ; (the bar denotes the closure in cX). Now z 2 U1

implies y ¼ p(z) 2 cl(p(U1)) ¼ cl(U1). Here the set cl(U1) is the closure of U1 in

bX. Analogously, y 2 cl(V1); since the map F is continuous, we must

have FðyÞ 2 FðU1Þ \ FðV1Þ ¼ U1 \ V1 ¼ ;, this contradiction shows that p is a

bijection and hence a homeomorphism.

(iii) ) (i). Let f : X ! Y be a continuous map of X to a compact space Y. By
Problem 257 there exists a continuous F1 : bX! Y such that F1jX¼ f. Then F¼ F1

	 ’ maps cX continuously into Y and if x 2 X then F(x) ¼ F1(’(x)) ¼ F1(x) ¼ f(x)
and therefore FjX ¼ f.

214 2 Solutions of Problems 001–500



S.259. Prove that the following conditions are equivalent for any space X:

(i) X is Čech-complete.
(ii) X is a Gd-set in some compact extension of X.
(iii) X is a Gd-set in any compact extension of X.
(iv) X is a Gd-set in any extension of X.

Solution. Since bX is a compact extension of X, and X is a Gd-set in bX, we have
(i)) (ii).

Fact 1. Given a compact extension cX of a space X, let f : bX! cX be the unique

continuous map such that f(x) ¼ x for any x 2 X (see Problem 258(ii)). Then

f(bX \X) � cX \X and therefore f�1(cX \X) ¼ bX \X and f(bX \X) ¼ cX \X.

Proof. Assume that there exists a point y 2 bX \X such that f(y)¼ x 2 X. Fix any sets
U 2 t(y, bX) and V 2 t(x, bX) such that U \ V ¼ ;. Since f is continuous, there is
W 2 t(y, bX) such that W � U and f ðWÞ � V. If W1 ¼ W \ X then W1 ¼ W while

W1 ¼ f ðW1Þ � f ðW1Þ ¼ f ðWÞ � U. Since W1 � X, it follows from W1 � U that

W1 � U \ X ¼ U1. The set W1 is non-empty, which implies ; 6¼ W1 ¼ W1 \ U1

� W1 \ U1 ¼ W \ U � U \ V ¼ ; ; this contradiction proves that f(bX \X) �
cX \X. An immediate consequence of this inclusion is that bX \X � f�1(cX \X).
Since it is evident that f�1(cX \X) � bX \X, we obtain the equality f�1(cX \X) ¼
bX \X. Note that f(bX) is a closed subset of cX which contains X; this implies

f(bX) ¼ cX and f(bX \X) ¼ cX \X so Fact 1 is proved.

Fact 2. Suppose that f : Y ! Z is a perfect map and K � Z is compact. Then

L ¼ f�1(K) is a compact subspace of Y.

Proof. Observe first that the subspace L is closed in Y which easily implies that the

map f : L! K is also perfect. Thus we can forget about Y and Z and consider f to be
a perfect map from L onto K.

Given an open cover U of the space L, let V be the family of all finite unions of

the elements from U. For every y 2 K the set f�1(y) is compact so there is Vy 2 V
with f�1(y) � Vy. By Fact 1 from S.226 there exists Uy 2 t( y, Y) such that

f�1(Uy) � Vy. The space Y being compact, there are y1, . . . , yn 2 Y) such that

Uy1 [ � � � [ Uyn ¼ Y and hence Vy1 [ � � � [ Vyn ¼ X. Since each Vyi can be covered

by a finite subfamily of U, there is a finite U0 � U such that
S U0 ¼ X and hence we

proved the compactness of L and Fact 2.

Suppose now that cX is a compact extension of X in which X is a Gd-set. Then

cX \X ¼S{Fn : n 2 o} where each Fn is closed in cX and hence compact. Take the

continuous map f : bX! cX such that f(x) ¼ x for any x 2 X. Since f is perfect map

(see Problems 120 and 122), the set Gn¼ f�1(Fn) is compact for each n 2o by Fact

2. Since
S
{Gn : n 2 o} ¼ bX \X by Fact 1, the set bX \X is a countable union of

closed subsets of bX (see Problem 121). Of course, this implies that X is a Gd-set in

bX so we proved that (ii)) (i).

To see that (i) ) (iii) take any compact extension bX of the space X and a

continuous map f : bX! bX such that f(x) ¼ x for any x 2 X. If X is Čech-complete
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then bX \X ¼ S{Gn : n 2 o} where each Gn is closed in bX and hence compact.

Letting Fn¼ f(Gn) we have
S
{Fn : n 2o}¼ bX \X by Fact 1 so bX \X is a countable

union of compact (and hence closed) subsets of bX. This implies that X is aGd-set in

bX which proves that (i)) (iii).

Since it is evident that (iv)) (iii)) (i), we must only show that (iii)) (iv). Let

Y be an extension of X. Then X is dense in Y and Y is dense in bY whence X is dense

in bY, i.e., bY is a compact extension of X. The set X is Gd in bY by (iii) and hence

X is a Gd-set in a smaller space Y which proves the implication (iii) ) (iv) and

finishes our solution.

S.260. Prove that

(i) Any closed subspace of a Čech-complete space is Čech-complete.
(ii) Any Gd-subspace of a Čech-complete space is Čech-complete. In particular,

every open subspace of a Čech-complete space is Čech-complete.

Solution. (i) Let X be a Čech-complete space. If F is closed in X then the space

G ¼ clbX(F) is a compact extension of F. Fix a family g ¼ {Un : n 2 o} � t(bX)
such that

T
g ¼ X. If Vn ¼ Un \ G then m ¼ {Vn : n 2 o} is a family of open

subsets of G such that F ¼ Tm because
T
m ¼ �Tg

� \ G ¼ X \ G ¼ F. Now
apply Problem 259(ii) to conclude that F is Čech-complete.

(ii) If the space X is Čech-complete and P is a Gd-subset of X then the subspace

F ¼ P is Čech-complete by (i). Take a family g ¼ {Un : n 2 o} � t(X) such thatT
g ¼ P and let Vn ¼ Un \ F for all n 2 o. The space Y ¼ clbX(F) is a compact

extension of both F and P. The space F being Čech-complete there exists a family

m ¼ {Wn : n 2 o} � t(Y) such that
T
m ¼ F. Given n 2 o, the set Vn is open in F so

there exists a setOn 2 t(Y) such thatOn \ F¼ Vn. The family v¼ m [ {On : n 2o}
� t(Y) is countable and

T
v ¼ P. Indeed,

\
n ¼ \

m
� � \ \fOn : n 2 og� � ¼ F \ \fOn \ F : n 2 og� �

¼ F \ \fVn : n 2 og� � ¼ \fVn : n 2 og ¼ P;

and hence P is a Gd-set in Y. Now apply Problem 259(ii) to finish our solution.

S.261. Prove that any perfect image as well as any perfect preimage of a Čech-
complete space is Čech-complete.

Solution.Wewill first prove some general statements about closed and perfect maps.

Fact 1. Let f : X! Y be a closed map. Then, for any subspace A � Y, the map fA ¼
f j f�1(A) : f�1(A)! A is closed.

Proof. It is clear that fA is continuous and onto. If F is a closed subset of f�1(A) then
fAðFÞ ¼ f ðFÞ ¼ f ðF \ f�1ðAÞÞ ¼ f ðFÞ \ A is a closed subset ofA so Fact 1 is proved.

Fact 2. Let f : X! Y be a perfect map. Then, for any subspace A � Y, the map fA ¼
f j f�1(A) : f�1(A)! A is perfect.
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Proof. The map fA is closed by Fact 1. Besides, f�1A ðaÞ ¼ f�1ðaÞ is a compact

set for any a 2 A because f is perfect, Thus the map fA is perfect and Fact 2 is

proved.

Given a continuous map f : X! Y, it can be considered as a map from X to bY
so there exists a continuous map ~f : bX! bY such that ~f jX ¼ f .

Fact 3. A map f : X! Y is perfect if and only if ~f bXnXð Þ ¼ bYnY.
Proof. Suppose that f is perfect. Since ~f bXð Þ ¼ bY, it suffices to show that ~f (bX \X)
� bY \ Y. Assume that ~f (x) ¼ y 2 Y for some x 2 bX \X. The set K ¼ f�1(y) � X is

compact so there exist U, V 2 t(bX) such that x 2 U, K � V and U \ V ¼ ;. Let
U1 ¼ U \ X and V1 ¼ V \ X. Apply Fact 1 of S.226 to find W 2 t(y, Y) such that

f�1(W) � V1. We have f(U1) \ W ¼ ; which implies y =2 clY( f(U1)). However,

U1 ¼ U (the bar denotes the closure in the space bX) and hence x 2 U1. Since the

map ~f is continuous, we have

y ¼ ~f ðxÞ 2 clbYð~f ðU1ÞÞ ¼ clbYðf ðU1ÞÞ;

and therefore y 2 clbY( f(U1)) \ Y ¼ clY( f(U1)); this contradiction shows that
~f (bX \X) � bY \ Y and necessity is established.

Now, if ~f (bX \X) ¼ bY \ Y then bX \X ¼ (~f )�1(bY \ Y) and therefore we have Y ¼
(~f )�1(X). The map ~f is perfect (Problem 122) so we can apply Fact 2 to conclude

that f ¼ ~f jX : X! Y is also perfect. Fact 3 is proved.

Returning to our solution, assume that f : X ! Y is a perfect map. If X is

Čech-complete then X is a Gd-set in bX and therefore bX \X ¼ S{Kn : n 2 o}
where each Kn is closed and hence compact subset of bX. By Fact 3, we have
~f (bX \X) ¼ S{~f (Kn) : n 2 o} ¼ bY \ Y. Since each ~f (Kn) is compact, the space

bY \ Y is a countable union of closed subsets of bY whence Y is a Gd-set in bY, i.e.,
Y is Čech-complete.

Assume now that Y is Čech-complete and hence bY \ Y ¼ S{Ln : n 2 o} where

each Ln is closed in bY. It follows from Fact 3 that we have the equalities

(~f )�1(bY \ Y) ¼ bX \X ¼ S{(~f )�1(Ln) : n 2 o} where each (~f )�1(Ln) is closed in

bX by continuity of f. Thus the space bX \X is a countable union of closed subsets of

bX whence X is a Gd-set in bX, i.e., X is Čech-complete.

S.262. Prove that any discrete union as well as any countable product of Čech-
complete spaces is a Čech-complete space.

Solution. Assume that Xt is Čech-complete for any t 2 T. It is immediate that

X ¼ L {Xt : t 2 T} is a dense subspace of the space Y ¼ L {bXt : t 2 T} � bY.
Since Y is dense in bY, the space bY is a compact extension of the space X.

The space Y is open in bY; to see this take any y 2 Y and t 2 T such that y 2 b Xt.

The set U ¼ b Xt is an open neighbourhood of y in Y. IfW 2 t(bY) andW \ Y ¼ U
then the compact set U is dense in W and hence U ¼ W. This shows that Y is a
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neighbourhood of every y 2 Y and hence Y is open in bY. Since each bXt is open in

Y, any open subset of bXt is open in Y and hence in bY.
By Čech-completeness of Xt there is a family fUt

n : n 2 og � tðbXtÞ such that

Xt ¼
T fUt

n : n 2 og for each t 2 T. The set Un ¼
S fUt

n : t 2 Tg is open in bY for

each n 2 o and
T
{Un : n 2 o} ¼ L {Xt : t 2 T}, i.e., the space X is a Gd-set in the

compact extension bY of the space X. Now apply Problem 259(ii) to conclude

that X is Čech-complete.

To settle the case of a countable product, suppose that Xn is Čech-complete for

any n 2 o. The space Y ¼ Q fbXn : n 2 og is a compact extension of the space

X ¼ Q fXn : n 2 og. For each n 2 o fix a family fFn
m : m 2 og of compact subsets

of bXn such that
S fFn

m : m 2 og ¼ bXnnXn for each n 2 o; this is possible

because each Xn is Čech-complete.

Let pn : Y! bXn be the natural projection of Y onto its nth factor. The set Gn
m ¼

p�1n ðFn
mÞ is compact for all m, n 2 o and it is easy to see that YnX ¼ S fGn

m :
n;m 2 og. Thus X is a Gd-set in its compact extension Y, so we can apply

Problem 259(ii) to conclude that X is Čech-complete and finish our solution.

S.263. Let X be a Čech-complete space. Given a compact K � X, prove that there
exists a compact L � X such that K � L and w(L, X) ¼ o. In particular, any point
of X is contained in a compact set of countable character in X.

Solution. Fix a family {On : n 2 o} � t(bX) such that X ¼ T{On : n 2 o}.
Using normality of the compact space bX it is easy to construct by induction a

family {Un : n 2 o} � t(bX) with the following properties:

(1) K � Un � Un � On for each n 2 o;
(2) Unþ1 � Un for al n 2 o.

The set L ¼ T fUn : n 2 og ¼ T fUn : n 2 og is compact; it is contained in X
because L � Un � On for every natural n. It is evident that K � L. Now take any

U 2 t(L, bX). The set F¼ bX \U is compact and hence so is the set Fn ¼ Un \ F for

any n 2 o. We have Fnþ1� Fn and G ¼
T
{Fn : n 2 o} ¼ ; because G is contained

in L \ F ¼ ;. The compactness of F implies Fn ¼ ; for some n and hence Un � U.
This proves that the family {Un : n 2 o} is an outer base of L in bX. It is
straightforward to verify that the family {Un \ X : n 2 o} is an outer base of

L in X and hence w(L, X) ¼ o.

S.264. Let X be any non-empty space. Suppose that Y and Z are dense Čech-
complete subspaces of X. Prove that Y \ Z 6¼ ;.
Solution. Both spaces Y and Z are dense in X and hence in bX, so bX is a compact

extension of both Y and Z. Apply Čech-completeness of Y and Z to find countable

families g and m of open subsets of bX such that
T
g ¼ Y and

T
m ¼ Z. The family

n ¼ g [m is countable and
T
n ¼ (

T
g)\ (Tm) ¼ Y \ Z ¼ ;. Take some faithful

enumeration {On : n 2 o} of the family n. Take any x0 2 O0 and fix some U0 2 t(x0,
bX) such that U0 � O0. Suppose that we have constructed non-empty sets U0, . . . ,
Un 2 t(bX) with the following properties:
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(1) Uiþ1 � Ui for each i b n � 1;

(2) Ui � Oi for all i b n.

To construct Unþ1 observe that Un \ Onþ1 6¼ ; because the set Onþ1 is dense in
bX. Take any xnþ1 2 Un \ Onþ1 and find Unþ1 2 t(xnþ1, bX) such that Unþ1
� Un \ Onþ1. It is clear that the properties (1) and (2) hold for the sets U0, . . . , Un,

Unþ1 and hence our inductive construction goes on.

Once we have the sequence {Un : n 2o} observe that the family fUn : n 2 og of
compact subsets of bX, is decreasing so

T fUn : n 2 og ¼ T fUn : n 2 og 6¼ ; by
compactness of bX. On the other hand

T
{Un : n 2 o} � T{On : n 2 o} ¼ ;; this

contradiction proves that Y \ Z 6¼ ;.
S.265. Prove that the following are equivalent for any space X:

(i) The space Cp(X) is Čech-complete.
(ii) Cp(X) has a dense Čech-complete subspace.
(iii) X is countable and discrete.

Solution. It is evident that (i) ) (ii). If X is countable and discrete then Cp(X) is
homeomorphic to Ro. Observe that R is homeomorphic to the interval (�1, 1)
which is open (and hence Gd) in its compact extension I. This shows that R is

Čech-complete. Now apply Problem 262 to conclude that Cp(X) ¼ Ro is

Čech-complete. This proves (iii)) (i).

Fact 1. A space X is discrete if and only if Cp(X) ¼ RX.

Proof. If X is discrete then any f 2 Cp(X) is continuous on X so Cp(X) coincides with
RX. Now, if Cp(X) ¼ RX then, for any A � X, the function f equal to 1 on A and to

zero on X \A, is continuous whence A ¼ f�1((0, þ 1)) is an open subset of X. It
turns out that all subsets of X are open so it is discrete and Fact 1 is proved.

To show that (ii)) (iii), take any dense Čech-complete subspaceD� Cp(X). Let
us prove first that Cp(X)¼ RX. If not, pick any f 2 RX \Cp(X) and consider the space
Y ¼ f þ Cp(X) ¼ {f þ g : g 2 Cp(X)} � RX. Since the map ’ : RX! RX defined by

’(h)¼ hþ f, is a homeomorphism (recall that RX¼ Cp(Z) where Z is the set X with

the discrete topology, and apply Problem 079), the space D1 ¼ f þ D is a dense

Čech-complete subspace ofRX. It is easy to see that Y \ Cp(X)¼ ; and henceD and

D1 are dense disjoint Čech-complete subspaces of RX which contradicts Problem

264 and proves that Cp(X) ¼ RX. Now apply Fact 1 to conclude that X is discrete.

Fact 2. Let Y be a dense subspace of a space X. Then w(F, Y) ¼ w(F, X) for any
compact F � Y. In particular this is true if F is a point of Y.

Proof. It is evident that w(F, Y)b w(F, X). To prove the inverse inequality, take any
outer base B of the set F in Y. For anyU 2 B choose OU 2 t(X) withOU \ Y¼U. It
suffices to show that C ¼ {OU : U 2 B} is an outer base of F in X. Let W 2 t(F, X).
For any x 2 F fix Vx 2 t(x, X) for which Vx � W and use compactness of F to

find x1, . . . , xn 2 F such that V ¼ Vx1
[ � � � [ Vxn

� F; observe also that V � W.

Since B is an outer base of F in Y, there exists U 2 B such that U � V \ Y. As
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a consequence, OU ¼ U (the bar denotes the closure in X) and we have F � U

� OU � OU ¼ U � V � W and Fact 2 is proved.

To finish our solution, apply Problem 263 to find a compact K � D with w(K, D)
¼ o. It follows from Fact 2 that w(K, Cp(X)) ¼ w(K, D) ¼ o. Therefore X is

countable by Problem 170 and our solution is complete.

S.266. Considering Cp(X) as a subspace of RX, assume that it is a Gd-subset of RX.

Prove that X is discrete (and hence Cp(X) ¼ RX).

Solution. Suppose that Cp(X) is a Gd-subset of RX. If X is non-discrete, fix a

function f 2 RX \Cp(X). Since the map ’ : RX! RX defined by ’(h) ¼ h þ f, is a
homeomorphism (recall that RX ¼ Cp(Z) where Z is the set X with the discrete

topology, and apply Problem 079), the space Y ¼ ’(Cp(X)) is a dense Gd-subspace

of RX disjoint from Cp(X). Fix countable families m, n � t(RX) such that Cp(X) ¼T
m and Y¼Tn. If {On : n 2o} is an enumeration of the family m [ n then every On

is dense in RX and
T
{On : n 2 o} ¼ �Tm

� \ �Tn
� ¼ Y \ Cp(X) ¼ ;.

Take any f0 2 O0 and find a finite A0� X and e0 2 (0, 1) such that O( f0, A0, e0)¼
{g 2 RX : jg(x)� f0(x)j< e0 for all x 2 A0}� O0. Assume that we constructed finite

sets A0, . . . , An � X, positive numbers e0, . . . , en and functions f0, . . . , fn 2 RX

with the following properties:

(1) e0 > � � � > en and ei < 1
iþ1 for all i b n.

(2) A0 � � � � � An.

(3) [ fiþ1(x)� eiþ1, fiþ1(x)þ eiþ1]� ( fi(x)� ei, fi(x)þ ei) for each i< n and x 2 Ai.

(4) O( fi, Ai, ei) � Oi for each i b n.

Since the set Onþ1 is dense in RX, we can choose fnþ1 2 Onþ1 \ O( fn, An, en).
The set Onþ1 is open in RX and fnþ1(x) 2 ( fn(x) � en, fn(x) þ en) for each x 2 An so

there exists a number enþ1 2
�
0; 1

nþ2
�
and a finite set Anþ1 � X such that An � Anþ1,

O( fnþ1, Anþ1, enþ1) � Onþ1 and

½ fnþ1ðxÞ � enþ1; fnþ1ðxÞ þ enþ1
 � ðfnðxÞ � en; fnðxÞ þ enÞ

for all x 2 An. It is clear that the properties (1)–(4) also hold for the sets A0, . . . ,
Anþ1, numbers e0, . . . , enþ1 and functions f0, . . . , fnþ1 2 RX so the inductive

construction goes on.

Given a point x 2 A ¼ S{An : n 2 o}, take the minimal n 2 o such that x 2 Ai

for all i r n. The sets Ik ¼ [fk(x) � ek, fk(x) þ ek], k r n being compact, there

exists a point h(x) 2 T{Ik : k r n}. Letting h(x) ¼ 0 for all x 2 X \A, we obtain a

function h 2 RX. Given a number n 2 o and a point x 2 An, the property (3)

implies h(x) 2 T{Ik : k r n} ¼ T{( fk(x) � ek, fk(x) þ ek) : k r n} whence

h(x) 2 ( fn(x) � en, fn(x) þ en) and therefore h 2 O( fn, An, en). We chose the

number n arbitrarily so h 2 T{O( fk, Ak, ek) : k 2 o} � T{Ok : k 2 o} ¼ ; which
is a contradiction. Thus Cp(X) ¼ RX and we can apply Fact 1 of S.265 to see that

our solution is complete.
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S.267. Considering Cp(X) as a subspace of RX, assume that it is an Fs-subset of RX.

Prove that X is discrete (and hence Cp(X) ¼ RX).

Solution. Fix a family {Fn : n 2 o} of closed subsets of the space RX such

that Cp(X) ¼
S
{Fn : n 2 o}. The set Cn ¼ Cp(X, [�n, n]) is closed in Cp(X)

for every n 2 o and therefore Gn,k ¼ Fn \ Ck is closed in RX for any n, k 2 o. If
G ¼ {Gn,k : n, k 2 o} then G is a countable family of closed subsets of RX such thatSG ¼ C�pðXÞ.

Given f ; g 2 C�pðXÞ, let r( f, g)¼ sup{jf(x)� g(x)j : x 2 X}. Then r is a complete

metric on C�(X) (Problem 248). Any set closed in C�pðXÞ is also closed in

ðC�ðXÞ; rÞ ¼ C�uðXÞ (see Problems 086 and 211) so the elements of G are closed

in C�uðXÞ as well.
Suppose first that Int(G) ¼ ; for all G 2 G (the interior is taken in C�uðXÞÞ. Then,

for any G 2 G, we have the property
(�) For any non-empty U 2 t(r) and any e> 0 there exists a non-empty V 2 t(r)

such that V � UnG and diamr(V) < e.
To find such a set V, take any function f 2U \G, find a number r 2 (0, e) such that

Br( f, r) ¼ {g 2 C�(X) : r( f, g) < r} � U \G and let V ¼ Brðf ; r2Þ.
Take an enumeration {Gn : n 2 o} of the family G and use (�) to construct a

sequence {Un : n 2 o} � t(r) such that

(1) Unþ1 � Un for each n 2 o.
(2) diamr(Un)! 0.

(3) Un \ Gn ¼ ; for any n 2 o.

If Fn ¼ Un for any n 2 o, observe that (1) and (2) imply diamr(Fn)! 0. Since

(C�(X), r) is a complete metric space, we have can apply Problem 236 to conclude

that F ¼ T{Fn : n 2 o} ¼ T{Un : n 2 o} 6¼ ;. If x 2 F then x =2 Gn for any n 2 o
by (3). This contradiction with

SG ¼ C�pðXÞ proves that Int(G) 6¼ ; for

some G 2 G. As a consequence, we can find f 2 G and e > 0 such that Pe( f) ¼
{g 2 C�(X) : jg(x) � f(x)j b e} � G. This implies that the set Pe( f) is closed in RX

and hence the set Pe( f) � f ¼ {g � f : g 2 Pe( f)} ¼ C(X, [�e, e]) is closed in RX.

It follows easily from the Tychonoff property of X that C(X, [�e, e]) is dense in

[�e, e]X so C(X, [�e, e]) ¼ [�e, e]X, i.e., any function h : X! [�e, e] is continuous.
We leave it as a simple exercise to the reader to prove that this condition implies

discreteness of X so apply Fact 1 of S.265 to see that our solution is complete.

S.268. Let X be a space. Given a sequence G¼ {gn : n 2o} of open covers of X, say
that a filter F is dominated by G if, for any n 2 o, there is Fn 2 F with Fn� Un for
some Un 2 gn. The sequence G is called complete if for any filter F in X, dominated
by G, we have

T fF : F 2 Fg 6¼ ;. Prove that a space X is Čech-complete if and
only if there is a complete sequence of open covers of X.

Solution. To prove necessity, suppose that a space X is Čech-complete and fix a

family U ¼ {On : n 2o}� t(bX) such that X¼TU. Given a number n 2o, let gn¼
{V 2 t(X) : clbX(V) � Un}. If n 2 o then, for any x 2 X we can take W 2 t(x, bX)
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such that clbX(W)� On. ThenW
0 ¼W \ X 2 gn and x 2W. This shows that gn is an

open cover of X for each n 2 o.

To show that the sequence G ¼ {gn : n 2 o} is complete, take any filter F
dominated by G. Since the space bX is compact, there is x 2 T{clbX(F) : F 2 F},
so it suffices to show that x 2 X. Take any n 2 o and an element F 2 F such that

F � U 2 gn for some U 2 gn. We have clbX(F) � clbX(U) � On by definition of

gn which implies x 2 clbX(F) � On. The number n was chosen arbitrarily, so x 2 T
{On : n 2 o} ¼ X and necessity is proved.

To establish sufficiency, fix a complete sequence G ¼ {gn : n 2 o} of open

covers of X. Let mn ¼ {U 2 t(bX) : U \ X 2 gn} and On ¼
S
mn for each n 2 o.

It suffices to show that X ¼ T{On : n 2 o}. Observe first that X � S gn �
S

mn
for each n 2 o so X � T{On : n 2 o}. To prove the reverse inclusion, take any

x 2 T{On : n 2 o} and let F ¼ {P � X : U \ X � P for some U 2 t(x, bX)}. We

leave to the reader the simple verification that F is a filter on X. Take any n 2 o and

U 2 mn with x 2 U. Then V ¼ U \ X 2 F and V � V 2 gn by the definition of mn.
This shows that F is dominated by G and therefore we can fix y 2 T fF : F 2 Fg
(the bar denotes the closure in X). If y 6¼ x then take any set W 2 t(x, bX) such that

y 2 clbX(W) and observe that W0 ¼ W \ X belongs to F and y =2 W
0
this contradic-

tion shows that x 2 X and hence X ¼ T{On : n 2 o}, i.e., X is Čech-complete.

S.269. Prove that a metrizable space is Čech-complete if and only if it is metrizable
by a complete metric.

Solution. To prove sufficiency, fix a complete metric space (X, r) and consider the

family gn ¼ fU 2 tðXÞ : diamðUÞ < 1
ng. It is clear that gn is an open cover of X; let

us prove that the sequence G ¼ {gn : n 2 o} is complete. Take any filter F
dominated by G and, for each n 2 o, find Fn 2 F and Un 2 gn such that Fn � Un.

If we let Gn ¼ F0 \ � � � \ Fn for each n 2 o then the sequence {Gn : n 2 o} has the
following properties:

(1) G0 � G1 � � � � � Gn � � � � ; this is evident.
(2) diam(Gn) <

1
n ; this is true because Gn � Fn � Un and hence we have diam

(Gn) b diam ðUnÞ ¼ diam(Un) <
1
n.

Thus diam(Gn)! 0 for a decreasing sequence {Gn : n 2 o} of closed non-empty

subsets of a complete metric space (X, r). Apply Problem 236 to conclude thatT
{Gn : n2o} 6¼ ; and take any x2

T
{Gn : n2o}; it suffices to show that x2T{F :

F 2 F}. Observe first that x 2 Gn� Fn so x 2 Fn for all n 2 o. If there exists F 2 F
such that x =2 F, take n 2 o such that Br

�
x, 2n
�
is disjoint from F; since F is a filter,

we can find a point y2F \ Fn. The point y lying outside of the ball Br

�
x, 2n
�
, we have

r(x, y) r 2
n. On the other hand, x, y 2 Fn so r(x, y) b diam(Fn) <

1
n which is a

contradiction showing that x 2 T fF : F 2 Fg. This contradiction shows that the

sequence G is complete so X is Čech-complete by Problem 268 and sufficiency is

proved.

Fact 1. Let (X, d) be a metric space. Suppose that P is a Gd-subset of X. Then
P embeds in X � Ro as a closed subspace.
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Proof. Let c : P! X be the embedding, i.e., c(x) ¼ x for all x 2 P. Represent X \P

as
S
{Fi : i 2 N}, where Fi is closed in X for all i 2 N; given x 2 P, let ’i(x)¼ 1

dðx;FiÞ
where d(x, Fi)¼ inf{d(x, y); y 2 Fi} for each i 2 N. Observe that d(x, Fi)> 0 for all

x 2 P and apply Fact 1 of S.212 to see that ’i : P! R is a continuous map for all

i 2 N. Let X0 ¼ X and Xn ¼ R for all n 2 N; it is clear that Z ¼Q fXi : i 2 og is
homeomorphic to X � Ro. Let pi : Z! Xi be the natural projection for all i 2 o.
Now define a map ’ : P! Z by the formulas ’(x)(0) ¼ c(x) and ’(x)(n) ¼ ’n(x)
for all x 2 P and n 2 N. The map ’ : P! Z is continuous because pi 	 ’ ¼ ’i if

i 2 N and p0 	 ’ ¼ c which shows that pi 	 ’ : P ! Xi is a continuous map for

all i 2 o (see Problem 102). It suffices to establish that ’ : P ! P0 ¼ ’(P) is
a homeomorphism and P0 is closed in Z. The map ’ is an injection because so is

c ¼ p0 	 ’. Since ’�1 ¼ c�1 	 p0, we can see that ’�1 is continuous so ’ is an

embedding.

To show that P0 is closed in Z, it suffices to establish that any z 2 Z \P0 has a
neighbourhood contained in Z \P0. Consider first the case z0¼ z(0) 2 P. Since z =2 P0,
there is i 2N such that z(i) 6¼ ’i(z0). Find disjointU 2 t(z(i),R) and V 2 t(’i(z0),R)
and apply continuity of ’i to fix W 2 t(z0, X) such that ’i(W \ P) � V. The set

O ¼ p�10 ðWÞ \ p�1i ðUÞ is open in Z and z 2 O � X \P0. Indeed, if y 2 P0 \ O then

y0¼ y(0) 2W \ P and hence y(i)¼ ’i(y) 2 Vwhich shows that y(i) =2U, i.e., y =2O.
This contradiction shows that O \ P0 ¼ ;.

Now, if z0 ¼ z(0) 2 X \P then z0 2 Fi for some i 2 N. Take any r > 0 with 1
r >

z(i) þ 1; let U ¼ B(z0, r) and V ¼ (�1, z(i)þ1). The set O ¼ p�10 ðUÞ \ p�1i ðVÞ is
open in Z and z 2 O � X \P0. Indeed, if y 2 P0 \ O then y0 ¼ y(0) 2 U \ P and

hence ’i(y0)>
1
r > z(i)þ 1. On the other hand pi(y)¼ y(i) 2 V and hence y(i)< z(i)

þ 1. This contradiction shows that O � X \P0 and finishes the proof of Fact 1.

Now it is easy to finish the proof of necessity. Suppose that a metrizable space

X is Čech-complete. Then X is embeddable into a completely metrizable space Y as

a dense subspace (see Problem 237). Since Y is an extension of X, the set X isGd in Y
(Problem 259) so we can apply Fact 1 to conclude that X embeds in Y � Ro as

a closed subspace. The space Y�Ro is completely metrizable by Problem 208; any

closed subset of a completely metrizable space is completely metrizable so the

space X is completely metrizable. This concludes the proof of necessity and our

solution.

S.270. Prove that, for any Čech-complete space X, we have w(X) ¼ nw(X). In
particular, any Čech-complete space with a countable network is second countable.

Solution. Fix a network N in the space X with jN j ¼ k ¼ nw(X) and a countable

family F of closed subsets of bX such that
SF ¼ bX \X. The family G ¼ {clbX(N) :

N 2 N } [ F also has cardinality k and the following property:

(�) For any x 2 X and y 2 bX \ {x} there exist F, G 2 G such that x 2 F, y 2 G and

F \ G ¼ ;.
To prove (�), suppose first that y 2 X and findU, V 2 t(bX) such that x 2U, y 2 V

and U \ V ¼ ;. There areM, N 2 N such that x 2M� U \ X and y 2 N� V \ X.
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Then M;N 2 G; x 2 M; y 2 N and M \ N � U \ V ¼ ;, i.e., (�) holds for such

x and y. Now, if y 2 b X \X then there is F 2 F such that y 2 F. Take W 2 t(x, bX)
such that W \ F ¼ ;. Since N is a network in X, there exists N 2 N such that

x 2 N � W \ X. As a consequence, N 2 G; F 2 G; x 2 N; y 2 F and N \ F �
W \ F ¼ ; so (�) is proved.

For any disjoint pair p¼ (F, G) of elements of G, fixU(p), V(p) 2 t(bX) such that
F � U(p), G � V(p) and U(p) \ V(p) ¼ ;. It is possible to do this because every

compact space is normal (Problem 124). The family U ¼ {U(p), V(p) : p is a disjoint
pair of the elements of G} has cardinality b k so the family W of all finite

intersections of the elements of U also has cardinality b k. To finish our solution

it is sufficient to show that the familyW0 ¼ {W \ X : W 2 W} is a base in X.
Fix any x 2 X and any O0 2 t(x, X); take O 2 t(b X) such that O \ X ¼ O0. For

any y 2 E ¼ b X \O find Fy, Gy 2 G such that x 2 Fy, y 2 Gy and Fy \ Gy ¼ ; (see
(�)). The pair p ¼ (Fy, Gy) is disjoint so the sets Uy ¼ U(p) and Vy ¼ V(p) are
disjoint. The family {Vy : y 2 E} is an open cover of the compact set E so we can

find y1, . . . , yn 2 E such that E � Vy1 [ � � � [ Vyn. The set W ¼ Uy1 \ � � � \ Uyn

belongs toW andW \ F¼ ;. Therefore,W0 ¼W \ X 2W0 and x 2W0 �O0 which
proves thatW0 is a base in X and finishes our solution.

S.271. Let X be a Lindel€of Čech-complete space. Prove that Xo is a Lindel€of
space.

Solution. Assume that we are given a map ft : Xt ! Yt for each t 2 T. Given a

point x 2 X ¼Q fXt : t 2 Tg, let f(x)(t) ¼ ft(x(t)) 2 Yt for all t 2 T. Then

f ðxÞ 2 Y ¼QfYt : t 2 Tg and hence we have a map f : X! Y which is called the
product of the maps {ft : t 2 T}. This product is usually denoted by

Q
t2T ft.

Fact 1. Any product of continuous maps is a continuous map.

Proof. Assume that we are given a continuous map ft : Xt! Yt for each t 2 T. Let
X ¼ QfXt : t 2 Tg and Y ¼ QfYt : t 2 Tg. The maps pt : X! Xt and qt : Y! Yt
are the respective natural projections. To see that f ¼Qt2T ft : X ! Y is continu-

ous, observe that qt 	 f ¼ ft 	 pt is a continuous map for any t 2 T so f is continuous
by Problem 102. Fact 1 is proved.

Fact 2. A continuous onto map g : Y ! Z is closed if and only if for any z 2 Z
and any O 2 t(g�1(z), Y), there exists O0 2 t(z, Z) such that g�1(O0) � O.

Proof. Necessity was proved in Fact 1 of S.226. To prove sufficiency, take any

closed set F � Y. It suffices to show that any point z 2 Z \ g(F) has a neighbourhood
which is contained in Z \ g(F). Since z =2 g(F), we have g�1(z) \ F¼ ;, i.e., O¼ Y \F
2 t(g�1(z), Y). Our hypothesis says that there is O0 2 t(z, Z) with g�1(O0) � O and,

in particular, g�1(O0)\ F ¼ ; whence O0 � Z \ g(F) so Fact 2 is proved.

Fact 3. (The Wallace theorem) Assume that Kt is a compact subspace of a space Xt

for all t 2 T; let X ¼QfXt : t 2 Tg and K ¼QfKt : t 2 Tg. Then, for every set

W 2 t(K, X) we can choose sets Ut 2 t(Kt, Xt), t 2 T such that Ut 6¼ Xt only for

finitely many t and
QfUt : t 2 Tg � W.
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Proof. We first consider the product of two spaces, i.e., T ¼ {1, 2}. Fix a point

x 2 K1 and for any point y 2 K2 choose sets U(y) 2 t(x, X1) and V(y) 2 t(y, X2) such

that U(y) � V(y) � W. By compactness of K2, we can find points y1, . . . , yn such
that

S
{U(yi) � V(yi) : i b n} � {x} � K2. Now, if G(x) ¼

T
{U(yi) : i b n} and

H(x)¼S{V(yi) : ib n} thenG(x) 2 t(x, X1),H(x) 2 t(K2, X2) andG(x)� H(x)�W.

Apply compactness of K1 to find x1, . . . , xk such that G(x1) [ � � � [ G(xk) � K1.

Now if U1 ¼
S
{G(xi) : i b n} and U2 ¼

T
{H(xi) : i b n} then Ui 2 t(Ki, Xi) for

i ¼ 1, 2 and U1 � U2 � W, i.e., our Fact is proved for the products of two factors.

Assume now that our Fact is true for all products of b n � 1 factors, n r 3 and

take T ¼ {1, . . . , n}. Representing K ¼ K1 � � � � � Kn as K1 � (K2 � � � � � Kn),

we have a product of two compact subsets in the product of two spaces: X1 and

X2 � � � � � Xn. Applying our Fact for the mentioned product of two factors, we

can obtain sets U1 2 t(K1, X1) and U
0
2 2 tðK2;� � � � � Kn;X2 � � � � � XnÞ such that

U1� U02 � W. By the inductive hypothesis there exist U2 2 t(K2, X2), . . . , Un 2
t(Kn, Xn) such that U2 � � � � � Un � U02. One readily sees that the sets U1, . . . , Un

are as promised so our Fact is proved for all finite products.

Finally, we consider the case of an arbitrary T. If Ot 2 t(Xt) for all t 2 T, the setQ
t2T Ot is called standard if Ot 6¼ Xt only for finitely many t. The standard sets are

open in X and form a base in X (see Problem 101). If O ¼Qt2T Ot is a standard set

then supp(O) ¼ {t 2 T : Ot 6¼ Xt}.

For every point x 2 K find a standard set Ux such that x 2 Ux � W. The set K
being compact its open cover {Ux : x 2 K} has a finite subcover, i.e., there exist

x1, . . . , xk 2 K with K � Ux1 [ � [ Uxk �W. If T0 ¼
S
{supp(Uxi

) : ib n} then, for
every i b n, we have the equality Uxi ¼

Q
t2T O

i
t where O

i
t ¼ Xt for all t 2 T \ T0. If

W1 ¼
SfQt2T0 O

i
t : ibng;W2 ¼

Q
t2TnT0 Xt; L1 ¼

Q
t2T0 Kt and L2 ¼

Q
t2TnT0 Kt

then L1 � W1, L2 � W2 and K ¼ L1 � L2 � W1 � W2 � W. Since our Fact is

proved for finite products, for each t 2 T0 we can choose Ut 2 t(Kt, Xt) such thatQ
t2T0 Ut � W1. Taking Ut ¼ Xt for all t 2 T \ T0 we obtain the family {Ut : t 2 T}

with the promised properties. Fact 3 is proved.

Fact 4. Any product of perfect maps is a perfect map.

Proof. Given a perfect map ft : Xt ! Yt for each t 2 T, let X ¼ QfXt : t 2 Tg and
Y ¼QfYt : t 2 Tg. To prove that the mapping f ¼Qt2T ft : X! Y is perfect, fix

any y 2 Y and observe that the space f�1ðyÞ ¼ Qff�1t ðyðtÞÞ : t 2 Tg is compact

being a product of compact spaces (Problem 125). To show that f is closed,

take any O 2 t( f�1(y), X). There is a finite T0 � T and sets Ot 2 tðf�1t ðyðtÞÞ;XtÞ,
t 2 T such that Ot ¼ Xt for all t 2 T \ T0 and

Q
t2T Ot � O (Fact 3). The map ft being

closed, for every t 2 T0, there exists Vt 2 t(y(t), Yt) such that f�1t ðVtÞ � Ot

(see Fact 2). If Vt ¼ Yt for all t 2 T \ T0 and V ¼QfVt : t 2 Tg then it is clear

that V 2 t(y, Y) and f�1ðVÞ ¼Qff�1t ðVtÞ : t 2 Tg �QfOt : t 2 Tg � O ; apply

Fact 2 again to see that f is closed concluding the proof of Fact 4.

Fact 5. If f : Y! Z is a perfect map and l(Z) b k then l(Y) b k. In particular, any

perfect preimage of a Lindel€of space is Lindel€of.
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Proof. Given an open cover U of the space Y, let V be the family of all finite unions

of the elements from U. For every z 2 Z the set f�1(z) is compact so there is Vz 2 V
with f�1(z) � Vz. By Fact 2 there exists Uz 2 t(z, Z) such that f�1(Uz) � Vz. It

follows from l(Z) b k that there is A � Z such that jAj b k and [{Uz : z 2 A} ¼ Z
and hence

S
{Vz : z 2 A} ¼ Y. Since each Vz can be covered by a finite subfamily

of U, there is a family U 0 � U such that jU 0j b k and
SU 0 ¼ Y so we have l(Y) b k

and hence Fact 5 is proved.

Fact 6. If Xn is a s-compact space for all n 2 o then the space P ¼QfXn : n 2 og
is Lindel€of.

Proof. Every Xn is a closed subspace of the space Y ¼ L{Xn : n 2 o} (see the

definition and basic properties of discrete unions in Problem 113) and hence P is

homeomorphic to a closed subspace of Yo. This shows that, without loss of

generality, we can consider that all factors of the product P are the same, i.e.,

Xn¼ X for all n 2 o. By our assumption, X¼S{Ki : i 2 o} where each Ki is a non-

empty compact set. If Z ¼L{Ki : i 2 o} then Z maps continuously onto X: this
is an easy exercise for the reader. Therefore, the space Zo maps continuously onto

Xo (Fact 1) so it suffices to prove the Lindel€of property of Zo. Let D be the set

o with the discrete topology. Letting f(x) ¼ i for any i 2 o and x 2 Li ¼ Ki � {i},
we obtain a map f : Z ! D which is perfect. Indeed, the inverse image of any

subset of D is a union of some Li’s which are open in Y. Thus f is continuous

and f�1(i) ¼ Li is a compact set for any i 2 D. Finally, f is closed because any

subset of D is closed.

Now if Zi ¼ Z, Di ¼ D and fi ¼ f for all i 2 o then h ¼ Qi2o fi : Z
o ! Do is a

perfect map by Fact 4. The space Do is second countable (S.135, Observation four)

and hence Lindel€of (S.140, Observation one) so we can apply Fact 5 to conclude

that Zo is also Lindel€of. Fact 6 is proved.

Fact 7. Given a space Y and Xt � Y for each t 2 T the space X ¼ T{Xt : t 2 T}
embeds in

QfXt : t 2 Tg as a closed subspace.

Proof. Let pt :
QfXt : t 2 Tg ! Xt be the natural projection. We define a map

ft : X ! Xt by the formula ft(x) ¼ x for any x 2 X and t 2 T. Clearly, ft is a

homeomorphic embedding and the formula f(x)(t) ¼ ft(x) defines a continuous

mapping f : X !Q fXt : t 2 Tg because pt 	 f ¼ ft for all t 2 T. In fact, the

mapping f : X ! Z ¼ f(X) is a homeomorphism because f�1t 	 pt is its continuous
inverse for each t2 T. To see that Z is closed inP ¼QfXt : t 2 Tg, take any y2 P \Z.
Then y(t) 6¼ y(s) for some t, s2 T andwe can fix setsU2 t(y(t), Y),V2 t(y(s), Y) such
that U \ V¼ ;. If U0 ¼ U \ Xt and V

0 ¼ V \ Xs then the set O¼ {z 2 P : z(t) 2 U0

and z(s) 2 V0} is an open neighbourhood of y in P andO \ Z¼ ;. Hence Z is closed

in P and Fact 7 is proved.

To finish our solution, take a Lindel€of Čech-complete space X and fix a family

{Un : n2o}� t(b X) such that
T
{Un : n2o}¼ X. For any n2o and any x2 X find

Vn
x 2 tðx; bXÞ such that clbXðVn

x Þ � Un. The open cover gn ¼ fVn
x : x 2 Xg of the
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Lindel€of space X has a countable subcover mn. If Pn¼
S
{clbX(U) :U2 mn} then Pn is

a s-compact space and X � Pn � On for any n 2 o. As a consequence, X ¼ T{Pn :

n 2 o}. The space X embeds as a closed subspace in the space P ¼QfPn : n 2 og
by Fact 7 and hence Xo embeds as a closed subspace in the space Po. Since the space

Po can be represented as a countable product of s-compact spaces, it is also Lindel€of
by Fact 6. Since every closed subspace of a Lindel€of space is a Lindel€of space, the
space Xo is Lindel€of and hence our solution is complete.

S.272. Prove that the Sorgenfrey line is not Čech-complete. Recall that the Sorgen-
frey line is the space (R, ts), where ts is the topology generated by the family {[a, b)
: a, b 2 R, a < b} as a base.

Solution.We know that the Sorgenfrey line S is a Lindel€of space while S� S is not
Lindel€of (Problem 165) so S cannot be Čech-complete by Problem 271.

S.273. Prove that a second countable space is Čech-complete if and only if it
embeds into Ro as a closed subspace.

Solution. The space Ro is Čech-complete by Problems 205, 269 and 262. Since any

closed subspace of a Čech-complete space is Čech-complete (see Problem 260), we

have sufficiency.

Now, if X a second countable Čech-complete space, it can be embedded in Ro as

a Gd-subspace. Indeed, there is Y � Ro homeomorphic to X by Problem 209. Since

Y is Čech-complete, it is a Gd-set in Y (Problem 259(iv)). The set Y being

a Gd-subspace of Ro, the set Y is also Gd in Ro. Now apply Fact 1 of S.269

to conclude that X embeds as a closed subspace in Ro � Ro ¼ Ro finishing the

proof of necessity.

S.274. Prove that

(i) Any Čech-complete space has the Baire property.
(ii) Any pseudocompact space has the Baire property.

Solution. (i) Since any open subset of a Čech-complete space is Čech-complete

(Problem 260(ii)), it suffices to show that any Čech-complete space is of second

category in itself (we omit the simple proof of the fact that an open set of a space is

of second category in that space if and only if it is of second category in itself).

Assuming the contrary we can find a Čech-complete space X and a family {Fn :

n 2 o} of nowhere dense subspaces of X such that X ¼S{Fn : n 2 o}. Fix a family

U ¼ {Un : n 2 o} � t(b X) such that X ¼ T U. Since the set G0 ¼ clbX(F0) is

nowhere dense in bX, we can take a point x0 2 U0 \G0 and a setW0 2 t(x0, bX) such
that clbX(W0) � U0 and clbX(W0) \ F0 ¼ ;. If we have a non-empty Wn 2 t(bX)
then we can take a point xnþ1 2 (Un \ Wn) \ clbX(Fnþ1) (because clbX(Fnþ1)
is no where dense in bX) and a set Wnþ1 2 t(xnþ1, bX) such that clbX(Wnþ1)
� (Un \ Wn) \ clbX(Fnþ1).

Having constructed the sequence {Wn : n 2 o}, observe that the compact set

F ¼ T{Wn : n 2 o} ¼ T{clbX(Wn) : n 2 o} is non-empty because the sequence
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{clbX(Wn) : n 2 o} is decreasing and consists of compact sets. Observe also that

Wn � Un for all n 2 o whence F � X. Finally, F \ (
S
{Fn : n 2 o}) ¼ ; because

Wn \ Fn¼ ; for all n 2o. As a consequence, X 6¼
S
{Fn : n 2o}; this contradiction

finishes the proof of (i).

(ii) Take any pseudocompact space X and any U 2 t�(X). If U is of first category

then there is a family P ¼ {Pn : n 2 o} of nowhere dense subsets of U such that

U ¼ SP. Take any x0 2 UnP0 and find U0 2 t(x0, X) such that U0 � UnP0. if

we have a non-empty Un 2 t(X), take any xnþ1 2 UnnPnþ1 and Unþ1 2 t(xnþ1, X)
such thatUnþ1 � UnnPnþ1. This construction gives us a sequenceU0�U1� . . . of
open subsets of X such that U0 � U and Un \ Pn ¼ ; for all n 2 o. Since X is

pseudocompact, we have F ¼ TfUi : i 2 og 6¼ ; (Problem 136); if u 2 F then u 2
U \ (

S
{Pn : n 2 o}); this contradiction finishes the proof of (ii) and completes

our solution.

S.275. Let X be a Baire space. Prove that any extension of X as well as any open
subspace of X is a Baire space. Show that a closed subspace of a Baire space is not
necessarily a Baire space.

Solution.Assume that X is a dense subset of a space Y. Given a non-emptyU 2 t(Y)
suppose that U ¼ S{Fn : n 2 o} where Fn is nowhere dense in Y. It is easy to see

that U0 ¼ U \ X ¼ SfF0n : n 2 og where F0n ¼ Fn \ X is nowhere dense in X. Thus
U0 2 t�(X) is a union of countably many nowhere dense subsets of X which is

a contradiction with the Baire property of X.

If U is an open subset of a Baire space X and V 2 t(U) then V is also open

in X so it is of second category in X. It is immediate that V is also of second category

in U so we proved that any open subset of a Baire space is a Baire space.

To give the promised example, consider the space Z ¼ (R � (R \ {0})) [ (Q �
{0}) with the topology induced from R2. It is easy to see that F ¼ Q � {0} is a

closed subspace of Z homeomorphic to Q. However, Q is a countable union of its

one-point sets each one of which is nowhere dense in Q. Therefore Q is of first

category in itself.

To prove that Z is a Baire space note that the set W ¼ R � (R \ {0})) is dense

in Z. Clearly, W is an open set of the Čech-complete space R2 (see Problems 205

and 269). Therefore W is Čech-complete (Problem 260) and hence Baire (Problem

274). Since Z is an extension of W, it is a Baire space so our solution is complete.

S.276. Prove that a dense Gd-subspace of a Baire space is a Baire space. As a
consequence, Q is not a Gd-subset of R.
Solution. Take an arbitrary Baire space X and a dense subspace Y � X such that

Y ¼ T{Un : n 2 o} for some family {Un : n 2 o} � t(X). It is evident that the set
Fn ¼ X \Un is nowhere dense in X for any n 2 o. If W 2 t�(Y) fix W0 2 t(X) with
W0 \ Y¼W. Suppose thatW is of first category in Y and take a family {Pn : n 2 o}
of nowhere dense subsets of Y such that W ¼ S{Pn : n 2 o}. Then each Pn is

also nowhere dense in X and W0 ¼ S{Fn \ W0 : n 2 o} [ {Pn : n 2 o} which

228 2 Solutions of Problems 001–500



shows that the setW0 2 t�(X) is represented as a countable union of nowhere dense

subsets of X which is a contradiction with the Baire property of X.
To finish our solution, observe that Q is not a Baire space because it is of first

category in itself. The space R is Čech-complete and hence Baire, so Q cannot be

a Gd-subset of R.
S.277. Prove that an open image of a Baire space is a Baire space.

Solution. Suppose that X is a Baire space and take any open continuous map f :
X! Y. Observe that if P� Y is nowhere dense in Y then f�1(P) is nowhere dense in X.
Indeed, if U 2 t�(X) and U� clX( f

�1(P)) then f(U) 2 t�(Y) and f(U)� clY(P) which
is a contradiction.

An evident consequence is that f�1(N) is of first category in X whenever N is of

first category in Y. Thus, if U 2 t�(Y) is of first category in Y then f�1(U) 2 t�(X) is
of first category in X which contradicts the Baire property of X. Therefore Y is

a Baire space.

S.278. Prove that Cp(X) is a Baire space if and only it is of second category in itself.
Give an example of a non-Baire space Y which is of second category in itself.

Solution. If Cp(X) is a Baire space then every open subset of Cp(X) and, in

particular, the whole Cp(X) is of second category in Cp(X). Now suppose that

Cp(X) is of second category in itself and some U 2 t�(Cp(X)) is of first category.
Take any u0 2 U and consider a maximal disjoint family g of open subsets of Cp(X)
each one of which is homeomorphic to a non-empty open subset of U. We claim

that
S
g is dense in X. Indeed, if V ¼ CpðXÞn

S
g 6¼ ; then take any v0 2 V and

observe that the set W ¼ U þ (v0 � u0) ¼ {u þ (v0 � u0) : u 2 U} is a neigh-

bourhood of v0 because the map f! f þ (v0 � u0) is a homeomorphism of Cp(X)
onto itself (Problem 079). As a consequence, W \ V is a non-empty open subset

of V homeomorphic to an open subset of U and hence the family g [ {W \ V} is

still disjoint and consists of sets which are homeomorphic to open subsets of U;
this contradiction with maximality of g proves that

S
g ¼ CpðXÞ and hence the set

F ¼ Cp(X) \ (
S

g) is nowhere dense in Cp(X).

Every element W 2 g is of first category being homeomorphic to an open subset

of U; fix a family FW ¼ FW
n : n 2 N

� �
of nowhere dense subsets of W such thatS FW ¼ W. Letting F0 ¼ F and Fn ¼
S

Fn
W : W 2 g

� �
for all n 2 N, we obtain

a family F ¼ {Fn : n 2 o} of nowhere dense subsets of Cp(X) with
S F ¼ Cp(X),

a contradiction with the fact that Cp(X) is of second category. Thus, second category
and Baire property are equivalent in spaces Cp(X).

To give a promised example, consider the space Y ¼ R  Q (see the definition

and basic properties of discrete unions in Problem 113). The space Y is of second

category because R is an open subset of Y which is of second category; the space

Y is not Baire because Q is an open subset of Y which is of first category.

S.279. Suppose that X is an infinite set and x is a free ultrafilter on X (i.e., x is
an ultrafilter on X and

T
x ¼ ;). Denote by Xx the set X [ {x} with the topology
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tx ¼ {A : A � X} [ {B : x 2 B and X \ B =2 x}. Show that tx is indeed a topology on
Xx such that x is the unique non-isolated point of Xx.Prove that Cp(Xx) is a Baire space.

Solution. Since ; ¼ X \Xx =2 x and x 2 Xx, we have Xx 2 tx. The empty set belongs

to tx because it is a subset of X. If U, V 2 tx and x =2 U \ V then U \ V � X
and hence U \ V 2 tx. Now, if x 2 U \ V then X \ U =2 x and X \ V =2 x and

therefore X \ (U \ V) ¼ (X \U) [ (X \V) =2 x because x is an ultrafilter. Thus U \ V
2 tx. If g � tx and

S
g � X then

S
g 2 tx. If x 2 U for some U 2 g then U \ X 2 x

and therefore (
S
g) \ X 2 x whence X \ (

S
g) =2 x, i.e.,

S
g 2 tx and we proved that

tx is a topology on Xx.

To prove that Cp(Xx) is a Baire space we need the following notion. Say that a

map s is a strategy on Xx if it has the following properties:

(1) The domain of s is the familyD¼ {(S0, S1, . . . , S2n) : n 2o and {S0, . . . , S2n}
is a disjoint family of finite subsets of Xx}.

(2) Given any (S0, . . . , S2n) 2 D, its image s(S0, . . . , S2n) is a finite subset of Xx

disjoint from S0 [ � � � [ S2n.

Call a sequence {Si : i 2 o} of disjoint finite subsets of X a s-play (or a play in
which the strategy s is applied) if S2n+1 ¼ s(S0, . . . , S2n) for all n 2 o. A sequence

(S0, S1, . . . , S2n) 2 D is called a partial s-play if S2iþ1 ¼ s(S0, . . . , S2i) for each
i ¼ 0, . . . , n � 1. In particular, every finite set S0 � Xx is a partial s-play.

The strategy s is called winning if, for any s-play {Si : i 2 o}, the point x is an

accumulation point of the set [{S2iþ1 : i 2 o}.

Fact 1. If Cp(Xx) is not a Baire space then there exists a winning strategy s on the

space Xx.

Proof. Suppose that Cp(X) is not Baire. Then it is of first category (Problem 278)

and hence we can find a sequence S ¼ {On : n 2 o} of dense open subsets in

Cp(X) such that
T
S ¼ ;. Observe first that to get a winning strategy s, we only

need to check its values on partial s-plays so we will only define it on partial

s-plays considering that s(S0, . . . , S2n) ¼ ; for the rest of the sequences

(S0, . . . , S2n) 2 D.
Given a finite set A � Xx, a function f : A ! R and e > 0 we will need the set

M( f, A, e) ¼ {g 2 Cp(Xx) : jg(x) � f(x)j < e for all x 2 A}. It is evident that the
sets M( f, A, e) form a local base at f in the space Cp(Xx). Given any finite S0 � Xx,

let e0¼ 1 and f0(x)¼ 0 for all x 2 S0. The open set U0¼M( f0, S0, e0) has to intersect
the dense open setO0 and therefore there exist a finite T1� S0, e1> 0 and a function

f1 : T1! R such that

(1) e1 < 2�1 and x 2 T1.
(2) M( f1, T1, 2e1) � U0 \ O0.

We let s(S0) ¼ T1 \ S0. Suppose that, for some n > 0, we have a partial s-play
S0, . . . , S2n for which we have chosen functions f0, . . . , f2n�1 and positive

numbers e0, . . . , e2n�1 with the following properties:
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(3) fk : Tk ¼ S0 [ . . . [ Sk! R for each k b 2n � 1.

(4) ek < 2�k for each k b 2n � 1.

(5) M( f2kþ1, T2k+1, 2e2kþ1) � M( f2k, T2k, e2k) \ Ok for each k ¼ 0, . . . , n � 1.

(6) f2kjT2k�1 ¼ f2k�1 and f2k(x) ¼ f2k � 1(x) for all x 2 S2k, k ¼ 1, . . . , n � 1.

We are going to define a function f2n : T2n¼ S0 [ � � � [ S2n! R by the formulas

f2n(x) ¼ f2n�1(x) for all x 2 T2n�1 and f2n(x) ¼ f2n�1(x) if x 2 S2n. If we let e2n ¼
(1/2)e2n�1 then the property (6) holds also for k ¼ n. The open set M( f2n, T2n, e2n)
must intersect the open dense set On so we can find a finite T2nþ1 � T2n, a function
f2nþ1 : T2nþ1 ! R and e2nþ1 2 (0, 2�2n�1) such that we have the inclusion

M( f2nþ1, T2nþ1, 2e2nþ1) � M( f2n, T2n, e2n) \ On. To finish our inductive construc-

tion let s(S0, . . . , S2n) ¼ T2nþ1 \T2n.
Suppose that we have a s-play {Si : i2o}, the respective functions {fi : i2o} and

the sequence {ei : i 2 o}. If x 2 S ¼ S{Si : i 2 o} then x 2 Sn for some n 2 o and

therefore x 2 Tk for all k r n. Observe that (5) and (6) imply that, for any kr n, we
have jfkþ1(x)� fk(x)j < ek < 2�k so it is a standard exercise to show that {fk(x) : k 2
o} is a Cauchy sequence and hence it converges to some number f(x) 2 R. The
properties (4), (5) and (6) imply that the sequenceV ¼ {jfk(x)� ek, fk(x)þ ek] : kr n}
is decreasing and the diameters of its elements tend to zero. This, together with the

convergence fk(x)! f(x) implies that {f(x)} ¼ TV
Assume that the function f : S! R is continuous. The property (1) implies that

x 2 S so the set S is closed in Xx. Any space with a unique non-isolated point

is normal (Claim 2 of S.018) so Xx is a normal space. Apply Problem 032 to

find a function g 2 Cp(X) such that gjS ¼ f. Given any number k 2 o we can

apply the observations of the previous paragraph to conclude that g(x) ¼ f(x) and
f(x) 2 [ f2kþ1(x) � e2kþ1, f2kþ1(x) þ e2kþ1] � ( f2kþ1(x) � 2e2kþ1, f2kþ1(x) þ 2e2kþ1)
for every x 2 T2kþ1 so g 2 M( f2kþ1, T2kþ1, 2e2kþ1) � Ok and therefore g 2 Ok. The

number k 2 o was taken arbitrarily so this proves, that g 2 T{Ok : k 2 o} ¼ ;,
a contradiction which shows that the function f cannot be continuous.

The space S has only one non-isolated point x so f is not continuous at x.
Observe that, for any point x 2 S2k, we have jf(x) � f2k(x)j b e2k < 2�2k and

jf2k�1(x) � f(x)j b e2k�1 < 2�2kþ1 and hence we can apply the second equality of

(6) to conclude that jf(x)� f(x)jb jf(x)� f2k(x)j þ jf2k�1(x)� f(x)j< 2�2kþ2 for any
x 2 S2k. An easy consequence is that the function f is continuous on the set

S
{S2k :

k 2 o} [ {x}. Thus f is discontinuous on the set S0 ¼ S{S2kþ1 : k 2 o} and hence

x has to be an accumulation point of the set S0 which finally shows that s is a

winning strategy on Xx so Fact 1 is proved.

Fact 2. The space Xx has the following “moving off” property: for any sequence

{F n : n 2 o} of infinite disjoint families of finite subsets of Xx, we can choose an

element Fn 2 F n for every n 2 o in such a way that
S
{Fn : n 2 o} has no

accumulation points in Xx.

Proof. Choose distinct sets A0, B0 2 F 0 arbitrarily. Suppose that we have chosen sets

Ai, Bi 2 F i for all i b n so that the family {Ai, Bi : i b n} is disjoint. Since the set

Sn ¼ (
S

ibn Ai) [ (
S

ibn Bi) is finite, there exist distinct Anþ1, Bnþ1 2 F nþ1 such that
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Anþ1 \ Sn ¼ Bnþ1 \ Sn ¼ ; so the inductive choice goes on. Once we have the

sequences {Ai : i 2 o} and {Bi : i 2 o}, observe that their unions A and B are disjoint

so one of the sets A, B has no accumulation points in Xx. If, for example, A has no

accumulation points in Xx, we let Fn ¼ An for all n 2 o finishing the proof of Fact 2.

If Cp(Xx) is not a Baire space then there exists a winning strategy s on the space

Xx by Fact 1. Let T(0)¼ ; and, if the sets T(0), . . . , T(n� 1) are defined, let T(n)¼
s(T(0) [ � [ T(n � 1)). Suppose that k r 1 and the set T(i1, . . . , ik) is defined for

every k-tuple (i1, . . . , ik) of elements of o.
Let T(i1, . . . , ik, 0) ¼ ; and, if the set T(i1, . . . , ik, j) is defined for all numbers

j ¼ 0, . . . , n � 1, consider the set Tði1; . . . ; ik; nÞ ¼ sðS0; S1; S2; . . . ; S2k�1;
Tði1; . . . ; ik; 0Þ [ � � � [ Tði1; . . . ; ik; n� 1ÞÞ;where the sets S0, S1, S2, . . . , S2k�1
are defined as follows:

S0 ¼ Tð0Þ [ � � � [ Tði1 � 1Þ; S1 ¼ Tði1Þ; S2 ¼ Tði1; 0Þ [ � � � [ Tði1; i2 � 1Þ;
S3 ¼ Tði1; i2Þ; . . . ; S2j�1 ¼ Tði1; . . . ; ijÞ

and S2j ¼ T(i1, . . . , ij, 0) [ � � � [ T(i1, . . . , ij, ijþ1 � 1) for all j b k.
Once we have the sets T(i1, . . . , ik) for all k-tuples (i1, . . . , ik), we can define

the families F ¼ {T(j) : j 2 N} and F (i1, . . . , ik) ¼ {T(i1, . . . , ik, j) : j 2 N} for

every k-tuple (i1, . . . , ik) of elements of N. Observe that the collections F ,
F (i1, . . . , ik) are infinite, disjoint and consist of finite sets. Fact 2 makes it possible

to choose one element from each of these collections in such a way that the union of

the chosen sets is closed and discrete.

To be more specific, let the chosen sets be T(m) 2 F and, for each k-tuple
(i1, . . . , ik), let T(i1, . . . , ik, m(i1, . . . , ik)) be the chosen member of F (i1, . . . , ik).
We will need a sequence {jk : k 2 N} where

j1 ¼ m; j2 ¼ mðj1Þ; . . . ; jnþ1 ¼ mðj1; . . . ; jnÞ; � � � �

Consider the sets

S0 ¼ Tð0Þ [ � � � [ Tðj1 � 1Þ; S1 ¼ Tðj1Þ; S2 ¼ Tðj1; 0Þ [ � � � [ Tðj1; j2 � 1Þ;
S3 ¼ Tðj1; j2Þ; . . . ; S2n�1 ¼ Tðj1; . . . ; jnÞ;

and S2n ¼ T(j1, . . . , jn, 0) [ � � � [ T(j1, . . . , jn, jnþ1 � 1) for all n 2 N.
It is clear that the sequence {Si : i 2 o} is a s-play so x must be an accumu-

lation point for the set
S
{S2i+1 : i 2 o} ¼ S{T(j1, . . . , jk) : k 2 N}. However, the

set
S
{T(j1, . . . , jk) : k 2 N} has to be closed and discrete because it was chosen to

witness the “moving off” property of the families F , F (i1, . . . , ik). This contradic-
tion shows that Cp(Xx) is a Baire space and finishes our solution.

S.280. Show that Cp(X) is a Baire space if and only if pA(Cp(X)) is a Baire space for
any countable A � X. Here pA : Cp(X) ! Cp(A) is the restriction map defined by
pA( f) ¼ f j A for every f 2 Cp(X).
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Solution. To prove necessity, fix any countable A � X. Given a finite P � X, a
function f 2 Cp(X) and e> 0, we letO( f, P, e)¼ {g 2 Cp(X) : jg(x)� f(x)j< e for all
x 2 P}. It is evident that the sets O( f, P, e) form a local base at f in Cp(X). Denote by
C(A jX) the subspace pA(Cp(X)) of the spaceCp(A). Given h2C(A jX), a finiteB�A
and e> 0, letM(h, B, e)¼ {g2C(A j X) : jg(x)� h(x)j< e for all x2 B}. All possible
sets M(h, B, e), evidently, constitute a local base at h in the space C(AjX).
Claim. Given a finite set P� X, a function f 2 Cp(X) and e> 0, the set pA(O( f, P, e))
is dense in the set M(pA( f), P \ A, e). Besides, if P � A then pA(O( f, P, e)) ¼
M(pA( f), P, e) and, in particular, the set pA(O( f, P, e)) is open in C(A j X).
Proof of the claim. It is immediate that pA(O( f, P, e)) � M(pA( f), P \ A, e); for
g ¼ pA( f) take any h 2 M(g, P \ A, e). It suffices to prove that any basic

neighbourhood of h in C(A j X) intersects the set pA(O( f, P, e)). So take any finite

B � A and d > 0. Applying Problem 034 we can find f1 2 Cp(X) such that f1(x) ¼ h
(x) for all x 2 B and f1(x)¼ f(x) for all x 2 P \B. It is straightforward to check that f1
2 O( f, P, e) and pA( f1) 2 M(h, B, d) \ pA(O( f, P, e)) whence h 2 pAðOðf ;P; eÞÞ
(the closure is taken in C(A j X)) and the first part of our claim is proved.

Now, if P is contained in A then pA(O( f, P, e)) �M(pA( f), P, e) because, for any
x 2 P, we have jpA(g)(x)� pA( f)(x)j ¼ jf(x)� g(x)j< e for any g 2 O( f, P, e). If, on
the other hand, h 2 M(pA( f), P, e) then there is h0 2 Cp(X) with pA(h0) ¼ h; for this
h0 we have jh0(x)� f(x)j< e for all x2 P so h0 2O( f, P, e) and hence h¼ pA(h0)2 pA(O
( f, P, e)) so pA (O( f, P, e)) � M(pA( f), P, e) and the proof of our claim is complete.

Note that the Baire property of a space Z is equivalent to the fact that the

intersection of any countable family of dense open subsets of Z is dense in Z.
To show that C(AjX) is a Baire space, take any family {Un : n 2 o} of open dense

subsets of C(AjX). The set Vn ¼ p�1A ðUnÞ is an open dense subset of Cp(X) for all
n 2 o. The openness of Vn is clear so let prove that Vn is dense in Cp(X). Take any
function f 2 Cp(X), any finite P � X and e > 0. If O( f, P, e) \ Vn ¼ ; then

pA(O( f, P, e)) \ Un ¼ ;. Since Un is dense in the space C(AjX), the set W ¼ Un \
M(pA( f), P \ A, e) is non-empty; the set pA(O( f, P, e)) being dense inM(pA( f), P \
A, e) by our Claim, we have pA(O( f, P, e)) \ W 6¼ ; and hence pA(O( f, P, e)) \ Un

6¼ ; which is a contradiction showing that Vn is dense in Cp(X). The space Cp(X)
being Baire, the set D ¼T{Vn : n 2 o} is dense in Cp(X). As a consequence the set
pA(D) is dense in C(AjX) and contained in

T
{Un : n 2 o}. Thus

T
{Un : n 2 o} is

dense in C(AjX) so necessity is proved.

To establish sufficiency, suppose that C(AjX) is Baire for every countable A� X.
If Cp(X) is not Baire then it is of first category in itself (278) so we can fix a

sequence {Wn : n 2o} of open dense subsets of Cp(X) such that
T
{Wn : n 2o}¼ ;.

Let B ¼ {O( f, P, e) : f 2 Cp(X), P is a finite subset of X and e> 0}. It is clear that B is
a base in Cp(X); if U ¼ O( f, P, e) 2 B then supp(U) ¼ P.

For any number n 2 o consider a maximal disjoint family gn� B such that Vn¼S
gn�Wn. The set A¼

S
{supp(U) : U 2 gn, n 2 o} is countable and hence C(AjX)

is a Baire space. The set Vn is dense in Cp(X) and hence Gn ¼ pA(Vn) is dense in

C(AjX). For any U 2 gn we have supp(U) � A so the second part of our claim is

2 Solutions of Problems 001–500 233



applicable to conclude that pA(U) is open in C(AjX) for any U 2 gn. As a conse-

quence, the set Gn ¼
S
{pA(U) : U 2 gn} is open in C(AjX) which implies, together

with the Baire property of C(AjX), thatT{Gn : n 2 o} 6¼ ;. Pick any h 2 Cp(X) such
that pA(h) 2

T
{Gn : n 2o}; given n 2 o there is U¼ O( f, P, e) 2 gn such that pA(h)

2 pA(U). Since P ¼ supp(U) � A, we have pA(U) ¼ M(pA( f), P, e) by the second

part of the claim. This implies jpA(h)(x) � pA( f)(x)j ¼ jh(x) � f(x)j < e for every
point x 2 P and therefore h 2 O( f, P, e) � Vn �Wn. The number n 2 o was chosen

arbitrarily so we proved that f 2T{Un : n 2 o}¼ ; which is a contradiction. Hence
Cp(X) is a Baire space and our solution is finished.

S.281. Prove that a countable product of second countable Baire spaces is a Baire
space.

Solution. Call a subset A of a space Z residual if Z \A is of first category.

Fact 1. Let Z be an arbitrary space. Suppose that T is a second countable space

and p : Z� T! Z is the natural projection. If we have a countable family U of open

dense subsets of Z � T then the set A ¼ {z 2 Z : p�1(z) \ U is dense in p�1(z) for
any U 2 U} is residual in Z.

Proof. Fix a countable base B ¼ {Bn : n 2 o} � t�(T) of the space T; given
any U 2 U and n 2 o, let R(n, U) ¼ {z 2 Z : ({z} � Bn) \ U ¼ ;}. Since the set
(Z � T) \U is closed in Z � T, it is easy to see that R(n, U) is closed in Z. If W ¼
Int(R(n, U)) 6¼ ; then W � Bn is a non-empty open set contained in (Z � T) \U
which contradicts the density of U. Therefore, the set R(n, U) is nowhere dense

in Z. Observe finally that Z \A ¼ S{R(n, U) : U 2 U, n 2 o} and hence the set A is

residual. Fact 1 is proved.

If we have second countable Baire spaces {Yn : n 2 o} such that the space

Y ¼QfYn : n 2 og is not Baire then some set O 2 t�(Y) must be of first category

in the space Y. There exist n 2 o and Ui 2 t�(Yi), i ¼ 0, . . . , n such that

U0 � � � � � Un �
QfYi : i> ng � O and hence the family {U0, . . . , Un, Ynþ1, . . .}

consists of Baire spaces (Problem 275) whose product is of first category. This shows

that if we prove that every countable product of second countable Baire spaces if of

second category then every such product is a Baire space.

We first prove that the product of two second countable Baire spaces is a Baire

space. By the observation of the previous paragraph it suffices to rule out the

possibility of existence of two second countable Baire spaces whose product is of

first category.

Take any second countable Baire spaces X and Y such that X � Y is of first

category; fix a countable family U of open dense subsets of X � Y with
T U ¼ ;.

Given x 2 X, let Yx ¼ {(x, y) : y 2 Y}. It is clear that Yx is homeomorphic to Y for

each x 2 X; furthermore, Yx¼ p�1(x) where p : X� Y! X is the natural projection.

Note that, in any Baire space, any residual set is non-empty; this makes it possible

to apply Fact 1 to conclude that there is a point x 2 X such that U \ Yx is dense in
Yx for all U 2 U . The family Ux ¼ {U \ Yx : U 2 U} consists of open dense subsets
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of a Baire space Yx and hence
T Ux 6¼ ;. Thus T U � T Ux 6¼ ;; this contradiction

proves that X � Y is of second category and hence every product of two second

countable Baire spaces is a Baire space.

A trivial induction shows that any finite product of second countable Baire

spaces is a Baire space so let us consider the general case. Again, we must only

prove that a countable product of second countable Baire spaces cannot be of first

category. Suppose that {Xn : n 2 o} is a sequence of second countable Baire spaces
such that the space X ¼QfXn : n 2 og is of first category. Let Yn ¼

QfXi : i> ng
for all n 2o. Denote by pn : X! X0� � � � � Xn the projection defined by pn(x)¼ xj
{0, . . . , n} for all n 2 o. If m, n 2 o and n b m, let pmn :

Q
ibm Xi !

Q
ibn Xi be the

analogous projection, i.e., pmn ðxÞ ¼ xjf0; . . . ; ng for every x 2 X0 � � � � � Xm. Fix

a sequence {On : n 2 o} of open dense sets in X such that
TfOn : n 2 og ¼ ;.

We are going to construct a sequence k0< k1< � � � < kn< . . . of elements of o
and points wn 2 X0 � � � � � Xkn, n 2 o with the following properties:

(1) If n < m then wm extends wn, i.e., wm j{0, . . . , kn} ¼ wn.
(2) For each n 2 o, if x 2 X and pkn(x) ¼ wn then x 2 Un.

(3) ({wn} � Ykn) \ Oi is dense in {wn} � Ykn for each i > n.

Since O0 is a non-empty open subset of the space X, there exists k0 2 o
and sets W0

i 2 t�ðXiÞ; i b k0 such that U0 ¼
Q

ibk0
W0

i �
Q

i>k0
Xi � O0. The set

W0 ¼Qibk0
W0

i is a Baire space being a finite product of second countable Baire

spaces. We can apply Fact 1 to the productU0¼W0� Yk0 and to the dense open sets
{Oi \ U0 : i > 0} of the productW0 � Yk0 to conclude that there is a point w0 2W0

such that ({w0} � Yk0) \ Oi is dense in {w0} � Yk0 for each i > 0. It is clear that

properties (2) and (3) hold for k0 and w0. Suppose that we have natural numbers k0
< � � � < kn and point w0, . . . , wn with the properties (1)–(3).

Apply property (3) to see that the intersection Onþ1 \ ({wn} � Ykn) is an open

non-empty subset of the product {wn}� Ykn; therefore we can find a natural number

knþ1 > kn and sets Wnþ1
i 2 t�ðXiÞ; i ¼ kn þ 1; . . . ; knþ1 such that fwng�Q

kn < ibknþ1 W
nþ1
i � Yknþ1 � Onþ1. If Wnþ1 ¼ fwng �

Q
kn < ibknþ1 W

nþ1
i then Oi \

(Wnþ1� Yknþ1) is a dense subset ofW
nþ1� Yknþ1 for all i> nþ 1 by (3). SinceWnþ1 is

a Baire space, we can apply Fact 1 to conclude that there exists wnþ1 2 Wnþ1 such
that ({wnþ1} � Yknþ1) \ Oi is dense in {wnþ1} � Yknþ1 for each i > nþ 1. Therefore

(3) is true for w0, . . . , wnþ1 and k0, . . . , knþ1. Since p
knþ1
kn
ðwnþ1Þ ¼ wn, the property

(1) also holds for w0, . . . wnþ1. The property (2) is true for wnþ1 because {wnþ1} �
Yknþ1�Onþ1. As a consequence, our inductive construction can be carried out for all
n 2 o and therefore there exist sequences {wn : n 2 o} and {kn : n 2 o} with the

properties (1)–(3). The property (1) shows that there exists y2X such that pn(y)¼wn

for each n 2 o. The property (2) implies y 2 On for all numbers n 2 o and hence

y2T{On : n2o}¼ ;which is a contradiction. Therefore X is a Baire space and our

solution is complete.

S.282. Prove that, for every Baire space X, we have p(X) ¼ c(X).
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Solution. It is evident that c(X) b p(X) for any space X. Now assume that X is

a Baire space, c(X) ¼ k and there exists a point-finite family g � t�(X) with jgj ¼
kþ. Given x 2 X and n 2o, say that ord(x)b n if the point x belongs tob n elements

of g. Observe that the set Fn¼ {x 2 X : ord(x)b n} is closed in the space X. Indeed,
if x 2 X \Fn then there are n þ 1 distinct sets U1, . . . , Unþ1 2 g with x 2 Ui for all

ib nþ 1. ThenU¼T{Ui : ib nþ 1} is an open neighbourhood of xwhich does not
meet Fn.

The family g being point-finite, we have X ¼ S{Fn : n 2 o}. If U 2 t�(X) then
Fn \ U cannot have empty interior for all n 2 o because then the set U would be of

first category which is impossible because of the Baire property of X. If n is the

minimal number for which U \ Int(Fn) 6¼ ; then U \ Int(Fn \Fn�1) 6¼ ;.
This shows that the set W ¼ S{Int(Fn \Fn�1) : n 2 N} is dense in X. As a

consequence,W \ U 6¼ ; for every U 2 g so there exists n 2 o such that the family

m ¼ {U 2 g: U \ Int(Fn \Fn�1) 6¼ ;} has cardinality kþ.
Every point of V ¼ Int(Fn \Fn�1) belongs to exactly n elements of m. For any x 2

V, let mx ¼ {U 2 m : x 2 U} and Vx ¼ (
T
mx)\V. The family V ¼ {Vx : x 2 V} is

disjoint in the sense that, for any x, y 2 V, we have Vx ¼ Vy or Vx \ Vy ¼ ;. To see

this, observe that z 2 Vx \ U and U 2 m implies U 2 mx because otherwise the point
z belongs to more than n elements of m. Therefore Vx \ Vy 6¼ ; implies everyU 2 my
intersects Vx so my � mx. Since the situation is symmetric, we also have mx � my
whence mx ¼ my and therefore Vx ¼ Vy. Since every Vx intersects only finitely

many elements of m, there must be k+ distinct (and hence disjoint) elements of V
which is a contradiction with c(X) b k. This proves that p(X) b c(X) and therefore

p(X) ¼ c(X).

S.283. Prove that, if Cp(Xt) is a Baire space for all t 2 T, then the productQfCpðXtÞ : t 2 Tg is a Baire space.

Solution. Given a space Z and B � Z let pB : Cp(Z) ! Cp(B) be the restriction

map, i.e., pB( f) ¼ fjB for any f 2 Cp(Z). The map pB is continuous for any B � Z
(Problem 152). LetC(BjZ) be the set pB(Cp(Z)) with the topology induced fromCp(B).

Observe that the space
QfCpðXtÞ : t 2 Tg is homeomorphic to the space Cp(X)

where X ¼ L {Xt : t 2 T} (see Problems 113 and 114), so it suffices to prove

that Cp(X) is a Baire space. We will consider Xt to be a clopen subspace of X.
Given a countable A � X, the set T0 ¼ {t 2 T : A \ Xt 6¼ ;} is countable and A ¼S
{At : t 2 T0} where At¼ A \ Xt for all t 2 T0. Observe that, for any h 2 C(Xt) there

is a function h1 2 C(X) with h1jXt¼ h; an immediate consequence is that C(AtjX)¼
C(AtjXt) for any t 2 T0. For an arbitrary function f 2 C(AjX) take any f1 2 Cp(X) with
pA( f1) ¼ f and let ’( f)(t) ¼ pAt

( f1) for each t 2 T0. It is evident that ’ðf Þ 2Q
fCðAtjXÞ : t 2 T0g ¼

QfCðAtjXtÞ : t 2 T0g for each f 2 C(AjX) so we have a map

’ : CðAjXÞ !QfCðAtjXtÞ : t 2 T0g.
To check that ’ is continuous, consider the map qt 	 ’ where qt :QfCðAtjXtÞ : t 2 T0g ! CðAtjXtÞ is the natural projection. It is easy to see that

qt 	 ’ coincides with the restriction map from C(AjX) to C(AtjX) ¼ C(AtjXt)
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for every t 2 T0; the mentioned restriction map being continuous, this proves

continuity of ’. If f, g 2 C(AjX) and f 6¼ g then f(x) 6¼ g(x) for some x 2 At,

t 2 T0. Then ’( f)(t) 6¼ ’(g)(t) which proves that ’( f) 6¼ ’(g), i.e., ’ is an injection.

If ft : Xt! R is a continuous function for each t 2 T0 then there exists f 2 C(X)
such that fjXt ¼ ft for all t 2 T0 : one has to define f(x) to be ft(x) if x 2 Xt for some

index t 2 T0 and f(x) ¼ 0 for the rest of x 2 X. This fact easily implies that ’ is an

onto map. The map ’�1 is also continuous; to see that recall that ’�1 mapsQfCðAtjXtÞ : t 2 T0g to the product RA so it suffices to verify that ea 	 ’�1 is

continuous for each a 2 A. Here ea( f) ¼ f(a) for each f 2 RA. Take t 2 T with a 2 Xt

and observe that ea 	 ’�1 coincides with the continuous map da 	 qt, where da( f) ¼
f(a) for all f 2 C(AtjXt).

This proves that ’ is a homeomorphism and hence C(AjX) is homeomorphic

to P ¼ QfCðAtjXtÞ : t 2 T0g. Each C(AtjXt) is second countable and Baire (see

Problems 209 and 280); applying Problem 281 we convince ourselves that P is also

a Baire space. It turns out that C(AjX) is a Baire space for each countable A � X so

we can apply Problem 280 again to conclude that Cp(X) is a Baire space.

S.284.Given a (not necessarily metric!) space X, call a subset A� X bounded if, for
any f 2 C(X), the set f(A) is bounded in R. Prove that if Cp(X) is a Baire space then
every bounded subset of X is finite. In particular, every pseudocompact subspace of
X is finite. As a consequence, if X is a metrizable space such that Cp(X) is has the
Baire property, then X is discrete.

Solution. Assume that A is an infinite unbounded subset of X. Then Cp(X)¼
S
{Cn:

n 2 N} where Cn¼ {f 2 Cp(X) : f(A)� [�n, n]} for each n 2 N. It is easy to see that
each Cn is a closed subset of Cp(X). If Int(Cn) 6¼ ; then there is a finite K � X, e >
0 and f : K! R such that O( f, K, e)¼ {g 2 Cp(X) : jg(x)� f(x)j< e for all x 2 K}�
Cn. Take any a2 A \K and a function g2Cp(X) such that gjK¼ fjK and g(a)¼ nþ 1

(see Problem 034). It is evident that g 2O( f, K, e) \Cn which is a contradiction. As a

consequence, each Cn is nowhere dense and hence Cp(X) is of first category which

contradicts the Baire property of Cp(X). Thus, every bounded subset of X is finite.

If P is a pseudocompact subspace of X then fjP is continuous on P for any f 2 C
(X). Therefore f(P) is bounded in R which shows that every pseudocompact subset

of X is bounded in X. Thus, if Cp(X) is Baire, then all pseudocompact subspaces of X
are finite. If X is a metric space then it has no non-trivial convergent sequences

because every such sequence is infinite and compact. Each metrizable space is

first countable and hence sequential (Problem 210), so if A is a non-closed

subset of X then there is a sequence (an)n2o � A such that an ! x =2 A. It is clear
that {an}n2o [ {x} is a non-trivial convergent sequence which is a contradiction.

Thus every subset of X is closed and hence X is discrete.

S.285. Prove that there exist spaces X such that Cp(X) is not a Baire space while all
bounded subsets of X are finite.

Solution. Given a family A ¼ {At : t 2 T} of subsets of a space Y, say that A has a
discrete open expansion if there exists a discrete U ¼ {Ut : t 2 T} � t(Y) such that
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At � Ut for each t 2 T. Given a finite P � Y, a function f 2 Cp(Y) and e > 0, we

let O( f, P, e) ¼ {g 2 Cp(Y) : jg(x) � f(x)j < e for all x 2 P}. Consider the family

B ¼ {O( f, P, e) : f 2 Cp(Y), P is a finite subset of Y and e > 0}. It is clear that B is a

base in Cp(Y).

Fact 1. Suppose that Cp(Y) is a Baire space. Then Y has the following “moving off”

property: for any sequence {F n : n 2 o} of infinite disjoint families of non-empty

finite subsets of Y, we can choose an element Fn 2 F n for every n 2 o in such a way

that
S
{Fn : n 2 o} has an open discrete expansion.

Proof. Given U 2 t(R) and a finite P � Y, let [P, U] ¼ {f 2 Cp(Y) : f(P) � U}. It is
clear that [P, U] is open in Cp(Y) for any U 2 t(R) and finite P � Y. Observe that if
Un ¼ (2n, 2n þ 1) for each n 2 o then the family {Un : n 2 o} � t�(R) is discrete.
It is an easy exercise to see that, for any function f 2 Cp(Y), the family g ¼ {f�1(Un) :

n 2 o} is discrete in Y (while many elements of g can be empty).

The set On¼
S
{[F, Un] : F 2 F n} is open in Cp(Y) for each n 2 o; we claim that

it is also dense in Cp(Y). Indeed, ifW¼ O( f, P, e) 2 B there exists F 2 F n such that

F \ P¼ ;. Apply Problem 034 to find a function h 2 Cp(Y) such that hjP¼ fjP and

hðxÞ ¼ 2nþ 1
2
for all x 2 F. It is evident that h 2 W

T
On; since the set W 2 B was

chosen arbitrarily, we have On \ W 6¼ ; for any W 2 B, i.e., On is dense in Cp(Y).
The space Cp(Y) being Baire there exists a function f 2 \ {On : n 2 o}. For each
n2o, there isFn2F n such that f2 [Fn,Un] and therefore the family {f�1(Un) : n2o}
is a discrete open expansion of the family {Fn: n 2 o}. Fact 1 is proved.

The underlying set of our promised space X isQ [ {z} where z ¼ ffiffiffi
2
p

. All points

ofQ are isolated and a set U 3 z is open in X if and only ifQ \U is nowhere dense in

Q. It is easy to see that X is a Tychonoff space and, given A�Q, we have z 2 clX (A)
if and only if the closure of A in R contains some non-empty open subset of R.
Apply Claim 2 of S.018 to conclude that X is also normal. Thus, if D ¼ {dn : n 2 o}
is a closed discrete subset of X then there exists f 2 C(X) such that f(dn) ¼ n for all

n 2 o. As a consequence, no subset of X, which contains an infinite closed discrete

subset, is bounded.

The next observation is that, for every infinite A � X there is infinite B � A such

thatB is closed and discrete in X. To see this, observe that if A is closed and discrete in

Q then we can take B ¼ A. If not then A contains a non-trivial convergent sequence

B (in the space R). It is clear that B� A is nowhere dense inQ and hence B is closed

and discrete in X. This shows that every bounded subset of X is finite.

To show that Cp(X) is not Baire, we will prove that X does not have the “moving

off” property. Given e > 0, call a subset B � [0, 1] \ Q an e-net if, for any
x 2 [0, 1] there is b 2 B such that jb � xj < e. Given n 2 o it is easy to construct

a family F n of infinitely many disjoint finite 2�n-nets in [0, 1]. If X has the “moving

off” property then it is possible to choose Fn 2 F n for each n 2 o so that the family

{Fn : n 2 o} has an open discrete expansion in X. This means, in particular, that

z =2 SfFn : n 2 og while
S
{Fn : n 2 o} is dense in the open set (0, 1) (in the

topology of R) and hence z 2 SfFn : n 2 og ; this contradiction shows that X does
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not have the “moving off” property and therefore Cp(X) is not Baire by Fact 1. Our

solution is complete.

S.286. Prove that if Cp(X) is a Baire space then Cp(X, I) is also Baire. Give an
example of a space X such that Cp(X, I) is a Baire space but Cp(X) does not have the
Baire property.

Solution. Let w : R ! (�1, 1) be a homeomorphism (Problem 025). Given

f 2 Cp(X), let ’( f) ¼ w 	 f ; then the map ’ : Cp(X)! Cp(X, (�1, 1)) is continuous
as well as its inverse defined by the formula ’�1(g) ¼ w�1 	 g for any function

g 2 Cp(X, (�1, 1)) (Problem 091). Thus Cp(X) is homeomorphic to Cp(X, (�1, 1))
which is dense in Cp(X, I). If Cp(X) is Baire then Cp(X, I) contains a dense Baire

subspace Cp(X, (�1, 1)) so we can apply Problem 275 to conclude that Cp(X, I) is
also a Baire space.

To construct a promised example, we will first need several facts.

Fact 1. Fix an arbitrary set M. Given any B � M, denote by pB : IM ! IB the

projection defined by pB(x) ¼ xjB for any x 2 IM. A dense subspace X � IM is

pseudocompact if and only if pB(X) ¼ IB for every countable B � M.

Proof. If X is pseudocompact and B is a countable subset of M then pB(X) is a

second countable pseudocompact space because pB is a continuous map (Problem

107). Any second countable pseudocompact space is compact (Problem 138)

so pB(X) is a compact dense subspace of IB. Hence pB(X) ¼ IB and we proved

necessity.

The family B ¼ fQt2M Ut : Ut 2 tðIÞ for all t, and the set {t 2 M : Ut 6¼ I } is

finite} is a base for the space IM (Problem 101). Given any set U ¼ Qt2M Ut 2 B,
let supp(U) ¼ {t 2 M : Ut 6¼ I }.

Suppose now that pB(X) ¼ IB for any countable B � M. If X is not pseudocom-

pact then there exists a discrete family O ¼ {On : n 2 o} � t�(X). There

exists a family {Un : n 2 o} � B such that Un \ X � On for all n 2 o. Let
B¼S{supp(Un) : n 2o}. It is easy to see that p�1B ðpBðUnÞÞ ¼ Un for all n 2o. The
map pB is open (Problem 107) so Vn ¼ pB(Un) is open in IB for all n.

The space IB is compact so the family V ¼ {Vn : n 2 o} cannot be discrete in IB ;
fix a point y 2 IB whose every neighbourhood intersects infinitely many elements of V.
Take any x 2 X with pB(x) ¼ y and any open neighbourhood W of the point x in X.
We claim that W intersects infinitely many elements of O.

To prove this, take any G ¼ Qt2M Gt 2 B with x 2 G and G \ X � W. The set

pB(G) is an open neighbourhood of y in IB and hence it intersects infinitely many

elements of the family V; thus it suffices to show that if pB(G) \ Vn 6¼ ; thenW \
On 6¼ ;. Take any z 2 pB(G) \ Vn and fix g 2 G with pB(g) ¼ z. The set C ¼ B [
supp(G) is countable so there exists z1 2 X such that with pC(z1)¼ h¼ pC(g). Since
p�1B ðzÞ � Un and pB(z1) ¼ pB(g) ¼ z, we have z1 2 Un \ X � On. By definition of

G we have p�1C ðhÞ � G and therefore z1 2 G. As a consequence z1 2 (G \ X)\ On

� W \ On, so W \ On 6¼ ; whenever pB(G)\ Vn 6¼ ;. The set W 2 t(x, X) was
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chosen arbitrarily, so we proved that O is not locally finite at x; this contradiction
proves that X is pseudocompact so Fact 1 is proved.

Fact 2. Let us identify the discrete space D(o) with o. Suppose that K is a compact

extension of o such that clK(A) \ clK (B) ¼ ; for any A, B � o with A \ B ¼ ;.
Then there exists a homeomorphism f : bo! K such that f(n)¼ n for any n 2 o. In
particular, anymap fromo to a compact space can be extended continuously overK.

Proof. There exists a continuous map f : bo! K such that f (n) ¼ n for any n 2 o
(Problem 257). Since o � f (bo), the compact set f (bo) is dense in K and hence

f (bo) ¼ K. Given x, y 2 bo, x 6¼ y pick U 2 t(x, bo), V 2 t(y, bo) such that

U \ V ¼ ; (the bar denotes the closure in bo). We have U \ o ¼ U and V \ o ¼ V
so f (U \ o) ¼ U \ o ¼ U1 is dense in f(U) and f (V \ o) ¼ V \ o ¼ V1 is

dense in f (V). Since U1 \ V1¼ ;, the mentioned property of K implies clK (U1) \
clK (V1) ¼ ;. Since f (x) 2 clK (U1) and f (y) 2 clK (V1), we proved that f (x) 6¼ f (y),
i.e., the map f is a condensation and hence a homeomorphism (Problem 123). Fact 2

is proved.

Fact 3. If N is a set and jNj ¼ k, then there exists an enumeration {na : a < k} of

the set N such that each n 2 N occurs k-many times in this enumeration, i.e., the

set {a < k : na ¼ n} has cardinality k for any n 2 N.

Proof. Let f : k! N be any onto map. Since jk � k j ¼ k, there exists an onto map

g : k! k� k. Besides, p : k� k! k is the projection onto the first factor. Finally,

let na ¼ f(p(g(a))) for each a < k. It is immediate that the enumeration {na : a < k}
is as promised. Fact 3 is proved.

Given any a < c, we denote by pa : Ic ! I the natural projection onto the a-th
factor. Consider the set G ¼ {x 2 Ic : j{a 2 c : x(a) 6¼ 0} j b o} � Ic. Since jIj ¼ c,
we have j IB j ¼ co ¼ c for any countable set B. Therefore, for any countable B � c
the set GB¼ {x 2 Ic : x(a)¼ 0 for all a 2 c \B} has cardinality c. Since G¼S{GB :

B is a countable subset of c}, we have jGj ¼ c � c ¼ c. Apply Fact 3 to fix an

enumeration {ga : a < c} of the set G in which every g 2 G occurs c times. The

family e ¼ {B � c : B is countable} also has cardinality continuum so we can

use Fact 3 again to choose an enumeration {Aa : a < c} of the family e such that

every A 2 e occurs c times in this enumeration.

For any a < c define a point xa 2 Ic vas follows: xa(b) ¼ ga(b) for each b b a;
if b > a and a 2 Ab then xa(b) ¼ 1; if b > a and a =2 Ab then xa(b) ¼ 0. Then X ¼
{xa : a < c} is our promised space.

Take any countable B � c and any g 2 IB. If h(b) ¼ g(b) for any b 2 B and

h(b) ¼ 0 for all b 2 c \B then h 2 G and pB(h) ¼ g. There exists a > sup(B) such
that ga ¼ h; then pB(xa) ¼ pB(h) ¼ g. This proves that pB(X) ¼ IB for each

countable B � c so X is pseudocompact by Fact 1.

Take any countable setP�X; there exits a countableB� c such thatP¼ {xa : a2
B}. If g =2 B then find b> sup(B [ {g}) such that Ab¼ B and observe that g =2 B¼ Ab

and therefore pb(xa)¼ xa(b)¼ 1 for any a 2 B¼ Ab while pb(xg)¼ xg(b)¼ 0. Since

the map pb : X! I is continuous, it is impossible that xg 2 fxa : a 2 Bg ¼ P so the
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set P is closed in X. Thus every countable set is closed inX. Besides, every countable
subset P � X is also discrete because every subset of P is also countable and hence

closed in P.
Now fix any countable P � X and denote by K the closure of P in Ic. Then K is

a compact extension of the countable discrete space P. Suppose that R, S � P and

R \ S¼ ;. Fix countable B, D� c such that R¼ {xa : a 2 B} and S¼ {xa : a 2 D}.
Then B \ D ¼ ; find b > sup(B [ D) such that Ab ¼ B. The same verification as

in the previous paragraph shows that pb(R) ¼ {1} and pb(S) ¼ {0}. Therefore

½R
 \ ½S
 � p�1b ð0Þ \ p�1b ð1Þ ¼ ; (the brackets denote the closure in Ic). As a

consequence clK(R) \ clK(S) ¼ ; for any disjoint R, S � P so we can apply Fact

2 to conclude that K is homeomorphic to bo ¼ bP. Thus, if f : P! R is a bounded

function, it is continuous because P is discrete. Besides, there is n 2 o such that

f : P! [�n, n] because f is bounded. Since K ¼ bP, there exists a continuous h :

K! [�n, n] such that hjP ¼ f (Problem 257). The space Ic is compact and hence

normal, so there is a continuous g1 : Ic! R such that g1 jK¼ h. Therefore g¼ g1jX
is continuous and gjP ¼ f. Thus, we proved the following fact.

Fact 4. There exists an infinite dense pseudocompact X � Ic with the following

properties:

(1) Every countable subspace of X is closed and discrete.

(2) For every countable B� X and every f : B! I there exists g 2 C(X, I) such that
gjB ¼ f.

Now it is easy to finish our solution. Consider the space Cp(X, I)� IX Z. If B� X
is countable and f 2 IB then there exists a continuous g 2 Cp(X, I) with gjB¼ f. This
shows that pB(Cp(X, I)) ¼ IB for every countable B � X. Therefore Fact 1 is

applicable to Cp(X, I) and hence Cp(X, I) is pseudocompact. Any pseudocompact

space is Baire (Problem 274) so Cp(X, I) is a Baire space. However, Cp(X) is not
Baire because X is an infinite pseudocompact space (Problem 284) so our solution

is complete.

S.287. Prove that if Cp(X, I) has a dense Čech-complete subspace then X is
discrete.

Solution. Let us prove that X has to be discrete if Cp(X, I) has a dense Čech-complete

subspace D. Since IX is a compact extension of D, the set D has to be Gd in IX. Fix a
family {On : n 2 o} � t (IX) such that

T
{On : n 2 o} ¼ D. The family

B ¼ fQx2X Ux : Ux 2 tðIÞ for all x, and the set {x 2 X : Ux 6¼ I } is finite} is a base
for the space IX (101). GivenU ¼Qx2X Ux 2 B, let supp(U)¼ {x2 X :Ux 6¼ I }. If A
� X then pA : IX! IA is the restrictionmap defined by the formula pA( f)¼ fjA for any

f2 IX. A setH� IX is calledA-saturated ifp�1A ðpAðHÞÞ ¼ H. It is straightforward that
any union and any intersection of A-saturated sets is an A-saturated set.

Let gn be a maximal disjoint subfamily of B such thatSgn�On. Since c (IX)¼o
(Problem 109), the family gn is countable for each n 2 o and hence the set

A ¼ S{supp(U) : U 2 gn, n 2 o} is countable. If Vn ¼
S
gn then Vn � On is
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a dense open subset of On (by maximality of gn) and hence of IX. Since the

compact space IX has the Baire property (Problem 274), the set E ¼T{Vn : n 2 o}
is dense in IX. The space E is also Čech-complete because it is a Gd-set in its

compact extension IX. Another important observation is that E � Cp(X, I) because
Vn � On for each n 2 o.

Observe that if U 2 B and supp(U) � B then U is B-saturated; therefore every

element of gn is A-saturated and hence Vn ¼
S
gn is also A-saturated for all n 2 o.

This, in turn, implies that E is A-saturated. The set Un¼ pA(Vn) is dense and open in

IA for any n 2 o (107) and hence L ¼ T{Un : n 2 o} is a dense Čech-complete

subspace of IA ; besides, L � Cp(A, I) because L ¼ pA(E) and E � Cp(X, I). Fix any
h 2 L; then p�1A ðhÞ � E � CpðX; IÞ. This means that any f : X! I with f jA ¼ h, is
continuous on X. Given any g : X \A! I there exists f : X! I such that f j(X \A)¼ g
and f jA ¼ h; this proves that Cp(X \ A, I) ¼ IXnA and therefore X \A is a discrete

subspace of X. If y 2 AnA then let f1(x) ¼ 1 for each x 2 X \A and f1(x) ¼ h(x) for
all x 2 A. Analogously, let f2(x) ¼ 0 for each x 2 X \A and f1(x)¼ h(x) for all x 2 A.
Then f1, f2 2 C(X) and hence f ¼ f1 � f2 is also continuous on X. However, f(A) ¼
{0} and f(y)¼ 1 which is impossible by y 2 A ; therefore we proved that A is closed

in X.
Now, if y 2 XnA \ A then take any f : X! I for which f jA ¼ h and f j(X \A) is a

constant distinct from h(y). It is clear that f cannot be continuous on X; this

contradiction shows that X \A is also closed in X and hence both sets A and X \A
are open.

For any a 2 A let Wa ¼ {f 2 Cp(A, I) : f(a) 2 (�1, 1)}. It is evident that Wa is a

dense open set of Cp(A, I) and therefore M ¼ T{Wa : a 2 A} \ L is a dense Čech-

complete subspace of Cp(A, I). It is clear thatM is contained in Cp(A, (�1, 1)) which
is homeomorphic to Cp(A) (see the first paragraph of S.286). As a consequence

Cp(A) has a dense Čech-complete subspace so A is also discrete (Problem 265) and

hence X is discrete so our solution is complete.

S.288. Prove that the following are equivalent for any normal space X:

(i) X is countably paracompact.
(ii) X � K is normal for any metrizable compact K.
(iii) X � I is normal.
(iv) X � A(o) is normal.

Solution. The following characterization of countable paracompactness can often

be useful.

Fact 1. The following conditions are equivalent for any space X:

(a) X is countably paracompact.

(b) For any countable open cover {Ui : i 2 o} of the space X there exists a locally

finite open cover {Vi : 2 o} of X such that Vi � Ui for every i 2 o.
(c) For any increasing sequence W0 � W1 � . . . of open subsets of X satisfyingS

i2oWi¼ X there exists a sequence {Fi : i 2o} of closed subsets of X such that

Fi � Wi for all i 2 o and
S

i2o Int(Fi) ¼ X.
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(d) For any decreasing sequence G0 � G1 � . . . of closed subsets of X satisfyingT
i2o Gi ¼ ; there exists a sequence {Oi : i 2 o} of open subsets of X such

that Gi � Oi for all i 2 o and
T

i2o Oi ¼ ;.
Proof. To show that (a)) (b) take any locally finite refinement U of the cover {Ui :

i 2 o}, choose for every V 2 U a natural number i(V) such that V � Ui(V) and let

Vi ¼
S
{V 2 U : i(V) ¼ i} for each i 2 o.

As to (b)) (c), take a locally finite open cover {Vi : i 2 o} of the space X such

that Vi�Wi for all i 2o. The sets Fi¼ X \ (
S
{Vj : j> i}) are closed and Fi�

S
{Vj :

j b i} � S{Wj : j b i} ¼ Wi for each i 2 o so we have Fi � Wi for all i 2 o.
The family {Vi : i 2 o} being locally finite, every x 2 X has a neighbourhood

Ox which does not intersect the set
S
{Vj : j > i} for some i. Therefore x 2 Ox � Fi

so x 2 Int(Fi) which proves that
S

i2o Int(Fi) ¼ X.

(c)) (d). If Wi ¼ X \Gi for all i 2 o then the sequence {Wi : i 2 o} is increasing

and
S
{Wi : i 2o}¼ X. Find a sequence {Fi : i 2o} of closed subsets of X such that

Fi�Wi and
S

i 2 o Int(Fi)¼ X; ifOi¼ X \Fi for all i 2o then the family {Oi : i 2o}
is as required.

(d)) (a). Take an arbitrary open cover g ¼ {Ui : i 2 o} of the space X. The family

Gi ¼ X nSfUj : j � ig form a decreasing family, which, consists of closed sets andT
i2o Gi ¼ ;. Choose a sequence {Oi : i 2 o} � t(X) such that Gi � Oi for all i 2 o

and
T

i2o Oi ¼ ;. The set Vi¼Ui \
�T

{Oj : j< i}
�
is open for all i 2o; the family

U ¼ {Vi : i 2 o} is a cover of X because Vi� Ui \
�S

{Uj : j< i}
�
for all i 2 o. Now

if x 2 X then x =2 On for some n 2 o and hence W ¼ XnOn is a neighbourhood of

x which does not intersect any Vi if i > n. Thus the family U is a locally finite

refinement of g. Fact 1 is proved.

Fact 2. The following conditions are equivalent for any normal space X.

(a) X is countably paracompact.

(b) For any decreasing sequence F0 � F1 � . . . of closed subsets of X satisfyingT
i2o Fi ¼ ; there exists a sequence {Wi : i 2 o} of open subsets of X such that

Fi � Wi for all i 2 o and
T

i2o Wi ¼ ;.
(c) For any countable open cover {Ui : i 2 o} of the space X there exists a locally

finite open cover {Vi : 2 o} of X such that Vi � Ui for every i 2 o.
(d) For any countable open cover {Ui : i 2 o} of the space X there exists a closed

cover {Gi : i 2 o} of X such that Gi � Ui for every i 2 o.

Proof. The implication (a) ) (b) is an immediate consequence of Fact 1(d). To

prove (b) ) (a) suppose that we have a decreasing sequence F0 � F1 � . . . of
closed subsets of X satisfying

T
i2o Fi¼ ; and take a sequence fW0i : i 2 og of open

subsets of X such that Fi � W 0i for all i 2o and
T

i2o W0i ¼;. By normality of X there

existsWi2 t(Fi, X) such thatWi � W0i . It is clear that we have
T

i2o Wi ¼ ; so Fact 1
(d) is applicable to conclude that X is countably paracompact. Thus (a),(b).

(a) ) (c). Given a countable open cover {Ui : i 2 o} of the space X, apply
Fact 1(b) to find an open locally finite cover fV0i : i 2 og of X such that V 0i � Ui for
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each i 2 o. The set F0 ¼ XnðSfV0i : i> 0g is closed in X and F0 � V0. Applying

normality of X we can find an open set V0 with F0 � V0 � V0 � V00. Suppose
that we have open sets Vi, i < n such that Vi � V0i for each i < n and the

family fV0; . . . ;Vn�1;V0n;V
0
nþ1; . . .g is a cover of X. Then Fn ¼ Xn� Si<n Vi

� �
[ Si>n V

0
i

� ��
is a closed set contained in V0n. By normality of X there is Vn 2 t(Fn,

X) such that Vn � V0n so the inductive process can be continued and we can

construct the sequence S ¼ {Vi : i 2 o}. It is clear that the family S is locally

finite and Vi � V 0i � Ui for each i 2 o. Observe also that, for any x 2 X, there
is n 2 o such that x =2 SfV0i : ir ng because the family fV0i : i 2 og is locally

finite. Since fV0; . . . ;Vn�1;V0n;V
0
nþ1; . . .g is a cover of X, we have x 2 Vi for

some i < n so S is a cover of X and the implication (a) ) (c) is established.

The implication (c) ) (d) is obvious, so it suffices to prove that (d) ) (b).

Take any decreasing sequenceF0� F1� . . . of closed subsets of a space X satisfyingT
i2o Fi¼ ;. If Ui¼ X \Fi for all i 2 o then the family {Ui : i 2 o} is an open cover

of X so we can fix a sequence {Gi : i 2 o} of closed subsets of X such that Gi � Ui

for all i 2 o and
S
{Gi : i 2 o} ¼ X. Now, if Wi ¼ X \Gi for all i 2 o then Fi � Wi

and
T

i2o Wi ¼ ; so the proof of (d)) (b) is complete. Fact 2 is proved.

Fact 3. For any space Z and any compact P the natural projection p : Z � P ! Z
is a perfect map.

Proof. It is evident that p is continuous and onto. Given a point z 2 Z, the space

p�1(z) ¼ {z} � P is compact so the set p�1(z) is compact for any point z 2 Z. If
U 2 t(p�1(z), Z � P), then we can apply Fact 3 of S.271 to the product {z} � P to

conclude that there is V 2 t(z, Z) andW 2 t(P, P) such that V �W � U. Of course,
W ¼ P so we have p�1(V) ¼ V � P � U and hence Fact 2 of S.271 is applicable to

the map p to conclude that p is closed. Fact 3 is proved.

We are finally ready to establish the implication (i)) (ii). Assume that a normal

space X is countably paracompact and take a metrizable compact K. Let B be

a countable base in K such that any finite union of elements of B belongs to B.
Denote by p : X � K ! X and q : X � K ! K the respective natural projections.

Given any M � X � K and x 2 X, let Mx ¼ q(M \ p�1(x)).
Fix a pair A, B of disjoint closed subsets of the product X � K and define

OU ¼ fx 2 X : Ax � U � U � KnBxg for each U 2 B. Observe that the set

XnOU ¼ fx 2 X : Ax \ ðKnUÞ 6¼ ;g [ fx 2 X : Bx \ U 6¼ ;g
¼ pðA \ ðX � ðKnUÞÞÞ [ pðB \ ðX � UÞÞ

is closed because the projection p is a closed map by Fact 3. Thus every OU is an

open set. Given any x 2 X the sets Ax and Bx are disjoint and compact so there exist

U1, . . . , Un 2 B with Ax � U ¼ Sib n Ui � U � KnBx. Since U 2 B by the choice

of B, we have x 2 OU, i.e., the countable family {OU :U 2 B} is an open cover of X.
Since X is countably paracompact, we can apply Fact 2(c) to conclude that there
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exists a locally finite open cover W ¼ {WU : U 2 B} of the space X such that

WU � OU for any U 2 B. The set O ¼ S{WU � U : U 2 B} is open in X � K so it

suffices to show that A � O � O � ðX � KÞnB.
Given any (x, y)2A there isU2Bwith x2WU; then x2OU and hence y2Ax�U

so (x, y) 2 WU � U � O which proves that A � O. Now assume that there

is ðx; yÞ 2 O \ B ; since the family W is locally finite, there is V 2 t(x, X) such
that V \ WU 6¼ ; only for a finitely manyU’s. The neighbourhood V�K of the point

(x, y) intersects only finitely many products WU � U, say {WUi
� Ui : i b n}. As a

consequence, we convince ourselves that ðx; yÞ 2 SfWUi
� Ui : ibng and therefore

ðx; yÞ 2 WUi
� Ui ¼ WUi

� Ui for some i b n. But then x 2 WUi
� OUi

and

y 2 Ui \ Bx which is a contradiction with the fact that Ax � Ui � Ui � KnBx. The

implication (i)) (ii) is proved.

The implication (ii)) (iii) is obvious and (iii)) (iv) is true because X� A(o) is
embeddable as a closed subspace into the space X � I (see 018).

(iv) ) (i). We identify A(o) with the subspace f0g [ f1n : n 2 Ng of the real

line. Take any decreasing sequence S ¼ {Fi : i 2 N} of closed subsets of X withT S ¼ ;. The sets F ¼ S Fi � 1
i

� �
: i 2 N

� �
and G ¼ X � {0} are disjoint and

closed in the normal space X� A(o). IfU 2 t(F, X� A(o)), V 2 t(G, X� A(o)) are
disjoint then let Wi ¼ fx 2 X : ðx; 1iÞ 2 Ug for all i 2 N. It is obvious that Wi is an

open subset of X and Fi � Wi for all i 2 N. Assume that x 2 T{Wi : i 2 N}; it is
immediate that the sequence fðx; 1nÞ : n 2 Ng � U converges to y ¼ (x, 0) 2 G
whence y 2 U \ G � U \ V ¼ ;, a contradiction. Thus,

T
{Wi : i 2 N} ¼ ; and

hence X is countably paracompact by Fact 2(b). This finishes the proof of the

implication (iv)) (i) and makes our solution complete.

S.289. Prove that, if Cp(X) is normal, then it is countably paracompact.

Solution. Let us show first that some subspaces inherit normality.

Fact 1. Let Y be a normal space. Then any Fs-subspace of Y is also normal.

Proof. Take any Fs-set P � Y; fix a family {Pn : n 2 o} of closed subsets of Y with

P ¼ S{Pn : n 2 o}. Take any F � P which is closed in P and any W 2 t(F, P).
Choose any U 2 t(Y) with U \ P ¼ W. The set Fn ¼ Pn \ F is closed in Y so

we can apply normality of the space Y to find Un 2 t(Fn, Y) such that clY(Un) � U.
For the family {Wn ¼ Un \ P : n 2 o}, we have Fn � Wn and clP(Wn) � W for

each n 2 o. Therefore F � S{Wn : n 2 o} and clP(Wn) � W for all n 2 o. This
shows that Fact 1 of S.221 can be applied to conclude that P is normal. Fact 1 is

proved.

Fact 2. Suppose that Y � R is normal for some space Y. Then Y � R is countably

paracompact.

Proof. The spaces Y and Y � I are normal being each one a closed subspace of the

normal space Y � R. Thus Y is countably paracompact (Problem 288). Apply

Problem 288 again to observe that Y � (I � I) is also normal because I � I is a
metrizable compact space. It is easy to see that Y � ((�1, 1) � I) is an Fs-subspace
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of Y � (I � I) so it is normal by Fact 1. It is evident that Y � ((�1, 1) � I) is
homeomorphic to (Y � R) � I so Problem 288 can be applied once more to

conclude that Y � R is countably paracompact. Fact 2 is proved.

It is now easy to finish our solution. Take any point x 2 X and consider the set Y¼
{f 2 Cp(X) : f(x) ¼ 0}. Then Cp(X) is homeomorphic to Y � R (Problem 182) so

Fact 2 can be applied to conclude that Cp(X) is countably paracompact if it is normal.

S.290. Prove that Cp(X) is normal if and only if any Fs-subset of Cp(X) is countably
paracompact.

Solution. Suppose that Cp(X) is normal and take any Fs-set P � Cp(X). Then P is

also normal by Fact 1 of S.289. The space Cp(X) is countably paracompact

by Problem 289 and therefore Cp(X) � I is normal (Problem 288). It is evident

that P � I is an Fs-subset of Cp(X) � I so it is normal by Fact 1 of S.289. Apply

Problem 288 again to conclude that P is countably paracompact and finish the

proof of necessity.

To prove sufficiency, suppose that every Fs-subspace of Cp(X) is countably

paracompact. Denote by S the convergent sequence f0g [ 1
i : i 2 N
� �

and let

Sn ¼ f0g [ 1
i : irn
� �

for any n 2 N. Take any x 2 X and let Y ¼ {f 2 Cp(X) :

f(x) ¼ 0}. Then Cp(X) is homeomorphic to the space Y � R (Problem 182). Let p :

Y � S! Y be the natural projection. Take any closed subset F of the space Y and

any U 2 t(F, Y). The space Z ¼ ðF� f0gÞ [ ðSfY � 1
i

� �
: i 2 NgÞ is an Fs-set in

Cp(X) so Z is countably paracompact. If Ui ¼ Y � 1
i

� �
for each i 2 N and U0 ¼

(U � S) \ Z then the family {Ui : i 2 o} is a countable open cover of the space Z.
By countable paracompactness of Z, there is a locally finite family {Vi : i 2 o} �
t(Z) such that Vi � Ui for all i 2 o (Fact 1(b) of S.288). The set Wi ¼ YnpðViÞ is
open in Y for all i 2 N. Since Vi is an open subset of Y containing ðYnUÞ � 1

i

� �
, the

set p(Vi) is an open subset of Y which contains Y \U. This proves thatWi � U for all

i 2 N.
Given a point y 2 F, there is G 2 t(y, Y) such that (G � Sn) \ Z intersects only

finitely many of the sets Vi’s. As a consequence, there is j 2 N such that (G � S) \
Vj ¼ ; and hence y =2 pðVjÞ, i.e., y 2 Wi. This shows that, for an arbitrary closed

F� Y and any U 2 t(F, Y) we constructed a sequence {Wi : i 2 N}� t(Y) such that
F � S{Wi : i 2 N} and Wi � U for all i 2 N. Now apply Fact 1 of S.221 to see

that Y is normal. Since Y is also countably paracompact, the space Y � I is also
normal (Problem 288). Observing that Cp(X) ¼ Y � R is homeomorphic to an

Fs-subspace of Y � I we conclude that Cp(X) is normal (Fact 1 of S.289) so we

proved sufficiency and hence our solution is complete.

S.291. Suppose that Cp(X) is normal and Y is closed in X. Prove that the space
pY(Cp(X)) ¼ {fjY : f 2 Cp(X)} � Cp(Y) is also normal.

Solution. Given a space Z and A, B � Z, say that A and B are separated if

A \ B ¼ ; ¼ B \ A. Call the sets A, B open-separated if there are open sets

U, V � Z such that A � U, B � V and U \ V ¼ ;. We will also say that the
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mentioned open sets U and V separate the sets A and B. It is easy to see that

open-separated sets are separated. Given a productM ¼QfMt : t 2 Tg and S � T,
the map pS : M! MS ¼

QfMt : t 2 Sg is the natural projection defined by

pS(x) ¼ xjS for all x 2 M.

Fact 1. If Z is a hereditarily normal space then A, B � Z are separated if and only if

they are open-separated. In particular, this is true in metrizable spaces.

Proof. It suffices to prove that separated sets are open-separated, so let A, B � Z be

separated sets. If F ¼ A \ B then A [ B � Z \F and hence AnF;BnF are disjoint

closed subsets of the normal space Z \F. If U, V 2 t(Z \F) separate the sets AnF and

BnF then they are open in Z and separate the sets A, B. To finish the proof observe

that every metrizable space Z is hereditarily normal because every subspace of Z is

metrizable and every metrizable space is normal. Fact 1 is proved.

Fact 2. Given subsets A, B of a space Z, suppose that f : Z! Y is a continuous map,

the space Y is hereditarily normal and the sets f(A), f(B) are separated in Y. Then
they are open-separated in Z.

Proof. Use Fact 1 to findU, V 2 t(Y) which separate the sets f (A) and f (B). Then the
open sets f�1(U) and f�1(V) separate the sets A and B. Fact 2 is proved.

Fact 3. Assume that Mt is a second countable space for all t 2 T and D is a dense

subspace of the product M ¼ QfMt : t 2 Tg. Suppose also that A, B are arbitrary

subsets of D. Then A and B are open-separated in the space D if and only if there

exists a countable S � T such that pS(A) and pS(B) are separated in the space

MS ¼
QfMt : t 2 Sg.

Proof. Assume that the sets pS(A) and pS(B) are separated in the space MS for some

countable S � T. Since MS is second countable and the map pSjD : D ! MS is

continuous, Fact 2 can be applied to conclude that A and B are open-separated in D
so we proved sufficiency.

Now suppose that we have U0 2 t(A, D), V0 2 t(B, D) such that U0 \ V0 ¼ ;. Fix
U, V 2 t(M) such that U \ D ¼ U0 and V \ D ¼ V0. Observe first that U \ V ¼ ;
for if not, then U \ V is a non-empty open set which has to intersect the dense

set D, so ; 6¼ U \ V \ D ¼ U0 \ V0 ¼ ; which is a contradiction.

Recall that the familyB ¼ fQt2T Wt : Wt 2 tðMtÞ for all t2 T, and the set {t2 T :
Wt 6¼ Mt} is finite} is a base for the space M (see 101). Given any set

W ¼ Qt2M Wt 2 B, let supp(W) ¼ {t 2 T :Wt 6¼Mt}. Choose any maximal disjoint

families gU, gV of elements of B such that OU ¼
S

gU � U and OV ¼
S

gV � V. The
set S ¼ S{supp(W) : W 2 gU [ gV} is countable; let us prove that pS(A) and pS(B)
are separated in the space MS. It is easy to see that any two disjoint open

sets are separated; the sets pS(U) and pS(V) are open in MS (Problem 107) and

pS(A) � pS(U), pS(B) � pS(V) so it suffices to prove that pS(U) \ pS(V) ¼ ;.
Since supp(W) � S for anyW 2 gU, we have p�1S pSðUÞ ¼ U for any U 2 gU; this

easily implies p�1S pSðOUÞ ¼ OU. Analogously, p�1S pSðOVÞ ¼ OV . Besides, OU is

dense in U and OV is dense in V which implies that pS(OU) is an open dense subset
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of pS(U) and pS(OV) is an open dense subset of pS(V). This shows that, if we have
pS(U) \ pS(V) 6¼ ; then pS(OU) \ pS(OV) 6¼ ; and therefore ; 6¼ p�1S ðpSðOUÞÞ\
p�1S ðpSðVÞÞ ¼ OU \ OV � U \ V ¼ ; which is a contradiction. Fact 3 is proved.

Returning to our solution, recall that the map pY : Cp(X)! Cp(Y) is defined by

pY( f) ¼ f jY for every f 2 Cp(X) (see Problem 152). Given any Z � X, denote the set
pZ(Cp(X)) byC(ZjX); if we have a finiteK� Z, a function f2C(ZjX) and e> 0, we let

OZ( f, K, e)¼ {g 2C(ZjX) : jg(x)� f(x)j< e for all x 2K}. It is clear that the family C
( f, Z)¼ {OZ( f, K, e) :K is a finite subset of Z and e> 0} is a local base at f inC(ZjX).

Take any disjoint A, B � C(YjX) which are closed in C(YjX). The sets A0 ¼
p�1Y ðAÞ and B0 ¼ p�1Y ðBÞ are closed in Cp(X) and disjoint so they are open-separated
in Cp(X) because Cp(X) is normal. Since Cp(X) is dense in RX, we can apply Fact 3

to find a countable Z � X such that the sets pZ(A0) and pZ(B0) are separated in

C(ZjX). The set T¼ Z \ Y is countable; we claim that the sets pT(A0) and pT(B0) are
separated in C(TjX).

If pT(A0) and pT(B0) are not separated in the space C(TjX) assume, without loss

of generality, that f 2 pT(A0) \ clC(TjX) (pT(B0)). Choose any f1 2 A0 with pT( f1) ¼ f
and take any finite K� Z and e> 0. There exists g 2 pT(B0) with jg(x)� f(x)j< e for
all x 2 K \ T ¼ K \ Y. Fix g1 2 B0 with pT(g1) ¼ g; since Y is a closed set, there

exists h1 2 Cp(X) such that h1jY � 0 and h1(x) ¼ f1(x) � g1(x) for all x 2 K \Y. Then
pY(h1 þ g1) ¼ pY(g1) 2 pY(B0) ¼ B and therefore g2 ¼ h1 þ g1 2 B0. It is immediate

that pZ(g2) 2 OZ(pZ( f1), K, e); the set K � Z and e > 0 being arbitrary, we proved

that pZ( f1) 2 clC(ZjX) (pZ(B0)) \ pZ(A0) which is a contradiction with the fact that

pZ(A0) and pZ(B0) are separated in C(ZjX).
The last contradiction shows that the sets pT(A0) and pT(B0) are separated in

C(TjX); let pYT : CðYjXÞ ! CðTjXÞ be the restriction map, i.e., pYTðf Þ ¼ f jT for any f
2 C(Y j X). It is easy to see that pTðA0Þ ¼ pYTðAÞ and pTðB0Þ ¼ pYTðBÞ and therefore

pYT maps C(YjX) continuously into a second countable space C(TjX) in such a way

that the sets pYTðAÞ and pYTðBÞ are separated in C(TjX). Therefore, Fact 2 is applica-

ble to convince ourselves that A and B are open-separated in the space C(YjX). Since
we proved that any disjoint closed sets A, B� C(YjX) are open-separated in C(YjX),
our solution is complete.

S.292. Prove that every perfectly normal space is hereditarily normal but not vice
versa. Show that, for any space X, if Cp(X) is hereditarily normal then it is perfectly
normal.

Solution. It is easy to see that in a perfectly normal space X every open set O� X is

an Fs-set, so Fact 1 of S.289 is applicable to conclude that O is normal. Now take

an arbitrary Y � X; if A, B are closed disjoint subsets of Y then F ¼ A \ B � XnY
(the bar denotes the closure in X) and hence AnF;BnF are disjoint closed subsets of

the normal space O ¼ X \F. Pick any disjoint sets U0 2 tðAnF;OÞ;V0 2 tðBnF;OÞ
and note that the sets U ¼ U0 \ Y, V ¼ V0 \ Y are open in Y, disjoint and contain

A and B, respectively. As a consequence, Y is normal.

The space A(o1) is an example of a hereditarily normal space which is not

perfectly normal. Indeed, any subspace Y � A(o1) is metrizable if a =2 Y; if a 2 Y
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then Y is compact so any Y � A(o1) is normal (see Problems 218, 231 and 124).

However A(o1) is not perfect because the point a is not a Gd-set in A(o1) (an easy

proof is left to the reader).

Fact 1. Any perfectly normal space is countably paracompact.

Proof. Take a perfectly normal space X and any decreasing sequence F0 � F1

� . . . of closed subsets of X satisfying
T

i2o Fi ¼ ;. By perfect normality of X we

can find a family U i ¼ Ui
n : n 2 o

� � � tðXÞ with T U i ¼ Fi for each i 2 o. Let
Wi ¼

T
Uk

m : k;mbi
� �

for all i 2 o. Then Fi � Wi 2 t(Fi, X) for all i 2 o andT
{Wi : i 2 o} ¼T{

T U i : i 2 o} ¼T{Fi : i 2 o} ¼ ;; this shows that our normal

space X satisfies condition (b) of Fact 2 of S.288 and hence X is countably

paracompact. Fact 1 is proved.

Fact 2. If X is a space such that X � A(o) is hereditarily normal, then X is perfectly

normal.

Proof. In this proof, we identify the space A(o) with the usual convergent sequence
S ¼ f0g [ 1

n : n 2 N
� � � R. The map p : X � S ! X is the natural projection.

The space X is normal because it embeds in the hereditarily normal space X� S so it
suffices to show that every closed F � X is a Gd-set. If this is not true for some

closed F � X then consider the sets A ¼ (X \F) � {0} and B ¼ F � (S \ {0}). Then
A and B are closed disjoint subspaces of the space Y ¼ (X � S) \ (F � {0}); since Y
is normal, we can fix U 2 t(A, Y) and V 2 t(B, Y) with U \ V ¼ ;. It is clear that
U, V 2 t(X � S) so the set Wn ¼ p V \ F� 1

n

� �� �� �
is open in X and contains

F for each n 2N. The set F is assumed not to beGd so there is x 2 (X \F) \ (
T
{Wn :

n 2N}). As a consequence, P¼ {x}� (S \ {0})� V and therefore ðx; 0Þ 2 P \ A �
V \ U ¼ ; which is a contradiction. Fact 2 is proved.

Fact 3. If X is a perfectly normal space then X � M is perfectly normal for any

second countable space M.

Proof. In the first paragraph of our solution we proved that any perfectly normal

space is hereditarily normal. It is evident that the property of being perfect is

hereditary, i.e., if Z is perfect then any Y � Z is also perfect. As a consequence,

any subspace of a perfectly normal space is a perfectly normal space.

Our next observation is that it suffices to prove Fact 3 for any compact second

countable space M. Indeed, M embeds into compact space Io (Problem 209); if we

prove that X � Io is perfectly normal then X � M is also perfectly normal being a

subspace of X � Io. Thus, we assume from now on that M is a second countable

compact space.

The space X is countably paracompact by Fact 1; this implies that X � M is

normal (Problem 288) so we must only prove that X � M is perfect. Take an

arbitraryU 2 t(X�M); fix a base B ¼ {Oi : i 2o} in the spaceM and letUn¼ {x 2
X : there isW 2 t(x, X) such thatW � On � U}. It is clear that Un is an open subset

of X andUn�On�U for all n 2o. Given a point (x, y) 2U there isW 2 t(x, X) and
n 2 o such that y 2 On and W � On � U. This shows that W � Un and hence
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S
{Un � On : n 2 o} ¼ U. The spaces X and M being perfect, the sets Un and On

are Fs-sets in X andM respectively for all n 2o. This easily implies that Un�On is

an Fs-sets in X � M for all n 2 o. Another evident fact is that any countable union

of Fs-sets is an Fs-set so U is an Fs-set in X � M and Fact 3 is proved.

To finish our solution, suppose that Cp(X) is hereditarily normal. Take any x 2 X
and let Y¼ {f 2 Cp(X) : f(x)¼ 0}. Then Cp(X) is homeomorphic to Y� R (182); the

space Y � A(o) embeds in Y� R so Y� A(o) is hereditarily normal. This, together

with Fact 2, implies that Y is perfectly normal. Therefore Cp(X)¼ Y�R is perfectly

normal by Fact 3 and our solution is complete.

S.293. Give an example of a space which is normal but not collectionwise normal.

Solution. Given a space X and a set M � X, let tM ¼ {U [ A : U 2 t(X) and A �
X \M}. It is easy to check that tM is a topology on X; denote by XM the space (X, tM).

Fact 1. The space XM is Tychonoff for any Tychonoff space X; all points of X \M
are isolated in XM and the topology induced on M from XM coincides with the

topology induced from X to M.

Proof. If x 2 X \M then {x} ¼ {x} [ ; is open in XM, so x is an isolated point of

XM. Thus the Tychonoff property is trivially true at all points of X \M. Another

easy fact is that t(x, X) is a local base at x in XM for any x 2 M. Since t(X) � tM,
every f 2 C(X) is also continuous on XM. If x 2 M, F is closed in XM and x =2 F
then there is U 2 t(x, X) with U � X \F; the Tychonoff property of X implies

existence of f 2 C(X, [0, 1]) with f(x) ¼ 1 and fj(X \U) � 0. Note that fjF � 0 and,

by our above observation, f is also continuous on XM so XM is a Tychonoff space.

Finally, if W is open in M considered to be a subspace of XM then there is a set

U 2 t(X) and A � X \M such that W ¼ (U [ A) \ M ¼ U \ M and hence W is

open in M considered to be a subspace of X. The inverse implication is obvious so

Fact 1 is proved.

Fact 2. Suppose that a subspace M of a space X has the following property:

(�) If A and B are closed subsets the space ofM with A \ B ¼ ; then there exist
sets U 2 t(A, X), V 2 t(B, X) such that U \ V ¼ ;.
Then XM is a normal space.

Proof. Take any closed disjoint sets F, G of the space XM; then the disjoint sets

A ¼ F \ M and B ¼ G \ M are closed the space in M by Fact 1 so there exist

disjoint U, V 2 t(X) such that A � U and B � V. It is evident that U0 ¼ (U \G) [
(F \M) and V0 ¼ (V \F) [ (G \M) are open in XM, disjoint and contain the sets F and

G respectively. Fact 2 is proved.

Consider the compact space K ¼ b(D(o1)); if o(K) ¼ k then K embeds in Ik
(Problem 209). Let X¼ Ik andM¼ D(o1)� K� X. We claim that the property (�)
holds for the subspace M of the space X. Given two disjoint A, B � M define a

function f : M! [0, 1] as follows: f(x) ¼ 0 if x 2 A and f(x) ¼ 1 if x 2 M\A. Since
M is discrete, the function f is continuous so there exists a continuous function f1 :
K ! [0, 1] with f1jM ¼ f (Problem 257). Since the compact space Ik is normal
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and K is closed in Ik, there exists a continuous function f2 : Ik ! [0, 1] such that

f2jK ¼ f1 (Problem 031). It is clear that the sets U ¼ f�12 ½0; 1
2
Þ� �

and V ¼ f�12 ð1
2
; 1
� �

are open in X, disjoint and contain A and B respectively so (�) holds for M.

Therefore XM is a normal space by Fact 2.

Since all points of X \M are isolated (Fact 1), the subspace M is closed in XM;

sinceM is a discrete subspace of X, it is also discrete in XM (Fact 1), soM is a closed

discrete subspace of XM. If XM is collectionwise normal then there exists a disjoint

family {Ux : x 2 M} � t(XM) such that x 2 Ux for each x 2 M. For any x 2 M we

haveUx¼ Vx [ Pxwhere Vx 2 t(X) and Px� X \M. As a consequence, x 2 Vx 2 t(X)
for each x 2 M and hence {Vx : x 2 M} is an uncountable disjoint family of

non-empty open subsets of X which is a contradiction with the fact that c(X) ¼ o
(Problem 109). Thus XM is a normal space which is not collectionwise normal

so our solution is complete.

S.294. (Reznichenko’s theorem). Call a set P� IA convex if tfþ (1� t)g 2 P for any
f, g 2 P and t 2 [0, 1]. Let D be a dense convex subset of IA. Prove that, if D is
normal then ext(D) ¼ o. Deduce from this fact that any normal convex dense D �
IA is collectionwise normal.

Solution. If, for some set B, we are given H ¼ {ha : a < o1} � IB and a number

t 2 (0, 1), let H(t) ¼ {tha + (1 � t)hb : a, b < o1, a 6¼ b}. If P � IB, K is a finite

subset of B and e> 0 then OP( f, K, e)¼ {g 2 P : jg(x)� f(x)j< e for all x 2 K}. It is
clear that the family {OP( f, K, e) : K is a finite subset of B and e > 0} is a local base

at f in the space P. Given any C � B the map pC : IB ! IC is the natural projection

defined by the formula pC( f) ¼ fjC for any f 2 IB.
Fact 1. Let P be a convex subset of IA for some A. Assume that we have a setH¼ {ha :
a < o1} � P such that H \ HðtÞ ¼ ; for some t 2 (0, 1) (the bar denotes the closure

in P). Then H is closed and discrete in P and ha 6¼ hb for all a, b < o1 with a 6¼ b.

Proof. If ha¼ hb for some distinct a, b<o1 then ha¼ thaþ (1� t)hb 2H \ H(t), a
contradiction. Given f 2 P it is easy to check that OP( f, K, e) is a convex set for

any finite K � A and e > 0. Assume that f is an accumulation point of H; given
an arbitrary U 2 t( f, P) there is a finite K � A and e > 0 such that OP( f, K, e) � U.
Since f is an accumulation point of H, there exist distinct ordinals a, b < o1

with ha, hb 2 OP( f, K, e); the set OP( f, K, e) being convex, we have the equality

h ¼ tha þ (1 � t)hb 2 OP( f, K, e) \ H(t) which shows that f 2 H \ HðtÞ, a
contradiction. Thus, we proved that H has no accumulation points in P, i.e., H is

closed and discrete in P so Fact 1 is proved.

Fact 2. Let P be a dense convex subset of IA for some A; suppose that F is

an uncountable discrete subspace of P. Then there exist H ¼ {ha : a < o1} � F
and t 2 (0, 1) such that H \ HðtÞ ¼ ; (the bar denotes the closure in P).

Proof. For each h 2 F choose a finite set Kh � A and a number eh 2 (0, 1) such that

OP(h, Kh, eh) \ F¼ {h}. It is possible to choose H¼ {ha : a< o1}� F so that, for

each a < o1, we have eha r e where e > 0 does not depend on a. We claim that
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t ¼ e/3 is as promised, i.e., H \ HðtÞ ¼ ;. It suffices to show that the set Wa ¼
OP(ha, Kha, e

2/3) does not intersect H(t) for all a < o1.

Take any distinct b, g < o1; if a 6¼ g then fg =2 OP(ha, Kha, e) and hence there is

x 2 Kha such that jha(x) � hg(x)j r e. We have

jthbðxÞ þ ð1� tÞhgðxÞ � haðxÞj ¼ jtðhbðxÞ � hgðxÞÞ þ ðhgðxÞ � haðxÞj
r jhaðxÞ � hgðxÞj � tjhbðxÞ � hgðxÞj
r e� ðe=3ÞðjhbðxÞj þ jhgðxÞjÞ
r e� 2 � ðe=3Þ ¼ e=3> e2=3;

which implies that thb þ (1 � t)hg =2 Wa. Now assume that g ¼ a; then b 6¼ a and

hb =2 OP(ha, Kha
, e). Thus, there is y 2 Kha

for which jha(y) � hb(y)j r e. We have

jthbðyÞ þ ð1� tÞhgðyÞ � haðyÞj ¼ jthbðyÞ þ ð1� tÞhaðyÞ � haðyÞj
¼ jtðhbðyÞ � haðyÞÞjr t � e ¼ e2=3;

and therefore thb þ (1 � t)hg =2 Wa. Fact 2 is proved.

Fact 3. Every normal space of countable extent is collectionwise normal.

Proof. Observe first that if F is a discrete family of closed subsets of an arbitrary

normal space X then, for every F 2 F there existsU(F) 2 t(F, X) such that the family

F0 ¼ fUðFÞg [ ðFnfFgÞ is also discrete. To see that this is true, use normality of the

space X to find U(F) 2 t(F, X) such that UðFÞ \ G ¼ ; where G ¼ S (F \ {F}).
Given any x 2 X, fixW 2 t(x, X) which meets at most one element of F . If x 2 UðFÞ
then x =2 G soW\G is an open neighbourhood of x which can intersect no element of

F0 other than UðFÞ. If x =2 UðFÞ thenWnUðFÞ is an open neighbourhood of x which
intersects at most one element of F 0 and hence F0 is discrete.

Now assume that X is a normal space with ext(X)¼ o and take a discrete family

F of non-empty closed subsets of X. Choosing a point xF 2 F for each F 2 F , we
obtain a closed discrete subset {xF : F 2 F} of the space X. Since ext(X) ¼ o, the
family F must be countable so let F ¼ {Fn : n 2 o}. By the observation in the first
paragraph there exists U0 2 t(F0, X) such that the family F 0 ¼ fU0;F1;F2; . . .g is
discrete. Assume that we have Ui 2 t(Fi, X) for each i b n such that the family

F n ¼ fU0; . . . ;Un;Fnþ1;Fnþ2; . . .g is discrete. By the observation in the first

paragraph there exists Unþ1 2 t(Fnþ1, X) such that the family F 0 ¼ fU0; . . . ;

Unþ1;Fnþ2; . . .g is discrete so our inductive process can be carried out giving us a

disjoint family {Un : n 2 o} � t(X) such that Fn � Un for any n 2 o. If F ¼ S F
and U ¼ S{Un : n 2 o} then U 2 t(F, X) and hence there exists W 2 t(F, X) such
that F � W � W � U. We leave to the reader the trivial verification that the family

{Un \ W : n 2 o} is discrete and Fn � Un \ W for each n 2 o (see S.231 for the

proof of an analogous fact). Fact 3 is proved.
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Returning to our solution assume that F is an uncountable closed discrete

subspace of D. Apply Fact 2 to find a set H0 ¼ fh0a : a < o1g � F and t 2 (0, 1)

such that H0 \ H0ðtÞ ¼ ; (the bar denotes the closure in D). Since D is normal, there

exist U 2 t(H0, D) and V 2 tðH0ðtÞ;DÞ such that U \ V ¼ ;. Apply Fact 3 of

S.291 to find a countable B� A such that the sets P¼ pB(H0) andQ ¼ pBðH0ðtÞÞ are
separated in I(B) ¼ IB, i.e., clI(B)(P) \ Q ¼ ; ¼ clI(B)(Q) \ P. Every second

countable space is perfectly normal (this is an easy exercise), so the closed set

R ¼ clI(B)(Q) is a Gd-set in the second countable space I(B). If we fix a sequence

O¼ {On : n 2o}� t(I(B)) such that
TO¼ R, then we have pB(H0)�

S
{I(B) \On :

n 2 o}. Therefore, we can find an uncountable H � H0 such that pB(H) \ On ¼ ;
for some n 2 o; it is immediate that clI(B)(pB(H))\On ¼ ;. Choose some enumera-

tion {ha : a < o1} of the set H; since clI(B)(Q) � On and H(t) � H0(t), we have

clI(B)(pB(H)) \ clI(B)(pB(H(t)))¼ ;. If fa¼ pB(ha) for each a<o1 andG¼ {fa : a<
o1} then G(t) ¼ pB(H(t)) and therefore clI(B)(G) \ clI(B)(G(t)) ¼ ;. Thus Fact 1
can be applied to conclude that G is an uncountable closed and discrete subspace of

I(B) which is a contradiction with the fact that I(B) is second countable. This

contradiction shows that we proved that ext(D) ¼ o so we can apply Fact 3 to

see that D is collectionwise normal and finish our solution.

S.295. Prove that, if Cp(X) is normal then ext(Cp(X)) ¼ o. Deduce from this fact
that, if Cp(X) is normal then it is collectionwise normal.

Solution. The following statement is very easy but we formulate it as a Fact for

further applications.

Fact 1. For any a, b 2 R with a < b and any space Z, the space Cp(Z, (a, b)) is
homeomorphic to Cp(Z).

Proof. Let w : R ! (a, b) be a homeomorphism (Problem 025). Given f 2 Cp(Z),
let ’( f) ¼ w 	 f; then the map ’ : Cp(Z) ! Cp (Z, (a, b)) is continuous as

well as its inverse defined by the formula ’�1(g) ¼ w�1 	 g for any g 2 Cp

(Z, (a, b)) (Problem 091). This shows that the map ’ is a homeomorphism so

Fact 1 is proved.

By Fact 1, the space Cp(X) is homeomorphic to Cp(X, (�1, 1)) which is a dense

convex (check it, please!) subset of Cp(X, I) (see Problem 089). Since Cp(X, I)
is dense in IX (this is an easy consequence of Problem 034), the space Cp(X)
is homeomorphic to a convex dense subset of IX. The space Cp(X) being

normal, we can apply Reznichenko’s theorem (Problem 294) to see that

ext(Cp(X)) ¼ o. Finally, apply Fact 3 of S.294 to conclude that Cp(X) is

collectionwise normal.

S.296. Prove that, if Cp(X, I) is normal then ext(Cp(X, I)) ¼ o. Deduce from this
fact that, if Cp(X, I) is normal then it is collectionwise normal.

Solution. The space Cp(X, I) is dense in IX (this is an easy consequence of

problem 034) and it is straightforward that it is also convex. Thus we can apply
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Reznichenko’s theorem (problem 294) to convince ourselves that ext(Cp(X, I)) ¼ o.
Finally, apply Fact 3 of S.294 to conclude that Cp(X, I) is collectionwise normal.

S.297. Give an example of a space X, for which ext(Cp(X)) ¼ o, while Cp(X) is not
normal.

Solution. The expression Z ’ T says that the spaces Z and T are homeomorphic.

Give the set o1 the discrete topology and take any point p =2 o1. Let L ¼ o1 [ {p}
and t(L) ¼ {A : A � o1} [ {B : p 2 B and L \B is countable}. It is easy to see that

t(L) is indeed a topology on L and that the unique non-isolated point of L is p.
Observe that any Gd-set H of L is open in L; this is evident if H � o1. If p 2 H and

H ¼ Tn2o Un where each Un is open in L, then L \Un is countable for each n
and hence L \H ¼S{L \Un : n 2 o} is countable, i.e., H 2 t(L). As a consequence,
if f 2 C(L) then there exists b < o1 such that f(a) ¼ f(p) for each a r b.

Let a¼ 0 and an¼ 1/n for all n 2N. Then S¼ {a} [ {an : n 2N} is a convergent
sequence with limit a. The space Y ¼ L � S has the following properties:

(1) W � S is a clopen subspace of Y for each countable W � o1.

(2) Given f 2 C(Y) there exists b < o1 such that f(a, s) ¼ f(p, s) for any a r b and

s 2 S.

The setW� S is open becauseW is open in L. Besides, Y \ (W� S)¼ (L \W)�S
is also open in Y because L \W is open in L; this proves (1).

Given s 2 S, the space L � {s} is homeomorphic to L so there is bs < o1 such

that f(a, s) ¼ f(p, s) for each a r bs. If b ¼ sup{bs : s 2 S} then b < o1 is as

promised so (2) is also proved.

Consider the spaces S¼ {f 2 Cp(Y) : f(p, s)¼ 0 for all s 2 S} andM¼ L \o; for
Z¼M� S, let SZ¼ {f 2 Cp(Z) : f(p, s)¼ 0 for all s 2 S}. Let us prove that we have

(3) S ’ SZ � ðCpðSÞÞo.
Observe first that {n} � S is clopen in o � S for each n < o and therefore o �

S ¼ L {{n} � S : n 2 o} (Problem 113). We have

(�) Cpðo� SÞ ¼ Cpð
Lffng � S : n 2 ogÞ ¼QfCpðfng � SÞ : n 2 og ¼ ðCp

ðSÞÞo by Problem 114 and the fact that {n} � S is homeomorphic to S for all n 2 o.
The property (1) implies Y ¼ (o � S)

L
Z; define a function ’ : S! Cp(o � S)�

SZ by the formula ’( f) ¼ ( fj(o � S), fjZ) for any f 2 S. Since both restrictions are

continuous maps (Problem 152), the map ’ is also continuous. If (g, h) 2 Cp(o � S)
� SZ then define a map f 2 Cp(Y) by f(t) ¼ g(t) for all t 2 o � S and f(t) ¼ h(t) for
all t 2 Z. It is straightforward that f 2 S and ’( f) ¼ (g, h), so we proved that ’ is an

onto map. If f1 6¼ f2 then f1j(o � S) 6¼ f2j(o � S) or f1jZ 6¼ f2jZ; this proves

injectivity of ’.
To see that ’�1 : Cp(o � S) � SZ! S is continuous, recall that ’�1 is a map

into the product RY so it suffices to prove that py 	 ’�1 is continuous for all y 2 Y,
where the projection py : RY! R is defined by py( f ) ¼ f(y) for all f 2 RY. Let p :

Cp(o � S) � SZ ! Cp(o � S) and q : Cp(o � S) � SZ ! SZ be the natural

projections. Given y 2 o � S, the map p0y : Ro�S ! R is the natural projection

onto the yth factor; it is clear that p0yð f Þ ¼ f ðyÞ for any f 2 Ro � S. If y 2 Z, then
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p1y : RZ ! R is also the natural projection onto the yth factor; it is also defined by

the formula p1yð f Þ ¼ f ðyÞ for any f 2 RZ.

Now it is easy to prove that py 	 ’�1 is continuous for any y 2 Y : if y 2 o � S
then py 	 ’�1 ¼ p0y 	 p or else if y 2 Z then py 	 ’�1 ¼ p1y 	 q so in both cases py 	
’�1 is a continuous map and this proves that ’ is a homeomorphism.

Finally, observe that we established that S ’ Cp o� Sð Þ � SZ ’ Cp Sð Þ� �o �SZ

by (�) and, since the product is a commutative operation, the property (3) is proved.

Another important fact is the property

(4) Cp Yð Þ ’ S� Cp Sð Þ.
Let r : Y ! S be the natural projection. Define r� : Cp(S) ! Cp(Y) by the

formula r�( f ) ¼ f 	 r for all f 2 Cp(S). The map r� is continuous (Problem 163).

Now if f 2 Cp(Y) then let u( f)(s) ¼ f(p, s) for all s 2 S; it is evident that the map u :

Cp(Y) ! Cp(S) is continuous. Thus, if we define d : Cp(Y) ! S � Cp(S) by the

formula d( f )¼ ( f – r�(u( f )), u( f )) for all f 2 Cp(Y) then d is a continuous map. It is

straightforward that d�1(h, g)¼ hþ r�(g) for each (g, h) 2 S� Cp(S) so d
�1 is also

continuous, i.e., d is a homeomorphism and (4) is proved.

It is easy to deduce from the properties (3) and (4) that we have

(5) Cp Yð Þ ’ S.
Indeed, CpðYÞ ’ S�CpðSÞ ’ ðSZ �ðCpðSÞÞoÞ�CpðSÞ ’ SZ �ðCpðSÞÞo ’ S.
Our next step is to establish that ext(S) ¼ o. Given a < o1, we define a

mapping ra : S! S as follows: for any x 2 S and any (b, s) 2o1� S, let ra( f)(b, s)
¼ f(b, s) if b< a and ra( f )(b, s)¼ 0 if br a; of course, ra( f )( p, s)¼ 0 for all s 2 S.
It is easy to see that the space Sa ¼ ra(S) is second countable. Let Ya ¼ a � S � Y
for each ordinal a < o1. Given a function f 2 S, a finite set K � Y and e > 0,

let O( f, K, e) ¼ {g 2 S : jg(x) � f(x)j < e for all x 2 K}. The family {O( f, K, e) : K
is a finite subset of Y and e> 0} is a local base of the space S at the point f. For any
f 2 S, let supp( f ) ¼ {a < o1 : f(a, s) 6¼ 0 for some s 2 S}. The set supp( f ) is
countable for each f 2 S by (2).

Assume that F is a closed subset of S. Then
(6) For any l < o1 there is a r l, a < o1 such that ra(F) � F.

For a0 ¼ l the space ra0(F) � Sa0 is second countable; therefore there exists a

countable P0� F such that ra0(P0) is dense in ra0(F). Suppose that we have defined
ordinals a0 b � � � b an < o1 and countable sets P0 � � � � � Pn � F; since the set
Pn is countable, anþ1 ¼max{an, sup{sup(supp( f )) : f 2 Pn}}< o1. Since ranþ1 (F)
� Sanþ1 is second countable, there is countable Pnþ1 � F such that Pn � Pnþ1 and
the set panþ1(Pnþ1) is dense in panþ1(F). The inductive construction having been

carried out, we have the sequences {an : n 2 o} and {Pn : n 2 o}; let a ¼ sup{an :
n 2 o}, P ¼ S{Pn : n 2 o} and F0 ¼ F \ Sa.

Note that P � F0 because supp( f ) � a for any f 2 P. It suffices to show that

ra(F) � F 0 so take any f 2 F, any finite K � Y and e > 0. There is n 2 o such that

K0 ¼ K \ Ya ¼ K \ Yan; since f
0 ¼ ran( f ) 2 ran(F) and ran(Pn) is dense in ran(F),

there is g 2 Pn such that ran(g) 2 O( f 0, K0, e). Observe that g 2 Sanþ1 � Sa so

ra( f)(x)¼ 0¼ g(x) for any x 2 K \K0 � Y \ Ya and hence g 2 O( f, K, e) which proves
that f 2 P � F0 (the closure is taken in S and the last inclusion is true because F0
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is closed in S). The function f being taken arbitrarily, we have ra(F) � F0 � F so

(6) is proved.

Assume that D is a closed discrete subset of S. Then
(7) For any a < o1 the set ra(D) is countable.

LetDa¼ ra(D) for each a<o1. It is immediate that ra(Db)¼Da for every br a.
If Da is uncountable for some a < o1 then apply (6) to find b r a such that Db � D
\ Sb. The space Sb being second countable, we have ext(Sb) ¼ o and therefore D
\ Sb is countable. Thus, the set Db � D \ Sb is also countable and so is Da ¼
ra(Db) which is a contradiction. Thus, Da is countable for any a < o1 and (7) is

proved.

Now suppose that E is an uncountable closed discrete subset of the space S. If
Ea ¼ ra(E) for all a < o1 then all sets Ea are countable by (7). Find b0 < o1 such

that Eb0 � E; since E is uncountable, there is h0 2 Eb0 \ E such that the set

Q0 ¼ r�1b0
ðh0Þ \ E

� �
nfh0g is uncountable. Assume that we have chosen h0, . . . , hn

2 E, b0 < � � � < bn < o1 and Q0 � � � � � Qn with the following properties:

(a) The functions h0, . . . , hn are distinct and supp(hi) � bi for all i b n.
(b) rb

i
(hj) ¼ hi for any i, j b n with i b j.

(c) The set Qi ¼ r�1bi
ðhiÞ \ E

� �
nfh0; . . . ; hig is uncountable for each i b n.

Since Qn ¼ r�1bn
ðhnÞ \ E

� �
nfh0; . . . ; hng is an uncountable closed and discrete

subset of the space S, we can apply (6) once again to find bnþ1 > bn such that

rbnþ1(Qn) � Qn. The set rbnþ1(Qn) being countable by the property (7), there exists

hnþ1 2 rbnþ1(Qn) such that Qnþ1 ¼ r�1bnþ1
ðhnþ1Þ \ Qn

� �
nfh0; . . . ; hnþ1g is uncount-

able; since hnþ1 2 Qn \ Sbnþ1, the function hnþ1 is distinct from the previously

chosen hi’s so properties (a) and (b) hold for all i b n þ 1. Thus the inductive

process goes on so and we can obtain the sequences {hi : i 2o} and {bi : i 2o} with
the properties (a) and (b). Letting b¼ sup{bi : i 2o} and applying (2) we can define
h 2 Sb as follows: h(x) ¼ 0 for all x 2 Y \ Yb; furthermore h(x) ¼ hn(x) if x 2 Ybn
for some n 2 o; the property (2) makes this definition consistent. It is straight-

forward that the non-trivial sequence {hn : n 2 o} � E converges to h which is a

contradiction with the fact that E is closed and discrete. Thus, we finally proved that

ext(S) ¼ o and hence ext(Cp(Y)) ¼ o by (5).

Now consider the space X ¼ Y \ {p, a)}; we claim that X is C-embedded in Y.
To prove this, take any f 2 C(X); then f is continuous on the subspace L � {an} � X
for any n 2 o. As a consequence there is bn < o1 such that f(a, an) ¼ f(p, an) for
all a r bn. If b ¼ sup{bn : n 2 o} then f(a, s) ¼ f(p, s) for any s 2 S \ {a} and any a
r b. Since f is continuous at any (a, a), we must have f(a, a) ¼ lim f(a, an) ¼ lim

f(p, an)¼ t for each ar b. This shows that letting f(p, a)¼ t, we obtain a continuous
extension of the function f to the space Y. As a consequence pX(Cp(Y))¼ Cp(X) (see
Problem 152) and hence Cp(X) is a continuous image of the space Cp(Y); this easily
implies that ext(Cp(X)) ¼ o.

To finish our solution, it suffices to rule out normality of Cp(X). Suppose for

a moment that Cp(X) is normal. The set F ¼ o1 � {a} is a closed subset of X so
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CF ¼ pF(Cp(X)) has to be normal by 291. It is easy to see that CF ¼ {f 2 RF : there is

b < o1 such that f(a, a) ¼ f(b, a) for all a r b}.
Consider the sets A ¼ {f 2 CF : f(F) � N and f �1(i) has at most one element for

each i 2N, i 6¼ 1} and B¼ {f 2 CF : f(F)�N and f �1(i) has at most one element for

each i 2 N, i 6¼ 2}. The sets A and B lie in NF which is closed in RF, they are also

closed in NF : this was established in Fact 2 of S.215 for F ¼ o1; the same proof

can be applied if we identify (a, a) with a for all a < o1. Thus the sets A and B are

closed in CF; they are also disjoint: see the proof of Fact 2 of S.215 again to be

convinced that this is true. Let us show that A and B cannot be separated by disjoint

open sets in CF, i.e., there exist no U, V 2 t(CF) such that F � U, G � V and U \
V ¼ ;. Assume, on the contrary, that such U and V exist. Since CF is a dense

subspace of RF, we can apply Fact 3 of S.291 to conclude that there exists a

countable P ¼ {pn : n 2 N} � F such that pP(A) \ pP(B) ¼ ;. Now let f(pn) ¼ n
for each n 2 N; define h 2 CF as follows: hjP ¼ f and h(x) ¼ 1 for all x 2 F \P. It is
clear that h2 A and pP(h)¼ f. Nowwe can define a function g2 CF as follows: g \P¼ f
and g(x) ¼ 2 for all x 2 F \P. It is immediate that g 2 B and pP(g) ¼ f. As a

consequence, f 2 pP(A) \ pP(B); this contradiction shows that Cp(X) cannot be
normal so our solution is complete.

S.298. Suppose that L is a subspace of a product X ¼ QfXt : t 2 Tg and l(L) b k.
Prove that, for any second countable space Y and any continuous map f : L ! Y,
there exists S� T with j S jb k and a continuous map h : pS(L)! Y such that f¼ h 	
pS. Here pS : X ! XS ¼

Q
t2S Xt is the natural projection defined by pS(x) ¼ xjS for

any x 2 X.

Solution. Given an arbitrary product Z ¼ QfZa : a 2 Ag, recall that a set

U ¼Qa2A Ua is called standard in Z if Ua 2 t(Za) for all a 2 A and the set supp

(U) ¼ {a 2 A : Ua 6¼ Za} is finite. Standard sets form a base in Z (Problem 101). If

we have a set B � A, denote by qB : Z ! ZB ¼
QfZa : a 2 Bg the projection

defined by qB(z) ¼ zjB for any z 2 Z.

Fact 1. Let M be an arbitrary subset of a product Z ¼ QfZa : a 2 Ag. Assume that

U is a standard set of Z and V¼ U \ M. If B � A and supp(U)� B then qB(V) is an
open subset of qB(M) and qB(z) 2 qB(V) implies z 2 V for any z 2 M.

Proof. Since U is standard in Z, we have U ¼ Qa2A Ua ; it follows from supp(U)
� B that Ua¼ Za for all a 2 A \B. The setW ¼Qa2B Ua is open in the space ZB; let
us prove that W \ qB(M) ¼ qB(V). If y 2 W \ qB(M) then y(a) 2 Ua for all a 2 B;
if z 2M and qB(z)¼ y then z(a) 2 Ua for all a 2 A because z(a)¼ y(a) 2 Ua if a 2 B
and, if a 2 A \B thenUa¼ Za so z(a) 2Ua anyway. As a consequence z 2U \ M¼ V
whence y ¼ qB(z) 2 qB(V); this shows thatW \ qB(M) � qB(V). On the other hand,
if y 2 qB(V) then there is z 2 V with qB(z)¼ y. Now, V� U implies z(a) 2 Ua for all

a 2 A and therefore y(a)¼ qB(z)(a)¼ (zjB)(a)¼ z(a) 2 Ua for all a 2 B so y 2W \
qB(M). This proves that qB(V) �W \ qB(M) soW \ qB(M) ¼ qB(V) and hence the
set qB(V) is open in qB(M).
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Now assume that y ¼ qB(z) 2 qB(V). Then y 2W and hence z(a) ¼ y(a) 2 Ua for

all a 2 B. Since Ua ¼ Za for all a 2 A \B, we have z(a) 2 Ua for all a 2 A and hence

z 2 U; as z 2 M, we have z 2 U \ M ¼ V and Fact 1 is proved.

Returning to our solution say that V 2 t(L) is L-standard if there exists a standard
U 2 t(X) such thatU \ L¼ V. It is evident that L-standard sets form a base in L. Fix
a countable base U ¼ {On : n 2 o} in the space Y. It is easy to see that each On is an

Fs-set in Y so each Hn ¼ f�1(On) is an Fs-set in L.
The Lindel€of number is not increased by passing to closed subsets and countable

unions so l(Hn) b k for every n 2 o. Since L-standard sets form a base in L, there
exists a family fHn

a : a < kg of L-standard sets such that Hn ¼
SfHn

a : a < kg for
each n 2 o. For all n 2 o and a < k, take a standard set Gn

a such that G
n
a \ L ¼ Hn

a ;

the set S ¼ SfsuppðGn
aÞ : n 2 o; a < kg is what we are looking for.

It is trivial that jSj b k; let us check that we have the following property:

(�) If x, y 2 L and ps(x) ¼ ps(y) then f(x) ¼ f(y).
Assume that f(x) 6¼ f(y); then there exists a set On 2 U such that f(x) 2 On and

f(y) =2 On. This implies that x 2 Hn and y =2 Hn; if we take any a< k such that x 2 Hn
a

then y =2 Hn
a. Observe that U ¼ Gn

a is a standard set of X with supp(U) � S and

U \ L ¼ V ¼ Hn
a ; since pS(y)¼ pS(x) 2 pS(V), we can apply Fact 1 to conclude that

y 2 V ¼ Hn
a which is a contradiction proving (�).

Given any y 2 pS(L), let h(y) ¼ f(x) where x 2 L is any point with pS(x) ¼ y; the
property (�) shows that this definition of h : pS(L)! Y is consistent. It is immediate

from the definition of h that h 	 pS ¼ f, so we must only prove that h is continuous.

By Problem 009(ii) it suffices to show that h�1(On) is open in pS(L) for any n 2 o.
Observe that h�1ðOnÞ ¼ pSðHnÞ ¼

SfpSðHn
aÞ : a < kg ; since U ¼ Gn

a is a standard

set of X with supp(U) � S and U \ L ¼ V ¼ Hn
a , we can apply Fact 1 to conclude

that pSðHn
aÞ is open in pS(L) for all n 2o and a< k. This shows that ps(Hn) is open in

pS(L) being a union of open subsets of pS(L); hence h�1(On) ¼ pS(Hn) is also an

open subset of ps(L) whence h is continuous so our solution is complete.

S.299. Suppose that k is an infinite cardinal and nw(Xt) b k for all t 2 T. For the
space X ¼QfXt : t 2 Tg and T0 � T, the map qT0 : X ! XT0 ¼

Q
t2T0 Xt is the

natural projection defined by qT0(x) ¼ xjT0 for any x 2 X. Suppose that D is a
dense subspace of X and we are given a continuous onto map f : D! Y for some
space Y. Let Q ¼ {y 2 Y : w(y, Y) b k} and P ¼ f�1(Q). Prove that there exist a set
S � T with jSj b k, a closed subset L of the space D, a closed subspace M of the
space qS(D) and a continuous map h : M! Y with the following properties:

(i) P � L and qS (L) ¼ M.
(ii) f(x) ¼ h(qS(x)) for every x 2 L.

Deduce from this fact that nw(Q)b k. In particular, if w(Y)b k then we have nw
(Y) b k and there exists a set T0 � T together with a continuous mapping h : qT0(D)
! Y such that f ¼ h 	 (qT0jD).
Solution. Recall that a set U ¼Qt2T Ut is called standard in X if Ut 2 t(Xt) for all

t 2 T and the set supp(U)¼ {t 2 T : Ut 6¼ Xt} is finite. Standard sets form a base in X
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(Problem 101). If E � X and R � T then ER ¼ qRðEÞ � XR ¼
Q

t2R Xt. Since the

map qR is continuous (Problem 107), the set DR is dense in XR for any R � T.

We call a space k-cosmic if it has a network of cardinality at most k.

Fact 1. If Z is a k-cosmic space then hd(Z) b k, i.e., d(Y) b k for any Y � Z.

Proof. Fix any Y � Z and observe that any subspace of a k-cosmic space must be

k-cosmic (Problem 159(ii)) so we can choose a network S ¼ {Sa : a < k} in the

space Y; we do not lose generality assuming that Sa 6¼ ; for all ordinals a< k. If we take
za 2 Sa for each a < k then the set {za : a < k} is dense in Y and hence d(Y) b k for

any Y � Z so Fact 1 is proved.

Fact 2. Any product of at most k-many k-cosmic spaces is a k-cosmic space and

hence any subspace of such a product has density at most k.

Proof. Let Z ¼ QfZa : a < kg where nw(Za) b k for all a < k. Fix a network Sa
with jSajb k in each Za; it is easy to check that the family S ¼ fQa < k Aa : Aa 2 Sa
or Aa¼ Za for each a< k and the set {a< k : Aa 6¼ Za} is finite} is a network in Z and

jSj b k so Fact 2 is proved.

Returning to our solution choose a local base By of the space Y at each y 2 Q in

such a way that jByjb k. By continuity of the function f, for each x 2 P there exists

a family Ux of standard subsets of X such that x 2T Ux while jUxj b k and, for any

O 2 Bf(x), there exists a setU 2 Ux such that f(U \ D)�O. It is straightforward that
the set Tx¼

S
{supp(U) :U 2 Ux} has cardinality at most k for every x 2 P. Another

simple observation is that, for anyG 2 t( f(x), Y), there isO 2 Bf(x) with O�G. As a
consequence, for any G 2 t( f(x), Y) there exists U 2 Ux such that f(U \ D) � G.

For an arbitrary x0 2 P, let A0 ¼ {x0} and S0 ¼ Tx0 . If we have sets An � P and

Sn � T such that jAnj b k and jSnj b k, any subspace of the space PSn ¼ qSn (P) has
density at most k being a subspace of a k-cosmic space XSn (see Fact 2) so it is

possible to find a set Anþ1 � P with Anþ1 � An such that jAnþ1j b k and the set qSn
(Anþ1) is dense in PSn. Letting Snþ1 ¼

S
{Tx : x 2 Anþ1}, we can follow this

inductive procedure which gives us a sequence {An : n 2 o} of subsets of P and

a sequence {Sn : n 2 o} of subsets of T such that jAnjb k and jSnjb k for all n 2 o.
Once we have the sets A¼S{An : n 2 o} and S ¼S{Sn : n 2 o}, we can define

the sets M ¼ [qS(A)] (the brackets denote the closure in the space qS(D)) and

L ¼ q�1S ðMÞ \ D. It is clear that L is closed in D and M is closed in qS(D). It is
also immediate that qS(L) ¼ M.

Claim 1. The set AS ¼ qS(A) is dense in PS ¼ qS(P).

Proof. Take any y 2 P and any standard setW ¼ QfWt : t 2 Sg of the space XS such

that qS(y) 2W. Since K ¼ supp(W) ¼ {t 2 S :Wt 6¼ Xt} is finite, there is n 2 o such

that K � Sn. Note that qSn(y) 2 PSn
andW0 ¼QfWt : t 2 Sng is an open neighbour-

hood of qSn(y) in XSn. The set qSn(An þ 1) is dense in PSn soW
0 \ qSn (An þ 1) 6¼ ; and

hence there is x2 Anþ1 such that x(t)2Wt for all t2K. We have x(t)2Wt for all t2 S
becauseWt¼ Xt for all t 2 S \K. Therefore we have qS(x) 2W \ AS; the standard set
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W 3 qS(y) of the product XS has been chosen arbitrarily so qS(y) is in the closure of

AS. Since y 2 P has also been chosen arbitrarily, we proved that qS(A) is dense in PS.

Claim 1 is proved.

Claim 2. If x, y 2 L and qS(x) ¼ qS(y) then f(x) ¼ f(y).

Proof. If f(x) 6¼ f(y) then there exist Ox 2 t( f(x), Y), Oy 2 t( f(y), Y) such that

Ox \ Oy ¼ ;. Fix any standard sets Wx and Wy of the space X such that we have

x 2Wx, y 2Wy, f(Wx \ D)�Ox and f(Wy \ D)�Oy. Next observe that qS(Wx) and

qS(Wy) are open in XS by Problem 107 and we have qS(x) ¼ qS(y) 2 qS(Wx) \
qS(Wy). Since qS(y)¼ qS(x) 2M and the set AS is dense inM, there is z 2 A such that

qS(z) 2 qS(Wx) \ qS(Wy). The point f(z) cannot belong to both sets Ox and Oy ; we

assume without loss of generality that f ðzÞ =2 Ox. There is Oz 2 Bf(z) such that

f ðzÞ 2 Oz � YnOx ; by the definition of Uz, we can find Uz 2 Uz such that f(Uz \ D)
� Oz. The set qS(Uz) is open in XS (Problem 107) and qS(z) 2 qS(Uz) \ qS(Wx). We

have supp(Uz) � S so q�1S ðqSðUzÞÞ ¼ Uz ; an immediate consequence is that Uz \
Wx 6¼ ;. Recalling that D is dense in X we can see that Uz \ Wx \ D 6¼ ;. Take any
w 2Uz \ Wx \ D; then we hve f ðwÞ 2 f ðUz \ DÞ � Oz � YnOx. However, w 2Wx

and hence f(w) 2 f(Wx \ D)� Ox; this contradiction concludes the proof of Claim 2.

Returning to our solution, observe that Claim 1 implies thatM¼ [AS]¼ [PS] and

hence P � L so (i) is holds for the setsM, L and S. For any y 2M, we let h(y) ¼ f(x)
where x 2 L is any point with qS(x) ¼ y; Claim 2 shows that this definition of the

mapping h : M ! Y is consistent. It is immediate from the definition of h that

h(qS(x)) ¼ f(x) for any x 2 L so we must only prove that h is continuous. Take any

y 2 M and fix any x 2 L with qS(x) ¼ y. Let G 2 t(h(y), Y); pick O, H 2 t(h(y), Y)
such that hðyÞ 2 O � O � H � H � G. Observe that f(x) ¼ h(y) and hence we

have O 2 t( f(x), Y); the function f being continuous at the point x there is a standard
set U of the space X such that f(U \ D)� O. The set V¼ qS(U) is open in the space
XS (Problem 107) and y 2 V.

Let us prove that f ðwÞ 2 O for any w 2 q�1S ðVÞ \ A. If f ðwÞ 2 YnO then there is

Ow 2 Bf(w) with Ow � YnO. Take anyW 2 Uw with f(W \ D)� Ow. Since supp(W)

� S, we have q�1S ðqSðWÞÞ ¼ W ; recall that qS(w) 2 qS(W) \ qS(U) soW \ U 6¼ ;.
The set D is dense in X so there is d 2 D \ W \ U. Consequently, f ðdÞ
2 f ðW \ DÞ � Ow � YnO. However, we also have f(d) 2 f(U \ D) � O which is

a contradiction.

Since f ðwÞ 2 O � H for each w 2 B ¼ q�1S ðVÞ \ A, by our construction of

Uw there is Uw 2 Uw such that f(Uw \ D) � H for each w 2 B. Note also that

supp(Uw) � S implies that q�1S ðqSðUwÞÞ ¼ Uw for each w 2 B. For the set U(B) ¼
[{Uw : w 2 B}, we also have q�1S ðqSðUðBÞÞÞ ¼ UðBÞ. Let us show that

q�1S ðVÞ \ L � clXðUðBÞÞ. Indeed, otherwise C ¼ q�1S ðVÞnclXðUðBÞÞ is an open

subset of X with C \ L 6¼ ;. If d 2 C \ L then qS(d) 2 qS(C); the set qS(C) is
open in XS and qS(C) \ qS(U(B))¼ ;. Since B� U(B), we have qS(B)¼ qS(A) \ V
� qS(U(B)). The set qS(C) is an open neighbourhood of qS(d) and qS(d) 2 [qS(A)]
whence qS(C) \ qS(A) 6¼ ;. Also note that qS(C)� V and therefore ; ¼ qS(U(B)) \
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qS(C) � (qS(A) \ V) \ qS(C) � qS(A) \ qS(C) 6¼ ;. This contradiction shows that

q�1S ðVÞ \ L � clXðUðBÞÞ.
Observe that f(U(B) \ D) ¼ S{f(Uw \ D) : w 2 B} � H, because we have

f(Uw \ D) � H for every w 2 B. Therefore

f ðq�1S ðVÞ \ LÞ � f ðclXðUðBÞÞ \ DÞ ¼ f ðclDðUðBÞ \ DÞÞ � H:

It follows easily from Claim 2 that hðV \MÞ ¼ f ðq�1S ðVÞ \ LÞ and hence we

have hðV \MÞ � H � G. Thus the set V \ M witnesses continuity of h at the

point y.
Finally observe that the properties (i) and (ii) imply that Q � h(M) and therefore

nw(Q)b nw(h(M))b nw(M)b k (see Problems 157(iii) and 159(ii)). If w(Y)b k then

Q ¼ Y and P ¼ D so the properties (i) and (ii) hold for the sets T0 ¼ S, M ¼ qS(D)
and L ¼ D, i.e., our solution is complete.

S.300. Given a space Z and a second countable space Y show that, for any
continuous map p : Cp(Z) ! Y, there is a countable set A � Z and a continuous
mapping q : pA(Cp(Z))! Y such that p ¼ q 	 pA. Here pA : Cp(Z)! Cp(A) is the
restriction map defined by the formula pA( f) ¼ fjA for every f 2 Cp(Z).

Solution. The space Cp(Z) is a dense subspace of the product RZ of second

countable spaces (Problem 111) and, for any B � Z, the restriction map pB
coincides on Cp(Z) with the natural projection of pB : RZ ! RB (see Problem

107). Thus Problem 299 is applicable to conclude that there exists a countable

A � Z and a continuous map q : pA(Cp(Z)) ¼ pA(Cp(Z))! Y such that p ¼ q 	 pA ¼
q 	 pA.
S.301. Prove that, if jXj > 1, then the space Cp(X) is not linearly ordered.

Solution. We will see that many subspaces of Cp(X) are homeomorphic to I.
Fact 1. For any distinct f, g 2 Cp(X), the subset [f, g] ¼ {tf + (1 � t)g : t 2 [0, 1]} is

homeomorphic to the interval [0, 1] and the mapping ’ : [0, 1]! [f, g] defined by

’(t) ¼ tf þ (1 � t)g, is a homeomorphism.

Proof. For any x 2 X, let px( f)¼ f(x) for any f 2RX. It is clear that px :RX!R is the

natural projection of RX onto the xth factor. Observe that the function px 	 ’ : [0, 1]

! [ f(x), g(x)]�R is continuous being a linear map; since Cp(X) is a subspace of the
product RX, this proves that ’ is continuous (Problem 102).

If t, s 2 [0, 1], t 6¼ s and ’(t)¼ ’(s) then tfþ (1� t)g¼ sfþ (1� s)g; after trivial
transformations we arrive at the equality (t � s)f ¼ (t � s)g which implies f ¼ g,
a contradiction. This shows that ’ is a condensation and hence homeomorphism

because the space [0, 1] is compact. Fact 1 is proved.

Fact 2. If jXj > 1 then [u, v] has empty interior in Cp(X) for any u, v 2 Cp(X).

2 Solutions of Problems 001–500 261



Proof. Note first that u¼ v implies [u, v]¼ u; since Cp(X) never has isolated points,
the set [u, v] ¼ {u} has empty interior. Now fix distinct points x, y 2 X and distinct

u, v 2 Cp(X) such that U ¼ Int([u, v]) 6¼ ;; take also s 2 [0, 1] with ’(s) ¼ su þ
(1� s)v 2 U. Given any h 2 Cp(X), let Th( f)¼ fþ h for all f 2 Cp(X). Then the map

Th : Cp(X) ! Cp(X) is a homeomorphism for any h 2 Cp(X) (Problem 079).

Observe that Th(tf þ (1 � t)g) ¼ tf þ (1�t)gþh ¼ t( f þ h)þ(1�t)(gþh) which
shows that Th([u, v]) ¼ [Th(u), Th(v)] for any h 2 Cp(X). Since Th is a homeomor-

phism, the set [Th(u), Th(v)] has non-empty interior for any h 2 Cp(X), in particular,
for h ¼ �(su þ (1 � s)v). If u0 ¼ Th(u) and v 0 ¼ Th(v) then f0 � 0 belongs to the

interior V of the set [u0, v0]. The functions u and v being distinct, we have u0 6¼ v0 so
one of these functions, say u0, is distinct from f0 and hence s 6¼ 1. Observe that su0 þ
(1 � s)v0 � 0 and hence v0 ¼ s

s�1u
0.

Let us show that we have

(�) For any f 2 Cp(X), there is r 2 R such that f ¼ ru0.
There exist k 2 N, x1, . . . , xk 2 X and e > 0 such that O( f0, x1, . . . , xk, e) � V.

Take any n 2 N such that 1
n j f ðxiÞj < e for all i b k; then 1

n f 2 V � ½u0; v0
 and
therefore 1

n f ¼ tu0 þ ð1� tÞv0 for some t 2 [0, 1]. Thus f ¼ nðtu0 þ s
s�1ð1� tÞu0Þ ¼

ru0 where r ¼ ntþ nð1� tÞ s
s�1. The property (�) is proved.

There exist functions f, g 2 Cp(X) such that f(x) ¼ g(y) ¼ 1 and f(y) ¼ g(x) ¼ 0

(Problem 034). Apply (�) to find r, t 2 R such that f ¼ ru0 and g ¼ tu0; the numbers

r and t are distinct from zero because f 6¼ f0 and g 6¼ f0. We have u0ðxÞ ¼ 1
tgðxÞ ¼ 0

and u0ðxÞ ¼ 1
r f ðxÞ ¼ 1

r 6¼ 0 which is a contradiction. Fact 2 is proved.

Fact 3. Suppose that G and H are non-empty open subsets of I¼ [0, 1] such that I¼
G [ H. Then G \ H 6¼ ;.
Proof. Suppose that G \ H ¼ ;; without loss of generality we can assume that

0 2 G. Consider the number s ¼ inf(H) 2 I; if s 2 G then [0, s) � G and, since G is

open in I, there is e> 0 such that [s, sþ e)� G. This proves that there are no points
of H in [0, s þ e), i.e., inf(H) r s þ e > s, a contradiction. Therefore s 2 H and s >
0 because 0 2 G. Since H is also open, there is d > 0 such that (s – d, s] � H and

hence inf(H) b s – d < s, and this last contradiction shows that the sets G and H
cannot be disjoint. Fact 3 is proved.

Now it is easy to finish our solution. Suppose that � is a linear order on Cp(X)
which generates the topology of Cp(X). Given any distinct f, g 2 Cp(X), the set

J f ; gð Þ ¼ fh 2 Cp Xð Þ : f � h � gg is open in Cp(X) by the definition of the order

topology. Since Cp(X) is an infinite space, we can choose distinct u, v, w 2 Cp(X)
such that u � w � v ; this shows that the open set J(u, v) is non-empty. It is

impossible that J(u, v) � [u, v] by Fact 2 so we can fix h 2 J(u, v) \ [u, v]. The
sets U ¼ ff 2 Cp Xð Þ : f � hg and V ¼ {f 2 Cp(X) : h � f} are open, disjoint and

non-empty because u 2 U and v 2 V. Furthermore, U [ V ¼ Cp(X) \ {h} and hence

[u, v]� U [ V. As a consequence, G [ H¼ [u, v] where the sets G¼ U \ [u, v] and
H¼ V \ [u, v] are open in [u, v]. We also haveG 6¼ ; 6¼H because u 2G and v 2H.
The interval [u, v] is homeomorphic to [0, 1] by Fact 1 so we have G \ H 6¼ ; by
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Fact 3. However, G \ H � U \ V ¼ ; which is a contradiction. Our solution is

complete.

S.302. Prove that any linearly ordered space is collectionwise normal and T1.
Deduce from this fact that any linearly ordered space is Tychonoff.

Solution. We will first need the following equivalent definition of collectionwise

normality.

Fact 1. Suppose that, for any discrete family {Fs : s 2 S} of closed subsets of a space
X, there exists a disjoint family {Us : s 2 S} of open subsets of X such that Fs � Us

for any s 2 S. Then X is collectionwise normal.

Proof. A disjoint family of two closed subsets is discrete, so our hypothesis implies

normality of the space X. Now take any discrete family {Fs : s 2 S} of closed

subsets of the space X and find a disjoint family {Us : s 2 S} of open subsets

of X such that Fs � Us for each s 2 S. The set F ¼ [{Fs : s 2 S} is closed in X and

F � U ¼ [{Us : s 2 S}.

Since X is normal, we can choose W 2 t(X) such that F � W � W � U. Now if

Ws ¼ Us \ W then Fs � Ws 2 t(X) for each s 2 S so it suffices to show that the

familyW ¼ {Ws : s 2 S} is discrete. Given x 2 X suppose that x =2U. Then XnW is a

neighbourhood of Xwhich does not intersect any element ofW. If x 2U then x 2Us

for some s 2 S and hence Us 2 t(x, X) intersects at most one element ofW. Hence

W is discrete and we proved collectionwise normality of X and Fact 1.

Fact 2. Let (L, b) be a linearly ordered space. If D ¼ {xs : s 2 S} is a discrete

subspace of L then there exists a disjoint family {Us : s 2 S} of open subsets of

L such that xs 2 Us for any s 2 S.

Proof. Let � be any well order on the set L. For each s 2 S take as, bs 2 L such that

as < xs < bs and (as, bs) \ D ¼ {xs} for all s 2 S. Of course, if xs is the smallest

element of L then only a point bs 2 L is chosen so that x< bs and ( , bs) \ D¼ {xs}.
If xs is the largest element of L then only a point as 2 L is chosen so that as < x and
(as,!) \ D ¼ {xs}.

Let cs be the � -minimal element of the set [as, xs] ¼ {x 2 L : as b x < xs}.
Analogously, ds is the � -minimal element of the set (xs, bs)¼ {x 2 L : xs< xb bs}.
Then cs < xs < ds and hence Us ¼ (cs, ds) is an open neighbourhood of xs for each
s 2 S. If xs is the minimal element of L thenUs¼ ( , ds) andUs¼ (cs,!) if xs is the
maximal element of L.

Fix any index s 2 S; observe first that, if xt < xs then xs =2 (at, bt) implies bt < xs.
Analogously, if xt> xs then at> xs. Now assume that xt< xs and (ct, dt) \ (cs, ds) 6¼ ;.
Since dt b bt < xs, we have dt < xs and xt < cs so cs < dt < xs. However,
dt is the � -minimal element of (xt, dt] and therefore dt is the � -minimal

element of [cs, dt]. But cs is the � -minimal element of [cs, xs) and hence cs is
the � -minimal element of [cs, dt]. Since cs 6¼ dt, these two points cannot both

be the minimal element of the same set [cs, dt]. The obtained contradiction
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proves that (ct, dt) \ (cs, ds) ¼ ;. The proof for the case of xt > xs is analogous
so Us \ Ut ¼ ; if s 6¼ t and Fact 2 is proved.

Observe that Fact 2 implies that any linearly ordered space L is Hausdorff and

hence T1 so to establish the Tychonoff property of L, it suffices to prove that L is

normal (see Problem 015). We will, in fact, prove that the space L is collection-

wise normal. Take any discrete family F ¼ {Fs : s 2 S} of closed subsets of L. The
set Ps ¼

S
{Ft : t 2 S \ {s}} is closed and disjoint from Fs for any s 2 S. Let Ws ¼S

{(x, y) : x, y 2 Fs and (x, y) \ Ps ¼ ;} for each s 2 S. ThenWs \ Ps ¼ ; for each
s 2 S and the familyW ¼ {Ws : s 2 S} is discrete. Indeed, take any x 2 L and any

interval J ¼ (a, b) 3 x such that (a, b) meets at most one element, say Fs, of the

family F ; such an interval exists because F is discrete. If t 6¼ s then (a, b) \ Ft¼ ;;
if (a, b) \ Wt 6¼ ; then there are x, y 2 Ft such that (x, y) \ (a, b) 6¼ ; and therefore
y 2 (a, b) \ Ft or x 2 (a, b) \ Ft which is a contradiction in both cases. As a

consequence, (a, b) can intersect at most the set Ws and hence the family W is

discrete. We leave to the reader to carry out a completely analogous proof if the

interval J is (a,!) or ( , b).
The following step is to show that the set D ¼ (

SF ) \ (SW) is discrete. Take

any x 2 D; then x 2 Fs for some s 2 S. Since the family F is discrete, we can find an

interval J ¼ (a, b) 3 x such that (a, b) \ Ps ¼ ; (we leave to the reader to give a

completely analogous proof if the interval J is (a,!) or ( , b)). Thus, only points

from Fs can be in (a, b). Suppose that y, z 2 Fs \ (a, b), y 6¼ z and x =2 {y, z}. Out of
three distinct points x, y, z one lies between the other two; assume, for example that

x < y < z. Then (x, z) \ Ps � (a, b) \ Ps ¼ ; and therefore (x, z) �Ws so y cannot
be in D. This shows that (a, b) is an open neighbourhood of x which intersects at

most one element of D distinct from x, i.e., D is discrete.

By Fact 2, we can choose an open Us
x 2 tðx; LÞ for each x 2 D \ Fs in such a

way that the family fUs
x : s 2 S; x 2 D \ Fsg is disjoint. Our final step is to define a

set Vs ¼
S

Us
x : x 2 D \ Fs

� � [Ws for each s 2 S. It is immediate that {Vs : s 2 S}
is a disjoint family of open subsets of L and Fs � Vs for every s 2 S. Apply Fact 1 to
conclude that L is collectionwise normal and finish our solution.

S.303. Prove that t(X) ¼ c(X) ¼ w(X) for any linearly ordered topological space X.

Solution. Letb be an arbitrary linear order on Xwhich generates t(X). Assume that

c(X) ¼ k. Given x 2 X we can find a family B ¼ {(aa, ba) : a < k} such that {x} ¼T B. It can happen that B ¼ {( , ba) : a < k} or B ¼ {(aa, !) : a < k} but the

proof in any of these cases is essentially the same or easier.

Let C be the family of all finite intersections of the elements from B; we claim

that C is a local base at x. Indeed, take any U 2 t(x, X); there are a, b 2 X such that

x 2 (a, b)� U. Since a =2T B, there is a< k such that a =2 (aa, ba) and hence a< aa.
Analogously, b =2 T B so there exists b < k with b =2 (ab, bb) and therefore bb < b.
Then W ¼ (aa, ba) \ (ab, bb) 2 C and x 2W � (aa, bb) � (a, b) � U so C is a local
base at x with jCj b jBj b c(X). The point x being taken arbitrarily, we proved that

w(X) b c(X) so w(X) ¼ c(X).
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Since t(X) b w(X) (Problem 156), it suffices to show that w(X) ¼ c(X) b t(X).
Take any x 2 X; we must consider the following cases:

(a) x =2 ð ; xÞ [ ðx;!Þ ; then x is an isolated point of the space X so we have

c(x, X) ¼ 1 b t(X).
(b) x =2 L ¼ ð ; xÞ but x 2 ðx;!Þ. Take any A � (x,!) with jAj b t(X) and x 2 A.

Then the family B ¼ {X \ L} [ {( , a) : a 2 A} consists of open subsets of X
and jBj b t(X). If y 2 X \ {x} and y 2 L then y =2 X \ L so y =2 T B. If y > x then
W¼ ( , y) is an open neighbourhood of x so there is a point a2 A \ W. Therefore

y =2 ( , a), i.e., y =2 T B. We proved that
T B ¼ {x} and hence c(x, X) b t(X).

(c) x =2R ¼ ðx;!Þ but x 2 ð ; xÞ. This case is analogous to the case (b).

(d) x 2 ð ; xÞ and x 2 ðx;!Þ. Fix A � ( , x) and B � (x,!) such that x 2 A \ B
and jAj + jBjb t(X). The family B ¼ {(a, b) : a 2 A and b 2 B} consists of open
subsets of X and jBj b t(X). If y 6¼ x and y < x then (y,!) 2 t(x, X) and hence

there is a 2 Awith a> y; this implies y =2 (a, b) for any b 2 B and hence y =2T B.
Now, if y > x then ( , y) 2 t(x, X) and therefore there is b 2 B with b < y; this
shows that y =2 (a, b) for any a 2 A so y =2T B and we proved that

T B ¼ {x} so
c(X) b t(X) and our solution is complete.

S.304. Prove that d(X)¼ hd(X)¼ pw(X) for any linearly ordered topological space X.

Solution. The following easy fact is formulated for further references.

Fact 1. For any space Z we have d(Z) b pw(Z).

Proof. Take any p-baseB in Zwith jBjb pw(Z). For each V2 B choose a point xV2 V
and let D ¼ {xV : V 2 B}. It is immediate that D is dense in Z and jDj b pw(X);
hence d(Z) b pw(Z) and Fact 1 is proved.

Fact 2. For any linearly ordered space L, we have s(L) ¼ c(L).

Proof. Take any discrete subspace D of the space L; Fact 2 of S.302 says that there

exists a disjoint family U ¼ {Ud : d 2 D} � t(L) such that d 2 Ud for each d 2 D. It
is clear that jDj b jUj b c(L) and hence s(L) b c(L). Since the inverse inequality

holds for any space (Problem 156(ii)), Fact 2 is proved.

Letb be an arbitrary linear order on Xwhich generates t(X). Assume that d(X)¼ k
and take a set D� X with D ¼ X and jDj ¼ k. Denote by E the set of isolated points

of X (which can be empty but in any case E�D). The family B ¼ {(x, y) : x< y and
x, y 2 D} consists of open subsets of X and jBj ¼ k. Let B0 ¼ {U 2 B : U 6¼ ;} [
{{x} : x 2 E}; then B0 � t�(X) and jB0jb k. We claim that B0 is a p-base in X. To see
this, take any V 2 t�(X); if V has an isolated point d then d 2 E�D and hence {d}�
V witnesses that B0 is a p-base.

Now assume that V \ E ¼ ;; then V is an infinite set so there is x 2 V which is

neither minimal nor maximal element of L. Therefore there exist a, b 2 X such that

x 2 (a, b) � V. The non-empty open set (a, b) has to be infinite because it has no

isolated points. This implies (a, b) \ D is also infinite and hence we can choose
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points p, q, r 2 (a, b) \ D such that p < q < r; then q 2 (p, r) which implies (p, r)
2 B0 and (p, r) � (a, b) � V so B0 is a p-base in X. This proves that pw(X) b d(X).
Applying Fact 1, we conclude that pw(X) ¼ d(X).

Since it is evident that d(X)b hd(X), it suffices to show that d(Y) b k ¼ d(X) for
any Y� X. Pick anyD� Xwith D ¼ X and jDj ¼ k. Given a, b 2D, a< b, take any
point w(a, b) 2 (a, b) \ Y if such a point exists. The set E ¼ {w(a, b) : a, b 2 D,
a< b and (a, b) \ Y 6¼ ;} has cardinalityb k; let us prove that P¼ E [ I is dense in
Y, where I is the set of all isolated points of Y. If W 2 t�(Y) and W has an isolated

point y then y is isolated in Y so y 2 I� P \ W. IfW has no isolated points then it is

infinite and hence we can fix x 2 W such that x is neither minimal nor maximal

element of L. Thus there exist a, b 2 X such that x 2 (a, b) \ Y�W. Since (a, b) \ Y
is an open subspace ofW, it has no isolated points; therefore it is infinite and hence

we can choose points x1, x2, x3, x4, x5 2 (a, b) \ Y such that x1 < x2 < x3 < x4 < x5.
The intervals (x1, x3) and (x3, x5) being non-empty, there exist c 2 (x1, x3) \ D and

d 2 (x3, x5) \ D. Since x3 2 (c, d) \ Y, we have w(c, d) 2 (c, d) \ Y � (a, b) \
Y � W which proves that P is dense in Y. Observe that I is a discrete subspace of

X so jIj b s(X) ¼ c(X) b d(X) (we applied Fact 2 and Problem 156(i)). Thus jPj b
jDj þ jIj b d(X) which proves that hd(X) b d(X) and therefore d(X) ¼ hd(X) ¼
pw(X) so our solution is complete.

S.305. Prove that a linearly ordered space X is compact if and only if any non-
empty closed subset of X has the smallest and the largest element under the order
that generates t(X).

Solution. Letb be the linear order that generates the topology of X. Suppose that X
is compact and F 6¼ ; is a closed subset of X. The set Fx ¼ {y 2 F : y b x} is closed
in F for any x 2 F. It is straightforward that the family F ¼ {Fx : x 2 F} is centered;
by compactness of Fwe have

T
F 6¼ ;. It is easy to see that there is a unique y 2T F

and this y is the smallest point of F. The existence of the largest point of F is proved

analogously, considering the family G ¼ {Gx : x 2 F} where Gx ¼ {y 2 F : x b y}.

Now suppose that any non-empty closed subset of X has the smallest and the

largest element with respect to the order b. In particular, X has the maximal

element m. Given any x 2 X, let Lx ¼ {y 2 X : y b x}. Take any infinite A � X
and consider the set P ¼ {x 2 X : jA \ Lxj ¼ jAj}. The set P is non-empty because

Lm \ A ¼ X \ A ¼ A and therefore m 2 P. The set F ¼ P is closed and non-empty

so it has a smallest element x 2 F.

(1) If jLx \ Aj ¼ jAj then, for any U 2 t(x, X), we can choose y 2 X such that (y, x)
�U. It is clear that y =2 P and hence the set Ly \ A has a smaller cardinality than A.
Thus (y, x) \ A¼ (Lx \ A) \ ((Ly \ A) [ {x}) has the same cardinality as A and

hence jU \ Aj ¼ jAj because U \ A � (y, x) \ A.
(2) If jLx \ Aj < jAj then, for any U 2 t(x, X) we can choose y 2 X such that (x, y)
� U. The set ( , y) is an open neighbourhood of x 2 P so there is z 2 P \ (x, y).
Thus (x, z)\A ¼ (Lz \ A) \ ((Lx \ A) [ {z}) has the same cardinality as A and

hence jU \ Aj ¼ jAj because U \ A � (x, z) \ A.
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We proved that in all possible cases jU \ Aj ¼ jAj for every U 2 t(x, X), i.e., x is
a complete accumulation point of A. The infinite set A was chosen arbitrarily, so we

proved that any infinite subset of X has a complete accumulation point. Applying

Problem 118(x) we conclude that X is compact.

S.306. Suppose that a well orderb generates the topology of a space X. Prove that
X is compact if and only if (X, b) has the largest element.

Solution. If X is compact then X has the largest element by Problem 305. Now

assume that m is the largest element of X. Given a non-empty closed F� X the set F
has the smallest element because X is well ordered. Consider the set P ¼ {x 2 X :

y b x for every y 2 F}. Since m 2 P, the set P is non-empty so we can choose a

minimal element z 2 P of the set P. If z =2 F then X \F is an open neighbourhood

of the point z so there is u < z such that (u, z) \ F ¼ ;. However, this implies that

u < z and y b u for any y 2 F which contradicts the minimality of z. Thus z 2 F is

the largest element of F and we proved that any non-empty closed F � X has the

smallest and the largest elements. Applying Problem 305 again, we conclude that

X is compact.

S.307. Let X be an arbitrary product of separable spaces. Prove that every
pseudocompact subspace of Cp(X) is metrizable (and hence compact).

Solution. The proof is not easy at all so we will first establish some facts.

Fact 1. Let Z be a space with Z ¼ S{Zn : n 2 o}; suppose that Cp(Z) has a non-

metrizable pseudocompact subspace. Then Cp(Zn) has a non-metrizable pseudo-

compact subspace for some n 2 o.

Proof. Let P be a non-metrizable pseudocompact subspace of Cp(Z). The identity

map on each Zn defines a continuous onto map ’ : Z0 ¼ L {Zn : n 2 o}! Z. Thus
’� embeds Cp(Z) into Cp(Z

0) (see Problems 113 and 163). Therefore P also embeds

in CpðZ0Þ ¼
QfCpðZnÞ : n 2 og (Problem 114). Let pn : Cp(Z

0) ! Cp(Zn) be the

natural projection. If the subspace pn(P)� Cp(Zn) is metrizable for each n 2 o then

the product
QfpnðPÞ : n 2 og is also metrizable (207) and hence the space

P � QfpnðPÞ : n 2 og is metrizable as well. This contradiction shows that there

exists n 2 o such that the pseudocompact subspace pn(P) of the space Cp(Zn) is not
metrizable so Fact 1 is proved.

Fact 2. If K is a countably compact space then any closed pseudocompact subspace

of Cp(K) is compact.

Proof. Let F be a closed pseudocompact subspace of Cp(K). For any x 2 K the

set ex(F) ¼ {f(x) : f 2 F} � R is a continuous image of F (Problem 167); therefore

ex(F) is compact being a pseudocompact metrizable space (Problem 212). It is easy

to see that F � Q ¼ QfexðFÞ : x 2 Kg ; since Q is compact (Problem 125), it

suffices to show that F is closed in RK.

Suppose not, and fix any f 2 [F] \F (the brackets denote the closure in RK). Since

F is closed in Cp(K), the function f must be discontinuous so take any point a 2 K
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and A � K such that a 2 clK(A) while f ðaÞ =2 f ðAÞ (the bar denotes the closure in R).
Take O, G 2 t(R) such that f(a) 2 O, f(A) � G and O \ G ¼ ;. We will construct

sequences {fn : n 2 o} � F, {Un : n 2 o} � t(a, K) and {an : n 2 o} � A with the

following properties:

(1) clK(Unþ1) � Un and an 2 Un for all n 2 o.
(2) fn(Un) � O for all n 2 o.
(3) fnþ1(ai) 2 G for all n 2 o and i b n.

Since f 2 [F], there is f0 2 F such that f0(a) 2 O; the function f0 being continuous
there exists U0 2 t(a, K) such that f0(U0) � O. The point a belongs to the closure

of A so there exists a0 2 A \ U0. It is evident that (1)–(2) are fulfilled for a0, f0
and U0. The property (3) is fulfilled vacuously.

Assume that we have ai, fi and Ui with the properties (1)–(3) for all i b n. Since
An ¼ {a0, . . . , an} � A, we have f(An) � G; it follows from f 2 [F] that there
exists fnþ1 2 F such that fnþ1(a) 2 O and fnþ1(An) � G. The function fnþ1 being
continuous there exists Unþ1 2 t(a, K) such that clK(Unþ1) � Un and fnþ1(Unþ1)
� O. Take any point anþ1 2 Unþ1 \ A and observe that (1)–(3) are fulfilled for

the sequence {ai, fi,Ui : ib (nþ 1)} so our inductive construction can be carried out

for all n 2 o.
Once we have the sequences {fn : n 2 o} � F, {Un : n 2 o} � t(a, K) and S ¼

{an : n 2 o} � A with (1)–(3) take an accumulation point b of the sequence {an :
n 2 o} (which exists because K is countably compact). Note that, for any x 2
K \ (

T
{Un : n 2 o}) we have x 2 V ¼ K \ clK(Un) for some n 2 o and hence V is a

neighbourhood of x which intersects only finitely many points of the sequence S so
x cannot be an accumulation point of S. This shows that b 2 P ¼ T{Un : n 2 o} ¼T
{clK(Un) : n 2 o}. If Y ¼ {b} [ S then Y is countable so pY(F) � Cp(Y) is a

pseudocompact second countable space, i.e., pY(F) is compact (see Problems 152,

210 and 138). Therefore there exists an accumulation point g 2 pY(F) of the

sequence {gn ¼ pY( fn) : n 2 o}. Thus g(b) has to be in the closure of the set

{gn(b) : n 2 o} ¼ {fn(b) : n 2 o}. But fn(b) 2 fn(P) � fn(Un) � O for all n 2 o so

ffnðbÞ : n 2 og � O and hence gðbÞ 2 O.
On the other hand, it immediately follows from continuity of the function g that

gðbÞ 2 fgðanÞ : n 2 og ; since fk(an) 2 G for all k > n, we have gðanÞ 2 G for each

n 2 o. An immediate consequence is that gðbÞ 2 G, i.e., gðbÞ 2 O \ G ¼ ; which is
a contradiction.We proved that F is closed inRK soF is compact and Fact 2 is proved.

Fact 3. Suppose that Mt is a second countable compact space for each t 2 T. Given
an arbitrary point a 2 M ¼QfMt : t 2 Tg, consider the space S(a) ¼ {x 2 M : the

set supp(x) ¼ {t 2 T : x(t) 6¼ a(t)} is at most countable}. Then S(a) is a dense

subspace of M such that, for any countable A � S(a), we have clM(A) � S(a) and
the space clM(A) is second countable. In particular, clM(A) ¼ clS(a)(A) is a compact

metrizable space for any countable A � S(a).

Proof. For any W � T denote by pW : M! MW ¼
QfMt : t 2 Wg the natural

projection to the face MW defined by pW(x) ¼ xjW for each x 2 M. Let
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U ¼Qt2T Ut 6¼ ; be a standard open set in M, i.e., Ut 2 t(Mt) for all t 2 T and the

set S ¼ supp(U)¼ {t 2 T : Ut 6¼Mt} is finite. Take any xt 2 Ut for all t 2 S and let x
(t) ¼ xt if t 2 S and x(t) ¼ a(t) for all t 2 T \ S. It is immediate that x 2 U \ S(a)
which shows that S(a) is dense in M.

Given a point x 2 S(a), let supp(x) ¼ {t 2 T : x(t) 6¼ a(t)}; then supp(x) is
countable for each x 2 S(a). The set E ¼ S{supp(x) : x 2 A} is also countable

because jAjb o. The space Y¼ {pT \ E(a)}�ME� S(a) is homeomorphic toME so

Y is a metrizable compact (and hence closed) subspace ofM. It is evident that A� Y
so clM(A) � Y which proves that clM(A) is a metrizable compact subspace of S(a).
The rest is clear so Fact 3 is proved.

Fact 4. We have w(Z) ¼ nw(Z) for any compact space Z.

Proof. The inequality nw(Z) b w(Z) is true for any space Z (Problem 156).

If nw(Z) ¼ k then iw(Z) b nw(Z) ¼ k (Problem 156(iii)) and hence there is

a condensation f : Z! Y of Z onto a space Y with w(Y) b k. Every condensation of
a compact space is a homeomorphism (Problem 123) so Z is homeomorphic

to Y and hence w(Z) ¼ w(Y) b k ¼ nw(Z). Hence w(Z) ¼ nw(Z) and Fact 4 is

proved.

Fact 5. Any continuous image of a metrizable compact space is a metrizable

compact space.

Proof. If Z is a metrizable compact space then Z has a countable base (see Problems

209 and 212). If Z0 is a continuous image of Z then Z0 is a compact space with w(Z0)
¼ nw(Z0) b nw(Z) ¼ w(Z) ¼ w by Fact 4 and Problem 157(iii). Therefore Z0 is
metrizable by Problems 209 and 207. Fact 5 is proved.

Fact 6. Suppose that Mt is a second countable compact space for each t 2 T and let

M ¼QfMt : t 2 Tg. Then
(i) For any a 2M, if a compact space Z is a continuous image of the space S(a) ¼

{x 2 M : the set supp(x) ¼ {t 2 T : x(t) 6¼ a(t)} is at most countable} then Z is

metrizable.

(ii) If a compact space Z of countable tightness is a continuous image ofM then Z is

metrizable.

Proof. (i) Take any continuous onto map g : S(a)! Z; we can assume that Z � Ik
for some cardinal k (Problem 209). For each a < k, let qa : Ik ! I be the natural
projection of Ik to its ath factor. Since S(a) is dense in M (Fact 3), we can apply

Problem 299 to the map qa 	 g : S(a) ! I to find a countable Sa � T and a

continuous map ha : pSa(S(a))! I such that ha 	 (pSajS(a))¼ qa 	 g. It is immediate

that pSaðSðaÞÞ ¼ MSa ¼
QfMt : t 2 Sag so ha is defined on the spaceMSa and hence

the map Ga ¼ ha 	 pSa is defined on the whole space M and GajS(a) ¼ qa 	 g.
For any x 2 M, let f(x)(a) ¼ Ga(x) for all a < k. Then f(x) 2 Ik, i.e., we have a

map f : M! Ik. Since qa 	 f ¼ Ga is a continuous map for all a < k, the map f is
continuous (Problem 102). If x 2 S(a) then qa( f(x)) ¼ Ga(x) ¼ qa 	 g(x) ¼ qa(g(x))
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for all a < k which implies f(x) ¼ g(x). Therefore, f(S(a)) ¼ g(S(a)) � Z and

hence f ðMÞ � f ðSðaÞÞ ¼ Z (the closure is taken in Ik and it coincides with Z
because Z is compact). We proved that there exists a continuous map f : M ! Z
such that fjS(a) ¼ g; this makes it possible for us to forget about g and only use the
map f until the end of the proof of (ii). Now it is easy to prove that Z has the

following property:

(�) For any countable P � Z the space P is a compact metrizable (and hence a

second countable) space.

Indeed, take any countable A � S(a) with f(A) � P; it is possible to find such

A because f(S(a)) ¼ Z. Then F ¼ clM(A) is a compact metrizable subset of S(a)
(Fact 3) and therefore f(F) is a compact metrizable (by Fact 5) subspace of Z with

P � f(F). Now it is clear that P � f ðFÞ is also a compact metrizable subset of Z
so (�) is proved.

Our next step is to establish the property

(��) If R� Z and jRjbo1 then there is a countable P� Z such that R � P and, in

particular, the space R is second countable.

To prove (��), take A � S(a) such that jAj b o1 and f(A) � R; then jEj b o1 for

the set E ¼ S{supp(x) : x 2 A} because jAj b o1 and supp(x) is countable for

any x 2 A. The space Y¼ {pT \ E(a)}�ME is homeomorphic toME so Y is a product

of b o1 b c of separable spaces; an immediate consequence of Problem 108 is

that Y is separable. Pick any dense countable B � Y and observe that A � Y; thus
R� f(Y) and hence R � f ðBÞ. Since f(B) is a countable subset of Z, we can apply (�)
to see that f ðBÞ � R is second countable finishing the proof of (��).

Now, assume that Z is not separable and take any z0 2 Z; if b < o1 and we have

constructed a set C ¼ {za : a < b} observe that C is countable and hence C 6¼ Z, so
we can choose zb 2 Znfza : a < bg. It is clear that this inductive construction can

be carried out for all b< o1 and, as a result, we will have a set Y¼ {za : a< o1}� Z
such that zb =2fza : a < bg for all b < o1. Apply (��) to conclude that Y is second

countable and hence separable; this implies that Y � fza : a < bg for some b< o1.

However, zb =2 Ynfza : a < bg which is a contradiction showing that Z is separable.

If P is a countable dense subset of Z then apply (�) again to conclude that Z ¼ P is

second countable and hence metrizable.

(ii) Fix any continuous onto map f : M! Z and a point a 2 M; consider the set

Q¼ f(S(a)). It is clear thatQ is dense in Z; in particular, for any z 2 Zwe have z 2 Q
and hence z 2 R for some countable R � Q because t(Z) b o. Take any countable

A � S(a) with f(A) � R. Then F ¼ clM(A) is a compact metrizable subset of S(a)
(Fact 3) and therefore f(F) is a compact metrizable (by Fact 5) subspace of Z with

R � f(F). Thus z 2 R � f ðFÞ � Q which shows that Q ¼ Z. Thus Z is a continuous

image of S(a) so we can apply (i) to conclude that Z is metrizable. This settles (ii) so

Fact 6 is proved.

Now assume that X ¼QfXt : t 2 Tg where each Xt is separable; fix a countable

dense Ct � Xt. It is straightforward that the space C ¼
QfCt : t 2 Tg is dense in X.

Let Ct ¼ fctn : n 2 og be an enumeration of the set Ct for each t 2 T. The space

Ct
n ¼ fcti : ib ng is compact being finite so Cn ¼

QfCt
n : t 2 Tg is compact.
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Our next step is to prove that D ¼ S{Cn : n 2 o} is dense in C. Take any

standard open set U ¼ Qt2T Ut 6¼ ; in the space X and let B ¼ supp(U). For
any t 2 supp(U) the set Ct is dense in Xt so there is n(t) < o such that ctnðtÞ 2 Ut.

If m ¼ max{n(t) : t 2 supp(U)} then Ct
m \ Ut 6¼ ; for all t 2 supp(U). As a

consequence, D \ (U \ C) � Cm \ (U \ C) 6¼ ; which proves that D is dense

in C and hence in X. This means that the map pD : Cp(X)! pD(Cp(X)) � Cp(D) is a
condensation.

Suppose that P is a non-metrizable pseudocompact subspace of Cp(X). Then
pD(P) is a non-metrizable pseudocompact subspace of Cp(D) because any conden-

sation of a pseudocompact space onto a metrizable space is a condensation onto

a second countable space (Problem 212) and hence a homeomorphism (Problem

140). Thus the space Cp(D) has a non-metrizable pseudocompact subspace and we

have D¼S{Cn : n 2o}; apply Fact 1 to conclude that Cp(Cn) has a non-metrizable

pseudocompact subspace Q for some n 2 o. It is an easy exercise to show that

any space, which has a dense pseudocompact subspace, is pseudocompact, so Q is

a closed pseudocompact subspace of Cp(Cn). Since Cn is compact, Fact 2 is

applicable to see that F ¼ Q is a compact subspace of Cp(Cn).

For each x 2 Cn define a map ’(x) : F! R by ’(x)( f)¼ f(x) for all f 2 F. Then ’
: Cn! Cp(F) is a continuous map (Problem 166) and the compact space K¼ ’(Cn)

has countable tightness because t(Cp(F)) ¼ o (Problem 149). Since Cn is a product

of second countable spaces, Fact 6 is applicable to conclude that K is a metrizable

compact space and hence w(K)¼o. It is easy to see that K separates the points of F.
For each y 2 F define a map c(y) : K! R by c(y)( f ) ¼ f(y) for all f 2 K. Then c :

F ! Cp(K) is a continuous map (Problem 166) and it immediately follows from

the fact that K separates the points of F, that c is a condensation. Any condensation

of a compact space is a homeomorphism so c embeds F into Cp(K) and hence

w(F) ¼ nw(F) b nw(Cp(K)) ¼ nw(K) b w(K) ¼ o (we applied Fact 4 and

Problem 172) so F is second countable and hence metrizable. As a consequence,

Q � F is also metrizable which is a contradiction showing that our solution is

complete.

S.308. Let X be an arbitrary product of separable spaces. Suppose that Y is a dense
subspace of X. Is it true that every compact subspace of Cp(Y) is metrizable?

Solution. No, it is not true. Let Y ¼ Cp(K) where K ¼ A(o1). Then Y is a dense

subspace of X ¼ RK (Problem 111) and it is clear that X is a product of second

countable (and hence separable) spaces. The compact space K is not metrizable

because it is not second countable. Thus a non-metrizable compact space K embeds

in Cp(Y)¼ Cp(Cp(K)) (Problem 167) which shows that not every compact subspace

of Cp(Y) is metrizable.

S.309. Suppose that Cp(X) has a dense s-pseudocompact subspace. Does it neces-
sarily have a dense s-countably compact subspace?

Solution. No, not necessarily. To construct a relevant example, let us first establish

several facts.
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Fact 1. Let cZ be a compact extension of a space Z such that, for any function

f 2 C(Z, I) there is g 2 C(cZ, I) such that gjZ ¼ f. Then there exists a homeomor-

phism ’ : cZ! bZ such that ’(z) ¼ z for every z 2 Z.

Proof. Take any compact space Y and any continuous map u : Z ! Y. We can

consider that Y is a subspace of IA for some A (Problem 209). For each a 2 A let pa :

IA ! I be the natural projection onto the ath factor. The map pa 	 u : Z ! I is
continuous for each a 2 A and hence there is a continuous function ga : cZ ! I
such that gajZ¼ pa 	 u. Letting g(z)(a)¼ ga(z) for each z 2 cZ and a 2 A we define a

map g : cZ! IA ; the map g is continuous because pa 	 g ¼ ga is a continuous map

for every a 2 A (Problem 102). If z 2 Z then g(z)(a) ¼ ga(z) ¼ pa 	 u(z) ¼ u(z)(a)
for all a 2 A and therefore g(z) ¼ u(z) which shows that gjZ ¼ u. The set g(Z) is
dense in g(cZ) and Y is closed in IA so gðcZÞ � gðZÞ ¼ uðZÞ � Y ¼ Y and hence g :
cZ! Y is a continuous extension of u. Now apply Problem 258 to finish the proof

of Fact 1.

Fact 2. LetMt be a second countable compact space for all t 2 T. Suppose that Z is a

dense pseudocompact subspace of M ¼ P{Mt : t 2 T}. Then bZ ¼ M in the sense

that there exists a homeomorphism ’ : bZ! M such that ’(z) ¼ z for any z 2 Z.

Proof. Given S � T, denote by pS :M!MS ¼ P{Mt : t 2 S} the natural projection
to the S-face MS of the space M. Take any continuous map f : Z! I. There exists a
countable S � T and a continuous map g : pS(Z)! I such that g	 pS ¼ f (Problem
299). Observe that pS(Z) is second countable and hence compact; since pS(Z) is
dense inMS, we have pS(Z) ¼MS. This shows that the continuous map h ¼ g	 pS is
defined on the whole spaceM and hjP¼ f. It turns out thatM is a compact extension

of Z such that any continuous f : Z! I has a continuous extension h :M! I so we
can apply Fact 1 to conclude that M ¼ bZ. Fact 2 is proved.

Fact 3. Let Z be a pseudocompact space. Then Z \ H 6¼ ; for any non-emptyGd-set

H of the space bZ.

Proof. Pick any z 2 H and {Un : n 2 o} � t(bZ) such that H
T

{Un : n 2 o}. It is
routine to construct a sequence {Vn : n 2 o} � t(z, bZ) such that Vnþ1 � Vn and Vn

� U0 \ � � � \ Un for each n 2 o. IfWn ¼ Vn \ Z thenWn 6¼ ; and clZ(Wnþ1) �Wn

for each n 2o. The space Z being pseudocompact, we have P¼T{clZ(Wn) : n 2o}
¼T{Wn : n 2o} 6¼ ; (Problem 136) and hence H \ Z� P 6¼ ; so Fact 3 is proved.
Fact 4. If Z is a pseudocompact space let p : Cp(bZ)! Cp(Z) be the restriction map,

i.e., p(h) ¼ hjZ for each h 2 Cp(bZ). Then p is a bijection and hence, for any

function f 2 Cp(Z) there exists a unique e( f) 2 Cp(bZ) such that e( f)jZ ¼ f.

Proof. Since Z is pseudocompact, each f 2 Cp(Z) is bounded and hence fmaps Z into

a compact space [�n, n] for some n 2 o. Apply Problem 257 to conclude that there

exists e( f ) 2 C(bZ) with e( f )jZ ¼ f. The uniqueness of e( f) follows from the fact

that Z is dense in bZ and hence the map p is injective (Problem 152). Fact 4 is

proved.
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Fact 5. Given a pseudocompact space Z, denote by e : Cp(Z) ! Cp(bZ) the

extension map from Fact 4. Then, for any f 2 Cp(Z) and any countable set A �
Cp(Z) with f 2 A, we have e( f ) 2 [e(A)] (the brackets denote the closure in Cp(bZ)).
In particular, if f is an accumulation point of A then e( f ) is an accumulation point

of e(A).

Proof. Given a function g 2 Cp(bZ), an arbitrary finite set K � bZ and e > 0, let

O(g, K, e) ¼ {h 2 Cp(bZ) : jg(x) � i(x)j < e for all x 2 K}. It is clear that the family

B g¼ {O(g, K, e) : K is a finite subset of bZ and e> 0} is a local base of Cp(bZ) at g.
Assume that g ¼ e( f ) =2 [e(A)] and fix a finite set K � bZ and e > 0 such that O
(g, K, e) \ e(A) ¼ ;. For each point x 2 K the set Hx ¼ (

T
{h�1(h(x)) : h 2 e(A)})

\ g�1 (g(x)) is aGd-subset of bZwith x2Hx. Apply Fact 3 to observe thatHx \ Z 6¼ ;
and hence we can choose zx 2 Z \ Hx for each x 2 K. Then L¼ {zx : x 2 K}� Z and

W ¼ {h 2 Cp(Z) : jh(y) � f(y)j < e for all y 2 L} is an open neighbourhood of the

function f in Cp(Z). If h 2 A then h(zx) ¼ e(h)(x) for each x 2 K. There exists x 2 K
such that je(h)(x)� g(x)jr e whence jh(zx)� f(zx)jr e so h =2W. As a consequence

W \ A ¼ ; which is a contradiction with f 2 A. Fact 5 is proved.

Fact 6. Given a pseudocompact space Z, denote by e : Cp(Z) ! Cp(bZ) the

extension map from Fact 4. Then e(P) is a countably compact subset of Cp(bZ)
for each countably compact P � Cp(Z).

Proof. If e(P) is not countably compact then there is a countably infinite closed

discrete B � e(P). The set A ¼ p(B) � P is infinite (Fact 4), so it has an

accumulation point f in the countably compact space P. By Fact 5, e( f) 2 e(P) is
an accumulation point of the set B¼ e(A) which is a contradiction. Fact 6 is proved.

We are now ready for presenting the solution. In Fact 4 of S.286 it was proved

that there exists a pseudocompact space X with the following properties:

(1) X is a dense subspace of Ic.
(2) Cp(X, I) is pseudocompact.

(3) Every countable B � X is closed and discrete so X is not second countable.

Since [�n, n] is homeomorphic to I, the space Cp(X, [�n, n]) is homeomorphic

to Cp(X, I) for each n 2 N; as a consequence, Cp(X, [�n, n]) is pseudocompact for

each n 2 N so the space Cp(X) ¼
S
{Cp(X, [�n, n]) : n 2 N} is s-pseudocompact.

Now take any countably compact subspace P of the space Cp(X). Observe that

bX¼ Ic by (1) and Fact 2. Let e : Cp(X)! Cp(bX) be the extension map constructed

in Fact 4 for Z ¼ X. Apply Fact 6 to conclude that e(P) is a countably compact

subspace of Cp(bX) ¼ Cp(Ic). The space e(P) has to be metrizable and second

countable by Problem 307 and 212. The map p : e(P) ! P is continuous so

nw(P) b nw(e(P)) b w(P) ¼ o (see Problem 157(iii)). By Problem 156(i) the

space P is separable and hence we proved that every countably compact subspace

of Cp(X) is separable. It is evident that any countable union of separable spaces

is separable, so if Cp(X) has a dense s-countably compact subspace then Cp(X) is
separable. As a consequence X can be condensed onto a second countable space

(Problem 174). This condensation must be a homeomorphism by Problem 140
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so X is second countable which is a contradiction. Thus Cp(X) has no dense

s-countably compact subspace and our solution is complete.

S.310. Suppose that Cp(X) has a dense s-countably compact subspace. Does it
necessarily have a dense s-compact subspace?

Solution. No, not necessarily. To construct a relevant example, let us first establish

some facts. Say that Z is a P-space if every Gd-subset of Z is open. Call a space

Z o-bounded if A is compact for any countable A � Z.

Fact 1. Every o-bounded space is countably compact.

Proof. If A is an infinite subset of an o-bounded space Z then take any countably

infinite B � A. Then B is compact so B has an accumulation point b in B. It is
clear that b is also an accumulation point of A in Z so Z is countably compact

(Problem 132).

Fact 2. If Z is a P-space then Cp(Z, I) is o-bounded and hence countably compact.

Proof. Since IZ is compact and Cp(Z, I)� IZ, it suffices to prove that A�Cp(Z, I) for
every countable A � Cp(Z, I) (the bar denotes the closure in IZ). So take any

countable A � Cp(Z, I) and any f 2 A. Given any z 2 Z, we will prove that f is
continuous at the point z. Note that the set {h(z)} is a Gd-set in the space I for any
h 2 A soW¼T{h�1(h(z)) : h 2 A} is aGd-set in Z. Since Z is a P-space, the setW is

an open neighbourhood of z; we claim that f(W) ¼ {f(z)}. To see this, suppose that

w 2 W and jf(w) � f(z)j > e for some e > 0. Since f 2 A, there is h 2 A such that

hðzÞ � f ðzÞj j < e
2

and hðwÞ � f ðwÞj j < e
2
. However, h(w) ¼ h(z) so we have

f ðwÞ � f ðzÞj jbj f ðwÞ � hðwÞj þ jhðzÞ � f ðzÞj < e
2
þ e

2
¼ e which is a contradiction.

Thus for any e > 0 we have f(W) ¼ {f(z)} � ( f (z) � e, f(z) + e), i.e., f is continuous
at z. Fact 2 is proved.

Fact 3. The set C�(Z) is dense in Cp(Z) for any space Z.

Proof. It suffices to show that, for any function f 2 Cp(Z) and any finite K � Z there

is g 2 C�(Z) such that gjK¼ fjK. LetN¼max{j f(z)j : z 2 K} + 1; define cN, dN2 C(Z)
by the equalities cN(z)¼ N and dN(z)¼�N for all z 2 Z. There exists h 2 Cp(X) such
that h(x) ¼ f(x) for any x 2 K (Problem 034). The function h1 ¼ min(h, cN) is
continuous (Problem 028) and h1(z) b N for all z 2 Z. Finally, g ¼ max(h1, dN) is
also continuous (Problem 028) and g(z) 2 [�N, N] for all z 2 Z, i.e., g 2 C�(Z). Note
finally that g(z) ¼ h(z) ¼ f(z) for all z 2 K so Fact 3 is proved.

Fact 4. If Z is a P-space then Cp(Z) has a dense s-countably compact subspace.

Proof. The space Cp(Z, I) is countably compact by Fact 2. Since [�n, n] is

homeomorphic to I for each n 2 N, the space Cn ¼ Cp(Z,[�n, n]) is countably

compact for all n 2 N. As a consequence the set
S
{Cn : n 2 N} ¼ C�(Z) is

s-countably compact and dense in Cp(Z) by Fact 3 so Fact 4 is proved.

Fact 5. If Cp(Z) has a dense s-compact subspace then there is a compact subspace of

Cp(Z) which separates the points of Z.
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Proof. The space C ¼ Cp(Z, (0, 1)) is homeomorphic to Cp(Z) (Fact 1 of S.295) so

there is a set D ¼ S {Kn : n 2 N} � C such that D is dense in C and Kn is compact

for all n 2 N. Let Ln ¼ 1
n � f : f 2 Kn

� �
for each n 2 N. It is easy to see that Ln is

compact being homeomorphic to the compact space Kn. Denote by u0 the function
which is identically zero on Z; we claim that K ¼ S

{Ln : n 2 N} [ {u0} is a

compact subset of Cp(Z) which separates the points of Z.

To see that K is compact, take any open cover U of the space K. Take an arbitrary
U 2 U with u0 2U; there exists a finite set P� Z and e> 0 such thatW¼ {f 2 Cp(Z) :
j f(z)j < e for all z 2 P} � U. There is m 2 N such that 1

m < e; if n r m then

j f ðzÞj < 1
nb

1
m < e for any f 2 Ln and z 2 Z. Thus, Ln � U for all nr m. This shows

that the space K\U is compact being a closed subspace of the compact space L1
[ � � � [ Lm. Therefore, there is a finite U 0 � U with

S U 0 � K\U. Hence U0 [ {U}
is a finite subcover of K which proves that K is compact.

If z, t 2 Z and z 6¼ t then V ¼ {f 2 Cp(Z, (0, 1)) : f(z) 6¼ f(t)} is an open subset of

Cp(Z, (0, 1)). Since D is dense in Cp(Z, (0, 1)), there is n 2 N and f 2 Kn such that

f(z) 6¼ f(t). Now if g ¼ 1
n then g 2 K and g(z) 6¼ g(t); thus K separates the points of Z

and Fact 5 is proved.

Fact 6. Let K be a compact space. Then j A j b cc for any countable A � Cp(K).

Proof. Define a map ’ : K ! RA by the formula ’(z)( f) ¼ f(z) for every function

f 2 A. It is evident that ’ is a continuous map so L ¼ ’(K) is a second countable

compact space. Therefore nw(Cp(L)) ¼ nw(L) ¼ o which implies iw(Cp(L)) ¼ o
(Problem 156(iii)). This shows that there is an injective map of Cp(L) into a

second countable space Y which in turn embeds in Io (see Problem 209). As a

consequence jCp(L)j b jYj b j Ioj ¼ co ¼ c. Let ’�( f ) ¼ f 	 ’ for each function

f 2 Cp(L). It was proved in Problem 163 that ’� is an embedding; the set F ¼
’�(Cp(L)) is closed in Cp(Z) because ’ is a closed map (see Problems 163(iii)

and 122). It is immediate that A � F so A � F and hence j A j b jFj b c so Fact

6 is proved.

Returning to our solution take any set A of cardinality c and consider the space

X whose underlying set is IA and whose topology consists of all Gd-sets of IA. It is
an easy exercise to see that X is Tychonoff space. Since a countable intersection of

Gd-sets is still a Gd-set, the space X is a P-space. Therefore the space Cp(X) has a
dense s-countably compact subspace by Fact 4. Consider the space S ¼ {x 2 IA :

the set {a 2 A : x(a) 6¼ 0} is countable}. Since jIj ¼ c, we have jIBj ¼ co¼ c for any
countable set B. Therefore, for any countable B� A, the setGB¼ {x2 IA : x(a)¼ 0 for

all a 2 A \B} has cardinality c. Since S¼ S {GB : B is a countable subset of A}, we
have jSj ¼ c · c ¼ c.

Recall that a set U ¼Qa2A Ua is called standard in IA if Ua 2 t(I) for all a 2 A
and the set supp(U) ¼ {a 2 A : Ua 6¼ I} is finite. Standard sets form a base in IA
(Problem 101). The set S is dense in X; to see this take any point x 2 X and anyGd-set

H 3 x. There are standard sets Un, n 2 o such that x 2 G ¼ T{Un : n 2 o} � H. If
B¼ S {supp(Un) : n 2 o} then B is a countable subset of A and hence the point y 2 IA
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defined by yjB¼ xjB and y(a)¼ 0 for all a 2 A \B, belongs to S. It is immediate that

y 2 G � H so y 2 S \ H which proves that S is dense in X.
Suppose that Cp(X) has a s-compact dense subspace. Apply Fact 5 to find a

compact K� Cp(X) which separates the points of X. Define a map e : X! Cp(K) by
the formula e(x)( f) ¼ f(x) for all f 2 K. The map e is continuous (Problem 166) and

it follows immediately from the fact that K separates the points of X that e is a

condensation onto Y ¼ e(X). Therefore jYj ¼ jXj ¼ 2c; since S is dense in X, the set
S ¼ e(S) is dense in Y. Tightness of the space Cp(K) is countable (Problem 149) so

Y � S
{P : P is a countable subset of S}. However, j P j b c for any countable

P� Cp(K) by Fact 6. This shows that jYjbS{j P j : P is a countable subset of S}b c ·
jSoj ¼ c � c ¼ c which is a contradiction. Thus Cp(X) has no dense s-compact

subset and our solution is complete.

S.311. Prove that any space X is a continuous image of a space Y such that Cp(Y)
has a dense s-compact subspace.

Solution. Let Y be the discrete space with the underlying set X. Then the identity

map i : Y! X is continuous and onto so X is a continuous image of Y. Observe that
Cn¼ Cp(Y, [�n, n])¼ [�n, n]Y is compact for any n 2 N. Hence C�(Y)¼ S {Cn : n
2 N} is a dense s-compact subspace of Cp(Y) (see Fact 3 of S.310).

S.312. Is it true that any space X is anR-quotient image of a space Y such that Cp(Y)
has a dense s-compact subspace?

Solution. Yes, it is true. We will prove even more, namely, that any space X is a

quotient image of a space Y such that Cp(Y) has a dense s-compact subspace. Since

every quotient map is R-quotient, this will give a solution in a stronger form.

Call a topological property P complete if it satisfies the following conditions:

(1) Any metrizable compact space has P.
(2) If n 2 N and Zi has P for all i ¼ 1, . . . , n then Z1 � � � � � Zn has P.
(3) If Z has P then every continuous image of Z has P.

For an arbitrary space A, denote by A0 the one-point space {0} � R and let

C(A) ¼ {Am � Y : m 2 o and Y is a second countable compact space}.

Given a set A � Cp(Z), let P(A) ¼ {f1 · � � � · fn : n 2 N, fi 2 A for all i b n}
and R(A) ¼ {l0 þ l1 · g1 þ � � � þ lm · gm : m 2 N, li 2 R and gi 2 P(A) for all
i b m}.

Fact 1. For any A � Cp(Z) the space R(A) is an algebra in Cp(Z) which contains

A and can be represented as a countable union of continuous images of spaces

from C (A).
Proof. It is evident that R(A) is an algebra and A � R(A); given m 2 N and n0, . . . ,
nm 2 o, the space P(n0, . . . , nm) ¼ [�n0, n0]m+1 � An1 � � � � � Anm belongs to C
(A). For each i 2 o, define a map pi : A

i! Cp(X) as follows: p0(0) is the function
identically zero on Z; p1( f) ¼ f for all f 2 A ¼ A1 and pn( f1, . . . , fn) ¼ f1 �. . .� fn
for each ( f1, . . . , fn) 2 An for all n > 1.
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Now, we are going to define a map ’ ¼ ’n0, . . . , nm : P(n0, . . . , nm)! Cp(Z) as
follows: for every point (l, f) ¼ (l, f1, . . . , fm) 2 P(n0, . . . , nm), where l ¼
(l0, . . . , lm) 2 [�n0, n0]mþ1 and f i ¼ f i1; . . . ; f

u
ni

� �
2 Ani for each natural number

ib m, let ’(l, f)¼ l0þ l1 · pn1 ( f
1)þ � � � þ lm · pnm ( f

m ) 2 Cp(Z). It easily follows
from the results in 115 and 116 that the map ’n0, . . . , nm is continuous for any

(n0, . . . , nm). If we denote by Q(n0, . . . , nm) the image of P(n0, . . . , nm) under the
map ’n0, . . . , nm

then it is clear that R(A) ¼ S {Q(n0, . . . , nm) : m 2 N and n0, . . . ,
nm 2 o} so Fact 1 is proved.

Fact 2. Let P be a complete property. If A � Cp(Z) and A has P then R(A) has s-P,
i.e., R(A) is a countable union of spaces with the property P.
Proof. It is straightforward that all elements of C (A) have P. Fact 1 says that R(A) is
a countable union of continuous images of spaces from C (A) and every such image

also has P by (3), so Fact 2 is proved.

Fact 3. For any space Z, there is a compact K � Cp(Z) which separates the points

of Z if and only if Cp(Z) has a s-compact dense subspace.

Proof. Sufficiency is proved in Fact 5 of S.310. It is evident that compactness is

a complete property so, if K � Cp(Z) is compact then the algebra R(K) must be

s-compact by Fact 2. Furthermore, if K separates the points of Z then R(K) is an
algebra which also separates the points of Z; applying 192 we conclude that R(K) is
dense in Cp(Z). Therefore R(K) is a s-compact dense subspace of Cp(Z) and Fact 3 is
proved.

Given a space X and a 2 X, let Xa be a space with the underlying set X in which

every point x 2 X \ {a} is isolated and t(a, X) is the local base at the point a. The
space Xa is Tychonoff for each a 2 X and a is the unique non-isolated point of Xa

(see Fact 1 of S.293). Now let Y ¼L{Xa � {a} : a 2 X}; we consider Xa � {a} to
be a clopen subspace of Y (see Problem 113). Given y 2 Y we have y ¼ (x, a) for
some a 2 X; let ’(y) ¼ x.

The map ’ : Y ! X is quotient. It is immediate that ’ is continuous and onto.

Take any U � X such that ’�1(U) is open in Y; for any a 2 U the set U � {a} ¼
’�1(U) \ (Xa � {a}) has to be a neighbourhood of the point (a, a) in Y and hence

U has to be a neighbourhood of a in Xa. Thus U is a neighbourhood of any a 2 U,
i.e., U is open in X. This proves that the map f is quotient.

If B� Y, denote by wB the characteristic function of B defined by wB(y)¼ 1 if y2 B
and wB(y) ¼ 0 for all y 2 Y \B. It is an easy exercise that wB is a continuous function
on Y if and only if B is a clopen subset of Y. Given y 2 Y, we write wy instead of w{y}.
The function wy is continuous if y is an isolated point of Y. Denote by u0 the function
which is identically zero on Y; let U(a) ¼ Xa � {a} for all a 2 X and let K ¼ {u0}
[ {wy : y ¼ (x, a) and x 6¼ a} [ {wU(a) : a 2 X}. It is straightforward that K � Cp(Y);
let us check that K separates the points of Y.

If y 6¼ z, y 2 U(a), z =2 U(a) for some a 2 X, then f¼ wU(a) 2 K and f(y)¼ 1 6¼ 0¼
f(z). Now if there is a 2 X with y, z 2 U(a) then one of the points, say y, is distinct
from (a, a) and therefore g ¼ wy 2 K and g(y) ¼ 1 6¼ 0 ¼ g(z).

2 Solutions of Problems 001–500 277



Let us establish that K is compact. Given an open cover U of the set K, take
any U 2 U with u0 2 U. There exists a finite P � Y and e > 0 such that {h 2 Cp(Y) :
jh(z)j < e for all z 2 P} � U. Let gK ¼ {B � Y : wB 2 K}; it is easy to see that every
y 2 Y belongs to at most two elements of gK. This implies that there is a finite Q� K
such that fjP � 0 for all f 2 K \Q and therefore K \Q � U. The set Q being finite,

there is a finite U0 � U such that Q � S U0. Then U0 [ {U} is a finite subcover of
the cover U; this proves that K is compact.

Finally, apply Fact 3 to conclude that Cp(Y) has a dense s-compact subspace and

finish our solution.

S.313. Let X be a metrizable space. Prove that Cp(X) has a dense s-compact
subspace.

Solution. Take any base B of the space X such that B ¼ S { Bn : n 2o} where each
Bn is a discrete family (see Problem 221). Take an arbitrary metric d on X such

that t(d) ¼ t(X) and d(x, y) b 1 for all x, y 2 X (see Problem 206). For each U 2 B
let ’U(x) ¼ inf{d(x, y) : y 2 X \U}. The function ’U is continuous on X and

’�1U ð0Þ ¼ XnU for all U 2 B (see Fact 1 of S.212). Denote by u0 the function

identically zero on X and let Kn ¼ {’U : U 2 Bn} [ {u0} for all n 2 o.

Let us prove that Kn is compact for every n 2 o. Take any open cover U of the

set Kn; pick any W 2 U with u0 2 W. There is a finite P � X and e > 0 such that

{h 2 Cp(X) : jh(x)j < e for all x 2 P} � W. The family Bn is discrete and hence

only finitely many elements of Bn intersect the set P; fix a finite g � Bn such that

U \ P¼ ; for allU 2 Bn \ g. This implies ’U(x)¼ 0 for all x 2 P andU 2 Bn \ g, i.e.,
’U 2 W for all U 2 Bn \ g. Since the family g is finite, there exists a finite U0 � U
such that ’U 2

SU0 for all U 2 g. As a consequence, U0 [ {W} is a finite subcover

of the cover U so Kn is compact.

If x and y are distinct points of X then there is U 2 B such that x 2 U and y =2 U.
Then’U(x) 6¼ 0¼ ’U(y) This shows that S¼

S
{Kn : n2o} separates the points ofX.

Therefore the algebra R(S) is dense in Cp(X) (see S.312 for the definition of R(S) and
Problem 192 to be convinced that R(S) is dense in Cp(X)). It is immediate that the

property of being s-compact is complete (see the definition of a complete property

in S.312) and hence Fact 2 of S.312 can be applied to conclude that R(S) is a

countable union of s-compact spaces, i.e., R(S) is s-compact. Thus R(S) is a dense
s-compact subspace of Cp(X) and our solution is complete.

S.314. Show that the spaceo1 is countably compact and (o1þ 1) is compact. Prove
that, for every continuous function f :o1!R, there exists a0<o1 such that f(a)¼ f
(a0) for every a r a0. Deduce from this fact that bo1 ¼ o1 þ 1.

Solution. Call a space Z o-bounded if A is compact for any countable A � Z.

Fact 1. Every o-bounded space is countably compact.

Proof. If A is an infinite subset of an o-bounded space Z then take any countably

infinite B � A. Then B is compact so B has an accumulation point b in B. It is clear
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that b is also an accumulation point of A in Z so Z is countably compact (Problem

132). Fact 1 is proved.

In Fact 2 of S.232 it was proved that the set [0, a] ¼ {b < o1 : b b a} is a

compact subspace ofo1 for each a<o1. Since every countable A�o1 is contained

in [0, a] for some a < o1, the space o1 is o-bounded and hence countably compact

by Fact 1. The spaceo1þ 1 is compact because it is well ordered and has the largest

element o1 (Problem 306).

Now take any continuous function f : o1 ! R. Assume that, for any a < o1,

there is b ¼ b(a) > a such that f(b) 6¼ f(a); let us also fix n ¼ n(a) 2 N with

jf ðbÞ � f ðaÞjr 1
n . There existsm 2N and an uncountable A�o1 such that n(a)¼m

for each a 2 A. Take any a0 2 A and b0 ¼ b(a0); if we have ai, bi for all i b n, find
anþ1 2 A with anþ1 > max{ai, bi : i b n} and let bnþ1 ¼ b(anþ1). This inductive
construction gives us sequences {ai : i 2o} and {bi : i 2o} such that bi¼ b(ai) and
bi < aiþ1 for all i 2 o. Let a ¼ min{b < o1 : ai < b for all i 2 o}. It is evident that
a is well defined; the function f being continuous at the point a, there is b < a such

that j f ðgÞ � f ðaÞj < 1
2m for all g 2 (b, a). There is n 2 o such that b < an < bn

which implies that

f ðanÞ � f bnð Þj jb f ðanÞ � f að Þj j þ f bnð Þ � f að Þj j < 1

2m
þ 1

2m
¼ 1

m
;

a contradiction with f anð Þ � f bnð Þj jr 1
m : This contradiction proves that, for some

a0, there will be no a > a0 with f(a) 6¼ f(a0), i.e., f(a) ¼ f(a0) for all a r a0.
Finally, let f : o1! I be a continuous function; we proved that there is a0 < o1

such that r0 ¼ f(a) ¼ f(a0) for all a r a0. Letting g(o1) ¼ r0 and gjo1 ¼ f jo1 we

obtain a continuous function g : (o1þ 1)! I such that gjo1¼ f jo1. Sinceo1þ 1 is a

compact extension ofo1, we can apply Fact 1 of S.309 to conclude thato1þ 1¼ bo1

and finish our solution.

S.315. Prove that Cp(o1) has no dense s-compact subspace.

Solution. Assume that Cp(o1) has a dense s-compact subspace. Apply Fact 3 of

S.312 to conclude that there is a compact K � Cp(o1) which separates the points

of o1. Let p : Cp(o1 þ 1) ! Cp(o1) be the restriction map, i.e., p( f ) ¼ fjo1 for

every f 2 Cp(o1 þ 1). Since o1 is countably compact and o1þ1 ¼ bo1 (314), for

each f 2 C(o1) there exists a unique e( f) 2 C(o1 þ 1) such that e( f )jo1 ¼ f (Fact 4
of S.309). In particular, p is an onto map. Observe that e(K) is a countably

compact subset of Cp(o1 þ 1) by Fact 6 of S.309; besides, e(K) ¼ p�1(K) is closed
in Cp(o1 þ 1) because the map p is continuous (Problem 152). Thus L ¼ e(K)
is compact by Fact 2 of S.307 and it is immediate that L separates the points of o1,

i.e., for any distinct a, b< o1, there is f 2 L such that f(a) 6¼ (b). By Fact 3 of S.256,
the set L cannot separate the points of o1 þ 1 so there is a < o1 such that

f(a) ¼ f(o1) for all f 2 L. Now, if b < o1 and b 6¼ a then there is g 2 L such that

g(a) 6¼ g(b). Since g(o1) ¼ g(a), we have g(b) 6¼ g(o1) and hence L separates

all pairs of points except a and o1. Taking any h 2 Cp(o1 þ 1) with h(a) ¼ 0 and
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h(o1) ¼ 1, we obtain a compact set L [ {h} which separates the points of o1 þ 1;

this is again a contradiction with Fact 3 of S.256 so our solution is complete.

S.316. Prove that Cp(o1) is Lindel€of.

Solution. For any function f 2 Cp(o1) and a finite subset K of o1, we will need the

set O( f, K, e) ¼ {g 2 Cp(o1) : j f(x) � g(x)j < e for all x 2 K} for every e > 0. The

family U ¼ {O( f, K, e) : f 2 Cp(o1), K is a finite subset of o1 and e> 0} is a base in

Cp(o1) and U f¼ {O( f, K, e) : K is a finite subset of o1 and e> 0} is a local base at f
in the space Cp(o1). GivenU¼O( f, K, e)2 U, let supp(U)¼ {a<o1 : there is b 2 K
such that a b b}. Observe that supp(U) can be identified with the ordinal b þ 1

where b ¼ max{a : a 2 K}. For technical reasons, we let supp(U) ¼ 0 if U ¼ ;. For
any a < o1, let ra(b) ¼ b if b b a and ra(b) ¼ a for all b > a. It is evident that ra :
o1! (a þ 1) is a continuous map; the map r�a : Cp aþ 1ð Þ ! Cp o1ð Þ, defined by

r�a fð Þ ¼ f 	 ra for each f 2 Cp(a + 1), is also continuous (Problem 163). If

Ra ¼ r�a Cp aþ 1ð Þ� �
then Ra is a closed subset of Cp(o1) homeomorphic to the space

Cp(a þ 1) for each ordinal a < o1 (Problem 163). Observe also that the map

sa : Cp(o1) ! Cp(o1) defined by saðf Þ ¼ r�a f jðaþ 1Þð Þ is continuous and

sa(Cp(o1)) ¼ Ra; besides sa( f) ¼ f for any f 2 Ra.

Denote by O the family of all non-trivial rational intervals in R and let Ba be a
countable base in the space (a þ 1). Given U1, . . . , Un 2 B a and O1, . . . , On 2 O,
let MaðU1; . . . ;Un;O1; . . . ;OnÞ ¼ f 2 Ra : f r�1a Uið Þ

� � � Oi for each ib n
� �

.

Let us prove that

(1) The familyNa¼ {Ma(U1, . . ., Un; O1, . . . , On) : n 2 N, Ui 2 Ba and Oi 2 O for

all i b n} is a countable network in the space Ra.

It is evident thatNa is countable. Take any f 2 Ra, any finiteK�o1 and any e> 0.

Then K¼ K0 [ K1 where K0¼ K \ a¼ {x1, . . . , xn} and K1¼ K \K0. For any ib n
pick a rational interval Ji such that f(xi) 2 Ji � ( f(xi) � e, f(xi) þ e); there exists a
rational interval Jnþ1 such that f(a) 2 Jnþ1 � ( f(a) � e, f(a) + e). Use continuity of

f to find a disjoint family g ¼ {Ui : i b n þ 1} � B a such that xi 2 Ui for all i b n,
a 2Unþ1 and f(Ui)� Ji for all ib nþ 1. Observing that r�1a Uið Þ ¼ Ui for each ib n
and f(x)¼ f(a) for any x 2 K1, we convince ourselves that f 2Ma(U1, . . . , Un,Unþ1;
J1, . . . , Jn, Jnþ1) � O( f, K, e) which proves that Na is a network in Ra.

We will also need the following property of the map sa.

(2) If U 2 U and supp(U) � a then sa(U) ¼ U \ Ra and s�1a ðU \ RaÞ ¼ U.

Let U ¼ O( f, K, e); then K � a and we have sa(g) ¼ g for any g 2 Ra so it is

evident that U \ Ra � sa(U). Now, if g 2 U then sa(g)(b) ¼ g(b) for all b b a and

sa(g)(b) ¼ g(a) for all b > a. This shows that sa(g)(x) ¼ g(x) for any x 2 K and

therefore sa(U)� U, i.e., sa(U)¼ U \ Ra. If we take any h 2 Cp(o1) with sa(h) 2 U
then jsa(h)(x) � f(x)j < e for all x 2 K; but sa(h)(x) ¼ h(x) for all x 2 K so jh(x) �
f(x)j < e for all x 2 K and hence h 2 U. Property (2) is proved.

Suppose that, for each function f 2 Cp(o1), we are given Uf 2 U such that f 2 Uf;

the open cover {Uf : f 2 Cp(o1)} is called pointwise. Now, if V is an arbitrary open

cover of Cp(o1) then, for each f 2 Cp(o1), there is Uf 2 U and V 2 V such that f 2 Uf
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� V. This shows that every open cover of Cp(o1) has a pointwise refinement, so to

prove the Lindel€of property of Cp(o1), it suffices to show that any pointwise open

cover of Cp(o1) has a countable subcover.

Fix Uf 2 U \ t ( f,Cp(o1)) for each function f 2 Cp(o1) and consider the family

W ¼ {Uf : f 2 Cp(o1)}. For each element N of the countable family N o choose

W(N) 2W with N �W(N); if suchW(N) does not exist then letW(N) ¼ ;. Let n0 ¼S
{supp(W(N) : N 2 No} and a0 ¼ max{o, n0} þ 1.

If we have a sequence a0< � � � < am, choose a setW(N) 2W such that N�W(N)
for eachN 2Nam; if suchW(N) does not exist then letW(N)¼ ;. Let nmþ1¼

S
{supp

(W(N) : N 2 Nam} and amþ1¼ max{am,nmþ1}þ 1. The ordinal a ¼ sup{am : m 2 o}
and the family V ¼ {W(N) : N 2 Nam for somem 2 o} have the following properties:
(3) The family V is a countable subfamily ofW and supp(V) � a for all V 2 V.
(4) {sa(V) : V 2 V } is a cover of Ra.

Since (3) is evident, we will only prove the property (4). Take any function f 2
Ra; then Uf ¼ O( f, K, e) for some finite K � o1 and e > 0. Consider the set K0 ¼ K
\ a¼ {x1, . . . , xn}; then K0� am for some m< o and there exist rational intervals

J1, . . . , Jnþ1 such that f(xi) 2 Ji� ( f(xi)� e, f(xi)þ e) for all ib n and f(a) 2 Jnþ1�
( f(a) � e, f(a) þ e). Since the function f is continuous, there exist disjoint U1, . . . ,
Unþ1 2 t(a þ 1) such that xi 2 Ui for all i b n, a 2 Unþ1 and f(Ui) � Ji for all j b
n þ 1. There exists b < a such that (b, a] ¼ {n < o1 : b < n b a} � Unþ1. Take
any kr m such that b< ak and findW 2 B ak with ak 2W� (b, ak]. It is easy to see

that f að Þ 2 f r�1ak Wð Þ
� �

� Jnþ1 and hence f 2 N 2 Nak where N¼Mak (U1,. . .,Un,W,

J1, . . . , Jn, Jnþ1)� Uf which shows that f 2 N�W(N) and the property (4) is proved.
Now it is very easy to finish our solution. Observe that Cp o1ð Þ ¼ s�1a Rað Þ ¼

s�1a

S
V \ Ra : V 2 Vf gð Þ ¼ S s�1a V \ Rað Þ : V 2 V� � ¼ SV because we have

s�1a ðV \ RaÞ ¼ V for each V 2 V by the property (2). Thus, V is a countable

subcover ofW and our solution is complete.

S.317. Prove that Cp(o1 þ 1) does not have a dense Lindel€of subspace.

Solution. Any dense subspace of Cp(o1 þ 1) separates the points of (o1 þ 1) and

there is no Lindel€of subspace of Cp(o1 þ 1) which separates the points of (o1 þ 1)

by Fact 3 of S.256.

S.318. Prove that Cp(o1 þ 1) embeds into Cp(o1). Is it possible to embed Cp(o1)

into Cp(o1 þ 1)?

Solution. Define a map ’ : o1 ! (o1 þ 1) as follows: ’(0) ¼ o1, ’(n) ¼ n � 1

for all n 2 o and ’(a) ¼ a for all a r o. It is immediate that ’ : o1! (o1 þ 1)

is a continuous onto map and hence ’� embeds Cp(o1 þ 1) into Cp(o1)

(Problem 163).

It is not possible to embed Cp(o1) into Cp(o1 þ 1) because t(Cp(o1 þ 1)) ¼ o
due to compactness of (o1 þ 1) (see Problems 314 and 149) while tightness of

Cp(o1) is uncountable because o1 is not Lindel€of (see Problems 138, 149, 159(vi)

and 314).
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S.319. Prove that Cp(o1 þ 1) is a Fréchet–Urysohn space.

Solution. It turns out that second countable continuous images of (o1 þ 1) are

countable.

Fact 1. Given a second countable space M, let ’ : (o1 þ 1)! M be a continuous

onto map. Then M is countable.

Proof. If x ¼ ’(o1) then there is a sequence {Un : n 2 o} � t(M) such that {x} ¼T
{Un : n 2 o}. By continuity of ’ at the point o1, there is an < o1 such that

f((an, o1]) � Un for each n 2 o. For a ¼ sup{an : n 2 o} þ 1 we have ’((a, o1]) �T
{Un : n 2 o} ¼ {x} i.e., ’(b) ¼ ’(a) for all b r a. This shows thatM ¼ ’([0, a])

so M is countable. Fact 1 is proved.

Now take any A� Cp(o1) and any f 2 A. Tightness of Cp(o1 + 1) is countable by

Problem 149, so there is a countable set B � A with f 2 B. Let ’(x)(g)¼ g(x) for all
g 2 B and x 2 (o1 þ 1). Then ’ : (o1 þ 1)! Cp(B) is a continuous map (Problem

166). The space M ¼ ’(Cp(o1 þ 1)) is second countable because Cp(B) is second
countable (Problem 169). Applying Fact 1, we conclude that M is countable and

hence ’�(Cp(M)) is a closed second countable subspace of Cp(o1 þ 1) (Problem

163(iii)). It is straightforward that B � ’�(Cp(M)) so B � ’�(Cp(M)) which shows

that B is second countable. The space {f} [ B is also second countable and hence

Fréchet–Urysohn; this makes it possible to find a sequence {fn : n 2 o} � B with

fn! f. Since B � A, we have {fn : n 2 o} � A so, for every A � Cp(o1) and every

f 2 A, we found a sequence {fn : n 2o}� Awith fn! f. This proves that Cp(o1þ 1)

is a Fréchet–Urysohn space so our solution is complete.

S.320. Prove that Cp(o1 þ 1) is not normal.

Solution. We will need the following statement.

Fact 1. There exists a closed discrete uncountable subspace in the space Cp(o1 þ 1),

i.e., ext(Cp(o1 þ 1)) ¼ o1.

Proof. Let fa(b) ¼ 1 for all ordinals b b a and fa(b) ¼ 0 for all ordinals b > a. It is
clear that fa 2 Cp(o1 þ 1) for all a < o1; we will prove that D ¼ {fa : a < o1} is a

closed discrete subspace of Cp(o1 þ 1).

The set D is closed. Indeed, take any f 2 Cp(o1 þ 1) \D. If there is some point

x 2 (o1þ 1) with f(x) =2 {0, 1} thenOf¼ {g 2 Cp(o1þ 1) : g(x) 6¼ 1 and g(x) 6¼ 0} is

an open set in Cp(o1 þ 1) such that f 2 Of � Cp(o1 þ 1) \D. Thus, if f 2 D then

f(o1 þ 1) � {0,1}. Now if a < b, f(a) ¼ 0 and f(b) ¼ 1 then Uf ¼ g 2f
Cp o1 þ 1ð Þ : g að Þ 2 �1

2
; 1
2

� �
; g bð Þ 2 1

2
; 3
2

� �g 2 t f ;Cp o1 þ 1ð Þ� �
and f 2 Uf �

Cp(o1 þ 1) \D. This shows that if f(b) ¼ 1 for some b b o1 then f(a) ¼ 1 for all

a b b; hence if f(o1) ¼ 1 then f � 1. In this case consider the set Wf ¼ {g 2
Cp(o1 þ 1) : g(o1) > 0} 2 t( f, Cp(o1 þ 1)) and note that f 2 Wf 2 Cp(o1 þ 1) \D.
Finally, if a ¼ sup{b : f(b) ¼ 1} then f(a) ¼ 1 by continuity of f and hence f ¼ fa
which is a contradiction showing that D is closed in Cp(o1 þ 1).
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To see that set D is discrete, take an arbitrary fa 2 D and consider the set Wa ¼
{g 2 Cp(o1 þ 1) : g(a) > 0 and g(a þ 1) < 1}. It is immediate that we have

Wa 2 t(Cp(o1 þ 1)) and Wa \ D ¼ {fa} so D is discrete and Fact 1 is proved.

Returning to our solution, suppose for contradiction that Cp(o1 þ 1) is normal.

Fix and uncountable closed and discrete D � Cp(o1 þ 1) which exists by Fact 1.

Apply Problem 295 to conclude that the space Cp(o1þ 1) is collectionwise normal;

therefore there exists a disjoint family U ¼ {Ud : d 2D}� t(Cp(o1þ 1)) such that d
2 Ud for all d 2 D. This clearly contradicts the fact that c(Cp(o1 þ 1)) ¼ o
(Problem 111) and shows that Cp(o1 þ 1) is not normal so our solution is complete.

S.321. Let X be an arbitrary space. Supposing that all compact subspaces of Cp(X)
are first countable, prove that they are all metrizable.

Solution. If we are given a function f 2 Cp(X), e > 0 and a finite set K � X, let
O( f, K, e) ¼ {g 2 Cp(X) : j f(x) � g(x)j < e for all x 2 K}. Then the family U f ¼
{O( f, K, e) : K is a finite subset of X and e> 0} is a local base at f in the space Cp(X).

Take any compact set P� Cp(X). The space P� P is also compact; if a mapping

’ : P� P! Cp(X) is defined by the formula ’( f, g)¼ f� g for all f, g 2 P, then ’ is

a continuous map (see Problems 115 and 116) so the space L¼ ’(P� P) is compact

and hence first countable. Denote by w the function which is identically zero on X; it
is evident that w 2 L. All compact subspaces of Cp(X) are first countable so w(w, L)
b o; therefore there exists a sequence {Un¼ O(w, Kn, en) : n 2 o} � U w such that

(
T
{Un : n 2 o}) \ L ¼ {w}. The set A ¼ S {Kn : n 2 o} is countable and hence

the restriction map pA : Cp(X)! Cp(A) maps Cp(X) into a second countable space

Cp(A) (see Problems 152 and 169). If f, g 2 P and f 6¼ g then there is n 2o such that f
� g =2 Un which implies that f jKn 6¼ gjKn and therefore pA( f ) 6¼ pA(g). This shows
that pA : P! pA(P) is a condensation; since every condensation of a compact space

is a homeomorphism (Problem 123), the space P is second countable so our solution

is complete.

S.322. Does there exist a space X such that all countably compact subspaces of
Cp(X) are first countable but not all of them are metrizable?

Solution. No, such a space does not exist, i.e., if all countably compact subsets of

Cp(X) are first countable then they are all metrizable. Given a function f 2 Cp(X), a
number e> 0 and a finite set K� X, we let O( f, K, e)¼ {g 2 Cp(X) : j f(x)� g(x)j<
e for all x 2 K}. Then the family U f¼ {O( f, K, e) : K is a finite subset of the space X
and e > 0} is a local base at f in the space Cp(X). A square of a countably compact

space can fail to be countably compact but the following fact shows that countable

compactness is often preserved by finite products.

Fact 1. Let Z and T be Fréchet–Urysohn countably compact spaces. Then Z � T is

countably compact.

Proof. Let pZ : Z � T ! Z be the natural projection. Suppose that Z � T is not

countably compact and take any countably infinite closed discrete D� Z� T. Since
T is countably compact and Tz¼ {z}� T is homeomorphic to T for all z 2 Z, the set
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D \ Tz has to be finite for each z 2 Z. Analogously, if Zt ¼ Z � {t} then D \ Zt
is finite for all t 2 T. This shows that there is an infinite E � D such that the sets

E \ Tz and E \ Zt have each one at most one point for all z 2 Z and t 2 T. In
particular, the set pZ(E) is infinite and hence it has an accumulation point a 2 Z.
Since the space Z is Fréchet–Urysohn, we can choose a sequence {(zn, tn) : n 2o}�
E and a point a 2 Z such that zn! a and zn 6¼ a for all n 2o. The set {tn : n 2o}� T
is infinite so there is b 2 T and an increasing sequence {nk : k 2 o}� o such that tnk! b and tnk 6¼ b for all k 2 o. If we let ak ¼ znk and bk ¼ tnk for all k 2 o then it is

straightforward that S ¼ {(ak, bk) : k 2 o} � D and the sequence S converges to the
point e ¼ (a, b) =2 S, i.e., e is an accumulation point of D which is a contradiction.

Fact 1 is proved.

Take any countably compact P � Cp(X). The space P � P is also countably

compact because P is first countable (Fact 1). If ’ : P � P! Cp(X) is defined by

’( f, g) ¼ f � g for all f, g 2 P, then ’ is a continuous map (see Problems 115 and

116) so the space L ¼ ’(P � P) is countably compact and hence first countable.

Denote by w the function which is identically zero on X; it is evident that w 2 L. All
countably compact subspaces of Cp(X) are first countable so w(w, L) b o; therefore
there exists a sequence {Un¼O(w, Kn, en) : n 2o}�U w such that (

T
{Un : n 2o})

\ L¼ {w}. The set A¼ S {Kn : n 2 o} is countable and hence the restriction map

pA : Cp(X)! Cp(A) maps Cp(X) into a second countable space Cp(A) (see Problems

152 and 169). If f, g 2 P and f 6¼ g then there is n 2 o such that f � g =2 Un which

implies that fjKn 6¼ gjKn and therefore pA( f) 6¼ pA(g). This shows that pA : P !
pA(P) is a condensation; since every condensation of a countably compact space

onto a second countable space is a homeomorphism (Problem 140), the space P is

second countable so our solution is complete.

S.323. Suppose that all countably compact subspaces of Cp(X) are metrizable. Is the
same true for all pseudocompact subspaces of Cp(X)?

Solution. No, this is not true. In Fact 4 of S.286 it was proved that there exists a

pseudocompact space X with the following properties:

(1) X is a dense subspace of Ic and hence X is infinite.

(2) Cp(X, I) is pseudocompact.

(3) Every countable B � X is closed and discrete so X is not second countable.

The set Cp(X, I) is a pseudocompact non-metrizable subspace of Cp(X) because
otherwise the space Cp(X, I) would be compact implying Cp(X, I) ¼ IX and

discreteness of X which is a contradiction because only finite discrete spaces can

be pseudocompact.

Now take any countably compact subspace P of the space Cp(X). Observe that

bX ¼ Ic by (1) and Fact 2 of S.309. Let e : Cp(X)! Cp(bX) be the extension map

constructed in Fact 4 of S.309 for Z ¼ X. Apply Fact 6 of S.309 to conclude that e
(P) is a countably compact subspace of Cp(bX) ¼ Cp(Ic). The space e(P) has to be

metrizable and second countable by Problems 307 and 212. The map p : e(P)! P
is continuous so nw(P) b nw(e(P)) b w(P) ¼ o (see Problem 157(iii)).
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By Problem 156(iii), the space P condenses onto a second countable space and hence

P is second countable itself (Problem 140). This shows that every countably compact

subspace of Cp(X) is second countable and hence metrizable so our solution is

complete.

S.324. Is it true that any compact space X can be embedded into Cp(Y) for some
pseudocompact space Y?

Solution. No, it is not true. To see this, take the space X ¼ {0,1}o1. Suppose that

X� Cp(Y) for some pseudocompactY. Given any y2 Y, let’(y)( f )¼ f(y) for any f2X
(remember that X � Cp(Y) and hence each element of X is a function defined on Y).
The map ’ : Y ! Z ¼ ’(Y) � Cp(X) is continuous (Problem 166) and Z is a

pseudocompact subspace of Cp(X) which separates the points of X. Since X is a

product of second countable spaces, Z has to be second countable (Problem 307

and S.307). However, Fact 5 of S.256 (where the letter D is used to denote the space

X ¼ {0,1}o1) says that no Lindel€of subspace of Cp(X) separates the points of X. This
contradiction shows that X can not be embedded into Cp(Y).

S.325. Is it true that any compact space X can be embedded into Cp(Y) for some
space Y with c(Y) ¼ o?

Solution. Yes, this is true. To see it, observe that any space X embeds into Cp(Y)
where Y ¼ Cp(X) (see Problem 167). Since c(Y) ¼ c(Cp(X)) ¼ o for any space X
(Problem 111), we conclude that any (not necessarily compact) space X can be

embedded into Cp(Y) for some space Y which has the Souslin property.

S.326. Is it true that any compact space X can be embedded into Cp(Y) for some
space Y with ext(Y) ¼ o?

Solution. No, it is not true for the space X ¼ o1 þ 1. Given a 2 X and H 2 t(R), let
O(a, H)¼ {f 2 Cp(X) : f(a) 2H}. Given any set R, denote by Fin(R) the family of all

finite subsets of R. We first prove a simple fact which will be used in this solution

and needed for further references.

Fact 1. Let Z be any space; suppose that F is a family of compact subsets of Z and

G ¼ \ F . Then, for any U 2 t(G, Z) there is a finite F0 � F such that \ F0 � U.

Proof. The set H ¼ Z \U is closed so F \ H is compact for any F 2 F . For the
family G ¼ {F\H : F 2 F}, we have \G ¼ (\F )\H ¼ G\H ¼ ; so G cannot
be centered (Problem 118). Thus there is a finite F0 � F such that \ {F \ H : F 2
F0} ¼ ; which implies (\ F0) \ H ¼ ; and hence \ F0 � U so Fact 1 is proved.

Suppose that ext(Y) ¼ o and X is embedded in Cp(Y). For each y 2 Y let ’(y)
( f)¼ f(y) for every f 2 X (remember that the elements of X are continuous functions

on Y). The mapping ’ : Y! L¼ ’(Y)� Cp(X) is continuous (Problem 166) and the

set L separates the points of o1 þ 1 ¼ X. Since extent cannot be increased in a

continuous image (Problem 157(v)), we have ext(L) ¼ o.
Since the map f 7�! (�f) is a homeomorphism of Cp(o1 þ 1) onto itself, the

sets �L ¼ {�f : f 2 L} and L [ (�L) also have countable extent (it is an easy
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exercise that a union of two (or even countably many) spaces of countable extent is

again a space of countable extent). This shows that we can assume that (�f) 2 L for

any f 2 L.
For each a< o1 fix rational numbers sa,ta and a function fa 2 L such that fa(a)<

sa < ta < fa(o1) or fa(a) > sa > ta > fa(o1). However, if we have the second

inequality then, for the function (�fa) 2 L, we have the first one. Therefore we can
assume that fa(a)< sa< ta< fa(o1) for all a<o1. Since each fa is continuous, there
exists ba < a such that fa(g) < sa for each g 2 (ba, a].

The map r : o1 ! o1 defined by r(a) ¼ ba satisfies the hypothesis of Fact 2

of S.256, so there is b < o1 and an uncountable R � o1 such that ba ¼ b for

all a 2 R. Passing to a smaller uncountable subset of R if necessary, we can assume

that there are s, t 2Q such that sa¼ s and ta¼ t for all a 2 R; let E¼ {fa : a 2 R} and
choose any s0 2 (s, t).

Given f 2 L, if f(o1) < t let Of ¼ {g 2 Cp(o1 þ 1) : g(o1) < t}. Then Of is an

open neighbourhood of f in L such thatOf \ E¼; because g(o1)> t for any g2E. If
f(o1)r t observe that, by continuity of f, there is g> b such that f(g)> s0 > s. The set
Of ¼ {g 2 Cp(o1 þ 1) : g(g) > s0} is an open neighbourhood of f in the space L. If
a> g then g 2 (b, a]¼ (ba, a] which implies, by the choice of ba, that fa(g)< s< s0

whence fa =2 Of. As a consequence, Of \ E � {fa : a b g} and therefore Of \ E is a

countable set.

The family U ¼ {Of : f 2 L} is an open cover of the space L such that everyU 2 U
intersects only countably many elements of E. We proved, in fact, that for

any function f 2 Cp(o1 þ 1) with f(o1) r t there is nf < o1 such that f(nf) 2 H ¼
(s0, þ 1) and the open set Of ¼ O(nf, H) intersects only countably many elements

of the set E; let N ¼ {nf : f 2 L}.
Take h0 2 E arbitrarily and let N0 ¼ ;; suppose that, for some a < o1, we have

the set Fa¼ {hb : b< a}� E and the family {Nb : b< a} of countable subsets of N.
For each finite P � F define a function eP : (o1 þ 1)! RP ¼ Cp(P) by eP(g)( f) ¼
f(g) for each f 2 P; the map eP is continuous (Problem 166) and w(RP) ¼ o which

implies that eP(o1þ 1) is countable (Fact 1 of S.319). This makes it possible to find

a countable set Na(P)� N such that eP(Na(P))¼ eP(N). Since Na(P) is countable for
each finite P � Fa, the set

Na ¼
[

NaðPÞ : P 2 FinðFaÞf g [
[

Nb : b<a
� �� �

� N

is also countable. As a consequence, the setWa¼
S
{O(n, H) : n 2 Na} can intersect

only countably many elements of E; choose ha 2 E \Wa. This inductive construc-

tion gives us a set F ¼ {ha : a < o1} � L and a family {Na : a < o1} of subsets of

N with the following properties:

(�) eP(Na) ¼ eP(N) for any a < o1 and any finite P � Fa ¼ {hb : b < a}.
(��) ha 2 F \ (

S
{O(n, H) : n 2 Na}) for any a < o1.

The set F is closed and discrete in L; to see this, take any accumulation point

f2 L for the set F. Then f2 E and hence f(o1)r t; tightness ofCp(o1þ 1) is countable

so f has to be an accumulation point of some countable F0 � F. It is clear that f is
also an accumulation point of the set F00 ¼ F0 \ Of. Let b ¼ min{a < o1 : f is an
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accumulation point of the set F00a ¼ F00 \ a}. Then f is an accumulation point for the

set F� ¼ F00 \ b while not so for the set F� \ b0 for any b0 < b.
The set T ¼ \ {g�1(g(nf)) : g 2 F�} is non-empty because nf 2 T; suppose first

that T \ f�1(H) 6¼ ;. Take any g 2 T \ f�1(H) and observe that g(g) ¼ g(nf) for any
g 2 F� while nf 2 f�1(H) g and hence f(g) 6¼ f(nf) which contradicts the fact that

f is in the closure of the set F�.
Thus, T � W ¼ f�1(H); by Fact 1 there is a finite set P � F� such that S ¼

\ {g�1(g(nf)) : g 2 P} � f�1(H). Take any b0 < b with P � {ha : a < b0}; the
property (�) for a ¼ b0 implies that there is g 2 Nb0 such that eP(g) ¼ eP(nf). Since
S ¼ e�1P nf

� � � f�1 Hð Þ, we have g 2 f�1(H), i.e., f(g) 2 H which is equivalent to

f 2 O(g, H). However, ha =2 O(g, H) for any a > b0 by the property (��). This shows
that O(g, H) \ O(nf, H) \ F� � {ha : a< b0}, i.e., f has to be an accumulation point

for the set F� \ b0 which is a contradiction. We finally proved that F is a closed

discrete uncountable subset of L; this final contradiction with ext(L) ¼ o shows

that L cannot separate the points of o1 þ 1 and hence o1 þ 1 cannot be embedded

in a Cp(Y) for a space Y with ext(Y) ¼ o. Our solution is complete.

S.327. Prove that, for any compact space X, we have c(F, X) ¼ w(F, X) for any
closed F � X. In particular, w(X) ¼ c(X).

Solution. If c(F, X) b k, take any family B � t(X) with j B j b k and \ B ¼ F.
By normality of X, for each U 2 B there is VU 2 t(F, X) such that VU � U. If U is

the family of all finite intersections of the elements of the family {VU : U 2 B} then
jU j b k so it suffices to show that U is an outer base of F in X.

Take anyW 2 t(F, X). Then \ {VU : U 2 B } � \ B ¼ F and therefore \ {VU :

U 2 B } ¼ F � W. Applying Fact 1 of S.326 we can find U1,� � �,Un 2 B such that

VU1
\ � � � \ VUn

�W. Now it is clear that V¼ VU1
\ � � � \ VUn

2 U and F� V�W
so our solution is complete.

S.328. Let X be a space. Call a set F¼ {xa : a< k}� X a free sequence of length k
if xa : a< bf g \ xa : arbf g ¼ ; for every b < k. Prove that, for any compact
space X, tightness of X is equal to the supremum of the lengths of free sequences
in X.

Solution. Assume that t(X) ¼ k and S ¼ {xa : a < kþ} is a free sequence in X. If

Fb ¼ xa : bb af g then the family {Fb : b < kþ} consists of decreasing closed

subsets of X. Since X is compact, there is y 2T{Fb : b< kþ}; then y 2 Swhile y =2 A
for any A � S with jAj b k. This contradiction with t(X) b k shows that X has no

free sequences of length kþ so the supremum of lengths of free sequences in X does

not exceed k ¼ t(X).

A set A � X is called k-closed if B � A for any B � A with jBj b k.

Fact 1. For any space Z we have t(Z) b k if and only if any k-closed subset of Z is

closed.

Proof. If t(Z)b k and x 2 A \A then there is B� Awith jBjb k and x 2 B. As B 6� A
the set A is not k-closed so we proved necessity.
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Now assume that every k-closed set is closed and take an arbitrary A � X. If
D¼ S {B : B� A and jBjb k} then A�D� A; given a set C�Dwith jCjb k, for
every c 2 C there is Bc � A with jBcj b k and c 2 Bc. It is evident that B ¼

S
{Bc :

c 2 C} has cardinalityb k and C� B� DwhenceD is k-closed. Since any k-closed
subset of Z is closed, we have D ¼ A so A ¼ S

{B : B � A and jBj b k} which

shows that t(Z) b k and hence Fact 1 is proved.

Let Z be any space; given any A � Z let [A]k ¼
S
{B : B � A and jBj b k} and

[A]k ¼ {x 2 X : if H is a Gk-subset of Z and x 2 H then H \ A 6¼ ;}.
Fact 2. Let Z be any space. Given an infinite cardinal k and any Gk-subset H of the

space Z, for any x 2 H there is a closed Gk-set G such that x 2 G � H.

Proof. Fix a family C � t(Z) such that j C jb k and H¼T C. By regularity of Z, for
eachU 2 C there is a sequence {V(U, n) : n 2o}� t(x, Z) such that V(U, 0)¼U and

V U; nþ 1ð Þ � V U; nð Þ for each n 2o. The family B ¼ {V(U, n) :U 2 C, n 2o} has
cardinality b k and

G¼
\
B¼

\ \
V U;nð Þ :n2of g :U2C

n o
¼
\ \

VðU;nþ1Þ :n2o
n o

:U2C
n o

is a closed set; it is clear that x 2 G � H so Fact 2 is proved.

Fact 3. Let Z be any compact space. Then [[A]k]
k¼ A for any A� Z and any infinite

cardinal k.

Proof. Since it is evident that [[A]k]
k � A, let us prove that A � D ¼ [[A]k]

k. If x 2
A \D then there is a family C � t(Z) with j C j b k and x 2 H ¼ T C � Z \ [A]k. By
Fact 2 there is a closed Gk-set F such that x 2 F � H. By Problem 327 there is an

outer base D for the set F of cardinality b k. Since x 2 F, for every W 2 D we can

choose yW 2W \ A because x 2 A andW a neighbourhood of x. The set B ¼ {xW :

W 2 D}� A has cardinalityb k so F \ B� (
T C) \ [A]k¼ ;. SinceD is an outer

base of F in Z, there isW 2DwithW \ B¼ ;which is a contradiction with the fact
that xW 2 W \ B. Fact 3 is proved.

Now assume that k is the supremum of the lengths of all free sequences of X. If
t(X) > k then there is a k-closed non-closed set A � X by Fact 1. Then [A]k ¼ A
and hence A ¼ [A]k by Fact 3. Fix any x 2 A \ A; then x 2 [A]k so

(�) H \ A 6¼ ; for any Gk-set H 3 x.

Take a0 2 A arbitrarily and let H0 ¼ X. Suppose that a < kþ and we have

constructed points {ab : b < a} � A and closed Gk-sets {Hb : b < a} with the

following properties:

(1) {x, ab} � Hb for all b < a.
(2) Hb � Hb0 if b0 < b < a.

(3) ag : g< b
� � \ Hb ¼ ; for all b < a.
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Since x =2P ¼ ag : g< a
� �

, there exists a closedGk-setH 3 x such thatH \ P¼ ;
(we used Fact 2 applied to the set X \P and the point x 2 X \P). If we let Ha¼ H \
(\ {Hb : b < a}) and take any aa 2 Ha \ A (this choice is possible because of (�)),
then the same conditions are fulfilled for all b b a and hence the inductive

construction can go on providing a set S ¼ {aa : a < kþ} � A. We claim that S is

a free sequence. Indeed, if b < kþ then ag : g< b
� � \ Hb ¼ ; while {ag : gr b}�

Hb by (2) and (3). The set Hb being closed, we have ag : g< b
� � \ ag : gr b

� �
� ag : g<b
� � \ Hb ¼ ;. As a consequence, S is a free sequence of length > k; this

contradiction shows that t(X) b k so our solution is complete.

S.329. Prove that jXjb 2w(X) for any compact space X. In particular, the cardinality
of a first countable compact space does not exceed cc.

Solution. Let w(X) ¼ k; fix a local base Bx of cardinality b k at each point x 2 X.
If B is a set then Pk(B) is the family of all subsets of B of cardinality b k.

Fact 1. If A � X and jAj b 2k then j A j b 2k.

Proof. Since jPk(A)j ¼ jAjk b (2k)k ¼ 2k, we have jPk(Pk(A))j b (2k)k ¼ 2k so it

suffices to construct an injection ’ : A! Pk(Pk(A)). Given x 2 A, for each U 2 Bx
choose a point xU 2U \ A and let Cx¼ {xU :U 2 Bx}. It is clear that Cx� A, x 2 Cx

and jCxjb k. ThereforeDx¼ {Cx \ U :U 2 Bx} 2 Pk(Pk(A)); let ’(x)¼Dx for any

x 2 A. Note that
T
{U : U 2 Bx} ¼ {x}; since x 2 Cx \ U for any U 2 Bx, we have

x 2 T{D : D 2 Dx} �
T
{U : U 2 Bx} ¼ {x} and therefore

T
{D : D 2 Dx} ¼ {x}.

Thus, given distinct x, y 2 A, the families Dx and Dy cannot coincide because the

intersections of the closures of their elements do not coincide. This proves that ’ is

an injection so j A j b 2k and Fact 1 is proved.

Take any x0 2 X and let H0 ¼ {x0}. Suppose that a < kþ and we have sets {Hb :

b < a} with the following properties:

(1) Hb is a closed subset of X with jHbj b 2k.

(2) Hb � Hg if b < g < a.
(3) If b < a and Cb ¼

S
{Bx : x 2

S
{Hg : g < b}} then, for any finite U � Cb withSU 6¼ X, we have Hb \ (

S U) 6¼ ;.
Let Ca¼

S
{Bx : x 2

S
{Hg : g< a}}; then j Cajb 2k. If U is a finite subfamily of

Ca with
S U 6¼ X then choose a point x (U) 2 X \ (

SU) and let Aa ¼ {x (U) : U is

a finite subfamily of Ca such that
S U 6¼ X}. Then jAaj b 2k and hence

Ha ¼
S

Hb : b<a
� � [ Aa also has cardinality b 2k by Fact 1. It is clear that

(1)–(3) now hold for all b b a and hence we can construct a family {Hb : b <
kþ} with the properties (1)–(3).

If H ¼ S{Hb : b < kþ} then jHj b kþ · 2k ¼ 2k. We prove next that the set H
is closed in X. Observe first that t(X) b w(X) b k (Problem 156(iv)); thus, for any

x 2 H, there is A � H with jAjb k and x 2 A. The set A has to be contained in some

Hb so x 2 A � Hb � H because Hb is a closed subset of X.

2 Solutions of Problems 001–500 289



The last step is to show that H ¼ X. To obtain contradiction, suppose not. Pick

any p 2 X \H and, for any x 2 H, choose Ux 2 Bx such that p =2 Ux. Since H is

a compact set, there are x1,. . ., xn 2 H such that H � U ¼ Ux1 [ � � � [ Uxn. Take

an arbitrary b < kþ with {x1,. . ., xn} � Hb; the property (3) implies that U ¼ {Uxi
:

i b n} is a finite subfamily of Cbþ1 such that p =2 SU and hence
SU 6¼ X.

Thus Hbþ1 \U 6¼ ; which is a contradiction with Hbþ1 � H � U. As a consequence,
jXj ¼ jHj b 2k so our solution is complete.

S.330.Given an infinite cardinal k, suppose that X is a compact space such that w(x,
X) r k for any x 2 X. Prove that jXj r 2k.

Solution. As is usual in set theory, we identify each ordinal a with the set of all

preceding ordinals, i.e., a ¼ {b : b < a}. In particular, n ¼ {0, . . ., n � 1} for any

n 2 N. We have already used this identification many times before in our solutions

as well as in problem formulations. However, this time it is worth to mention it

explicitly because each ordinal will be often used as a set and as a point in the same

line of text. If we bear in mind these two possibilities, it will be always clear from

the context, how an ordinal is used.

Given an ordinal a > 0, let Ca ¼ {0,1}a. We consider first the case k ¼ o. Then
no point of X is isolated so X is infinite. For each k 2 N and each function f 2 Ck we

will construct a non-empty open set Uf so that

(1) For any m, k 2 N with m < k, we have clX(Ufjm) � Uf for all f 2 Ck;

(2) For any k 2 N and any f, g 2 Ck with f 6¼ g, we have clX(Uf) \ clX(Ug) ¼ ;.
To start with, take distinct x, y 2 X and choose U 2 t(x, X), V 2 t(y, X) such

that U \ V ¼ ; (the bar denotes the closure in X). We have C1 ¼ {f0, f1} where
fi(0)¼ i for ib 1; letUf 0¼U andUf1¼ V. It is clear that (1) and (2) are satisfied
for k¼ 1. Suppose that, for each kb n, we definedUf for all f2Ck so that (1) and

(2) hold. Any function f 2 Cnþ1 is an extension of the function fjn and there are
exactly two such extensions. This shows that Cnþ1 ¼ f g0 ; f

g
1 : g 2 Cn

� �
where

f
g
i jn ¼ g and f

g
i nð Þ ¼ i for i ¼ 0, 1.

Now, take an arbitrary function g 2 Cn; observe that the set Ug has no

isolated points and hence we can take distinct x, y 2 Ug. It is easy to find non-

empty sets U 2 t(x, X), V 2 t(y, X) such that U [ V � Ug and U \ V ¼ ;. Let
Uf

g
0
¼ U and Uf

g
1
¼ V ; since the function g 2 Cn was taken arbitrarily, we

indicated how to construct sets Uf
g
0
and Uf

g
1
for all g 2 Cn. Therefore we

obtained the desired family {Uf : f 2 Cnþ1}. The property (1) is guaranteed by
our construction for m ¼ n and k ¼ n þ 1. Therefore (1) holds for k ¼ n þ 1

and all m b n by the inductive hypothesis. The property (2) has only to be

checked for k ¼ n þ 1. Observe that, if fjn ¼ gjn then Uf \ Ug by our

construction. If f jn 6¼ gjn then Uf \ Ug � clX(Ufjn) \ clX (Ugjn) ¼ ; by the

induction hypothesis.

Once we have the family {Uf : f 2 Cn, n 2 N} with the properties (1) and (2),
let Pf¼

T
{Uf jn : n 2N} for each f 2 Co. The property (1) and compactness of X

imply Pf ¼
T
{clX(Ufjn) : n 2 N} 6¼ ;. Observe also that f 6¼ g implies f jn 6¼ gjn
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for some n 2 N; since Pf � Uf jn, Pg � Ugjn and clX(Uf jn) \ clX (Ugjn) ¼ ;, we
have Pf \ Pg¼ ; for distinct f, g 2 Co. This shows that, choosing any ’( f ) 2 Pf,

we obtain an injection ’ : Co! X; thus jXj r jCoj ¼ cc so the case of k ¼ o
is settled.

Now assume that k > o. For any ordinal a < k, we will construct a family

{Kf : f 2 Ca} with the following properties:

(3) Kf 6¼ ; is a closed set which is the intersection of b (jaj þ o)-many open sets;

(4) If f 2 Ca and b < a then Kf � Kf jb.
(5) If f, g 2 Ca and f 6¼ g then Kf \ Kg ¼ ;.

To start with, take distinct x, y 2 X and choose U 2 t(x, X), V 2 t(y, X) such that
U \ V ¼ ;. Apply Fact 2 of S.328 to find closed Gd-sets K, L such that x 2 K � U
and y2 L� V. We haveC1¼ {f0, f1} where fi(0)¼ i for ib 1; letKf0¼ K andKf1

¼ L.
It is clear that the properties (3)–(5) are satisfied for a ¼ 1.

Take a < k, a > 0 and assume that, for each b < a, the sets Kf are constructed

for all f 2 Cb so that the properties (3)–(5) are satisfied. If a is a limit ordinal, let

Kf ¼
T
{Kf jb : b < a} for any f 2 Ca. It is evident that the properties (3) and (4)

hold for all b b a. Now, if f, g 2 Ca and f 6¼ g then f jb 6¼ gjb for some b < a. As
a consequence Kf \ Kg � Kf jb \ Kgjb ¼ ; so the property (5) is also satisfied.

Now consider the case when a ¼ g þ 1. Any function f 2 Ca is an extension of

the function f jg 2 Cg and there are exactly two such extensions. This shows that

Ca ¼ f g0 ; f
g
1 : g 2 Cg

� �
, where f gi jn ¼ g and f gi nð Þ ¼ i for i ¼ 0, 1.

Take an arbitrary function g 2 Cg; observe that the set Kg is the intersection of

jaj þ o< k of open sets. IfKg consists of only one point x then w(x, X)¼ c(x, X)< k
(Problem 327) which is a contradiction. This shows that we can take distinct points

x,y 2 Kg and setsU 2 t(x, X), V 2 t(y, X) such thatU \ V¼ ;. We have x 2U \ Kg

and y 2 V \ Kg; since U \ Kg and V \ Kg are intersections of at most jaj þo open

sets, we can apply Fact 2 of S.328 to find closed K, L such that x 2 K � U \ Kg,

y 2 L� V \ Kg and both K and L are intersections of at most jaj þ o open sets. Let

Kf
g
0
¼ K and Kf

g
1
¼ L ; since the function g 2 Cg was taken arbitrarily, we indicated

how to construct sets Uf
g
0
and Uf

g
1
for all g 2 Cg. Therefore, we obtained the desired

family {Uf : f 2 Cgþ1 ¼ Ca}. It is easy to see that (3)–(5) are satisfied for all b b a
so the inductive step is concluded. Therefore we can construct the families {Kf : f 2
Ca} with properties (3)–(5) for all a < k.

Given any f 2 Ck, let Pf ¼
T
{Kf ja : a < k}. The property (4) implies Pf 6¼ ; by

compactness of X. Observe also that f 6¼ g implies f ja 6¼ gja for some a< k; since Pf

� Kf ja, Pg � Kgja and Kf ja \ Kgja ¼ ;, we have Pf \ Pg ¼ ; for distinct f, g 2 Ck.

This shows that, choosing any ’( f) 2 Pf, we obtain an injection ’ : Ck! X whence

jXj r jCkj ¼ 2k which completes our solution.

S.331. (Shapirovsky’s theorem on p-character) Prove that pw(X) b t(X) for any
compact space X.

Solution. There will be no loss of generality to assume that t(X) ¼ k is an infinite

cardinal. Suppose that there exists a point p 2 X such that pw(p, X) r kþ. Let C be
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the family of all closed non-empty Gd-subsets of X. Each G 2 C has a countable

outer base BG by Problem 327. This shows that G � U 2 t(X) implies that there is

V 2 BG with V � U.

Suppose that C0 � C and j C0jb k. If every U 2 t(p, X) contains some G 2 C0 then
it also contains some V 2 BG by the previous remark. This shows that

S
{BG : G 2

C0} is a local p-base at p of cardinalityb kwhich is a contradiction. This proves that

we have the following property:

(�) For any C0 � C with j C0j b k there is W 2 t(p, X) such that G \W 6¼ ; for all
G 2 C0.

We will construct collections {Ag : g < kþ} � C and {Bg : g < kþ} � C with the

following properties:

(1) p 2 Ag and Ag \ Bg ¼ ; for all g < kþ;
(2) For any g< kþ, if H is a non-empty finite intersection of elements of the family

{Ab : b < g} [ {Bb : b < g} then H \ Bg 6¼ ;.
The construction is by transfinite induction. Take any x 6¼ p and choose disjoint

U, V 2 t(X) such that p 2U and x 2 V; by Fact 2 of S.328 there exist A0, B0 2 C such
that p 2 A0� U and x 2 B0� V. It is clear that (1) and (2) are satisfied for g¼ 0 and

the sets A0, B0.

Now fix an arbitrary a < kþ and assume that we have constructed families {Ab :

b < a} � C and {Bb : b < a} � C for which (1) and (2) are satisfied. Let H be the

collection of all non-empty finite intersections of the elements of the family {Ab : b
< a} [ {Bb : b< a}; thenH� C and j H jb k, so we can use (�) to findU 2 t(p, X)
such that H \U 6¼ ; for every H 2 H. Apply again Fact 2 of S.328 to find Aa 2 C
such that p 2 Aa � U. If P ¼ X \U then X \Aa 2 t(P, X); using normality of

the space X, we can construct Vn 2 t(P, X) such that V0 ¼ X \Aa and Vnþ1 � Vn for

all n 2 o. The set Ba¼
T
{Vn : v 2 o}¼T{Vnþ1 : n 2 o} belongs to C and Ba� V0

¼ X \Aa, i.e., Aa \ Ba ¼ ; ; therefore (1) is fulfilled for g ¼ a. Since H \U � Ba for

all H 2 H, the property (2) holds for g ¼ a as well. As a consequence, we can

construct families {Ag : g < kþ} � C and {Bg : g < kþ} � C with the properties

(1) and (2).

Given any g < kþ, the family F g ¼ {Ab : b b g} [ {Bb : b > g} is centered. To
see this, take finite families U � {Ab : b b g} and V � {Bb : b > g}. We will prove

that (
TU) \ (

TV) 6¼ ; using induction on the number of elements of V. If V ¼ ;
then (

TU) \ (
TV) ¼ TU 6¼ ; because p 2 U for every U 2 U. Assume that we

proved that (
TU) \ (

TV) 6¼ ; for all families V � {Bb : b> g} with j V j< n. Now
if V ¼ {Bb1

,. . .,Bbn
},U ¼ {Aa1,. . .,Aak} and bn > bi for all i b n then bn > g r ai

for all i b k. Since H ¼ Bb1
\ � � � \ Bbn�1 \ (

T U) 6¼ ; by the induction

hypothesis, the set H belongs to the family H of all finite intersections of the

family {Ab : b < bn} [ {Bb : b < bn}, so (
T U) \ (

T V) ¼ Bbn
\ H 6¼ ; by

(2). This proves that the family Fg is centered for each g < kþ. By compactness

of X, we can choose xg 2
T F g for all g < kþ.

Observe that the set {xg : g < kþ} is a free sequence of length kþ because

xg : g< a
� � \ xg : gr a

� � � Aa \ Ba ¼ ; (the last inclusion is due to the fact that
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{xg : g < a} � Ba and {xg : g r a} � Aa for each a < kþ). This contradiction with

t(X) b k (Problem 328) shows that the inequality pw(p, X) > k is impossible.

Therefore pw(X) b k ¼ t(X) and our solution is complete.

S.332. (Shapirovsky’s theorem on p-bases) Suppose that X is a compact space with t
(X) b k. Prove that X has a p-base of order b k.

Solution. Given a space Z, a set P � Z and a family U � t�(Z), say that U is

a p-base for P in Z if U is a p-base at z for any z 2 P. If we have a family D
of subsets of Z and z 2 Z, let ord(z, D) ¼ j{D 2 D : z 2 D}j; then ord (D) ¼ sup

{ord(z, D) : z 2 Z}. It is clear that the statement ord (D) b k says precisely that

the order of D is b k.

Fact 1. Suppose that Z is a space, P � Z and U is a p-base for P in Z. Then

(a) U is also a p-base for P in Z.
(b) If the set F� Z is closed and F \ P¼ ; then U0 ¼ {W 2 U :W \ F¼ ;} is also

a p-base for P in Z.

Proof. (a) Take any z 2 P andU 2 t(z, Z). There is y 2 P \ U; since U 2 t(y, Z) and
U is a p-base at y, there exists W 2 U with W � U so (a) is proved.

(b) Take any z 2 P andU 2 t(z, Z). Since the family U is a p-base at z andU \F 2
t(z, Z), there existsW 2 U withW � U \F. This shows thatW 2 U0 and hence U0 is a
p-base at z so Fact 1 is proved.

Fact 2. Let Z be any compact space with t(Z) b k. Then, for any A � Z, there exists
a p-base for A in Z of order b k.

Proof. Our proof will be by transfinite induction on the cardinality of the set A.
More precisely, we will show that the following stronger statement is true:

(�) For anyQ� Z with jQj ¼ d, there exists a p-base E (Q) for the set Q in Z such

that j E (Q)j b d · k and ord (E (Q)) b k.
Since t(Z) b k, we have pw(Z) b k (Problem 331) so we can fix a p-base Bz at

any z 2 Z with j Bzj b k. For any set Q � Z, the family B ¼ S
{Bz : z 2 Q} is a

p-base for Q in Z; if, additionally, jQj b k, then j B j b k and hence ord (B) b k.
This shows that (�) is true for every Q � Z with jQj b k.

Now take a cardinal l> k and assume that (�) has been established for all Q� Z
with jQj < l. Take any P � Z with jPj ¼ l and let S ¼ {a < l : a ¼ b þ 1 for some

b < l}; then jSj ¼ l so we can take an enumeration {pa : a 2 S} of the set P.
We are going to construct families {Fa : a < l} and {Ca : a < l} with the

following properties:

(1) Fa is a closed subset of Z for each a < l and pa 2 Fa for all a 2 S.
(2) Ca � t�(Z) and j aj b k · jaj for each a < l.
(3) Da ¼

S
{Cb : b b a} is a p-base for Fa in Z and ord (Da) b k for each

a < l.
(4) If a < b < l then Fa � Fb and, for any U 2 Cb, we have U \ Fa ¼ ;.
(5) If a < l, U � Da is finite and V ¼ (

T U) \ Fa 6¼ ; then Faþ1 \ V 6¼ ;.
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Take any z0 2 Z and let F0 ¼ {z0}, C0 ¼ Bz0. It is clear that (1)–(5) are satisfied
(most of them vacuously) for a ¼ 0. Assume that m ¼ n þ 1 and we have families

{Fa : a < m} and {Ca : a < m} such that the properties (1)–(4) hold for all a, b < m
and (5) holds for all a < n. Let Dn ¼

S
{Ca : ab n}; if U is a finite subfamily of Dn

such that V¼ (
T U) \ Fn 6¼ ;, fix any point x (U) 2 V. If pm 2 Fn then Rm¼ {x (U) : U

is a finite subfamily of Dn such that (
T U) \Fn 6¼ ;}. If pm =2 Fn then Rm ¼ {pm} [

{x (U) : U is a finite subfamily of Dn such that (
T U) \Fn 6¼ ;}. In both cases let

Fm ¼ Fn [ Rm.

Observe that j Dnj b jnj · k < l and therefore jRmj b jmj · k < l; this implies

that there exists a family Cm � t�(Z) such that Cm is a p-base for Rm in Z of

order b k and jCmj b jmj · k. Since Rm \ Fn ¼ ;, we can assume, without loss of

generality, that W \ Fn ¼ ; for every W 2 Cm (Fact 1(b)). The family Cm is a

p-base also for the set Rm (Fact 1(a)) and therefore (1)–(4) are satisfied for all a,
b b m and (5) holds for all a b n.

Suppose now that m is a limit ordinal. We let Fm ¼
S

Fa : a< mf g and Cm ¼ ;.
It is evident that the properties (1)–(2) and (4)–(5) are satisfied for all a, b < m;
in the property (3) only the statement ord (Dm) b k needs proof. Assume first

that the cofinality of m is b k. Then there exist families {Eg : g b k} such that

ord (Eg) b k for each g < k and Dm ¼
S
{Eg : g b k}. Since any union of b k

families of order b k has order b k, we have ord (Dm) b k in this case.

If the cofinality of m is strictly greater than k then Fm ¼
S
{Fa : a < m}, i.e.,

the set
S
{Fa : a < m} is closed in Z. To see this, take any z 2 S Fa : a< mf g.

Since t(Z) b k, there is C � S
{Fa : a < m} such that jCj b k and z 2 C.

Choose a(c)< m with c 2 Fa(c) for any c 2 C. Since the cofinality of m is > k, the set
{a(c) : c2C} cannot be cofinal in m so there isb< m such that a(c)< b for all c2C. As
a consequence, C� Fb and therefore C� Fb�

S
{Fa : a< m} so z 2 S{Fa : a< m}

and hence the set
S
{Fa : a < m} is closed. Assume that ord (Dm) > k and fix z 2 Z

and a familyW ¼ {Wg : g< kþ}�Dm of distinct elements ofDm such that z 2 \ W.

If z2 Fm then z2 Fa for some a< m and hence z =2U for anyU2 S{Cb : b> a} by (4).
Thus,W � Da while ord (Da) b k which is a contradiction.

Thus, z 2 Z \Fm; observe that the family F ¼ {W \ Fm : W 2 W} is centered.

Indeed, if U � W is a finite family then U � Da for some ordinal a < m. We have

z 2 V ¼ (
T U) \Fa and hence Faþ1 \ (

T U) 6¼ ; by the property (5). As a con-

sequence,
T
{W \ Fm : W 2

T U} � Faþ1 \ (
T U) 6¼ ; and we proved that F is

a centered family. Since Fm is compact, there is x 2 Fm such that x 2
T
{F : F 2 F}.

In particular, x 2 W for all W 2 W. As x 2 Fa for some a < m, it is impossible that

W 2 Cb if b > a andW 2W by the property (4). Thus,W �Da while ord (Da) b k
which gives us a contradiction again.

Therefore conditions (1)–(5) are satisfied for all a, b < m also in case when m
is a limit ordinal so our inductive construction can go on. Once we have the

families {Fa : a < l} and {Ca : a < l}, observe that Dl ¼
S
{Cb : b b l} is a

p-base for Fl ¼
S
{Fa : a < l} and hence for a smaller set P by the property (1).

The order of Dl is b k: to see this, observe that the proof of ord (Dm) b k we

gave for limit ordinals m, is also valid for m ¼ l. Finally, the property (1) implies
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jDlj b l · k so letting E (P) ¼ Dl we bring to an end the proof of (�). This shows
that Fact 2 is proved because (�) is a stronger statement.

To finish our solution apply Fact 2 to the compact space Z ¼ X and to the set

A¼ X� Z. This gives a p-base B for X in X of orderb k. Of course, this implies that

B is a p-base in X of order b k so our solution is complete.

S.333. Suppose that X has a dense s-compact subspace. Prove that so does
Cp(Cp(X)).

Solution. Call a topological property P complete if it satisfies the following

conditions:

(1) Any metrizable compact space has P.
(2) If n 2 N and Zi has P for all i ¼ 1, � � �, n then Z1 � � � � � Zn has P.
(3) If Z has P then every continuous image of Z has P.

It is clear that s-compactness is a complete property. We consider X to be

canonically embedded in Cp(Cp(X)), i.e., for every x 2 X, we have x 2 Cp(Cp(X))
and x( f) ¼ f(x) for any f 2 Cp(X) (see Problem 167).

Let Y be a dense s-compact subspace of X. Given distinct f, g 2 Cp(X), the set

W¼ {x 2 X : f(x) 6¼ g(x)} is open in X and non-empty. Therefore, we can find y 2 Y
\ W; then y( f) ¼ f(y) 6¼ g(y) ¼ y(g) which shows that the set Y separates the points

of Cp(X). Facts 1 and 2 of S.312 applied to the space Z ¼ Cp(X), show that there

exists an algebra R(Y) � Cp(Z) ¼ Cp(Cp(X)) such that Y � R(Y). Fact 2 of S.312

applied to the property P ¼ “s-compactness” shows that R(Y) is s–P, i.e., R(Y) is
also s-compact. Since Y � R(Y), the algebra R(Y) also separates the points of Cp(X)
which shows that R(Y) is dense in Cp(Cp(X)) by Problem 192. Thus R(Y) is a dense
s-compact subspace of Cp(Cp(X)).

S.334. Is it true that if Cp(Cp(X)) has a dense s-compact subspace, then so has X?

Solution. No, it is not true; we will prove this for the space X ¼ o1. Suppose that

K is a compact subspace of X. If K is cofinal in o1 then {[0, a) : a < o1} is an

open cover of K which has no finite subcover, a contradiction. Thus, there is a < o1

such that K � a. Now, if Kn is a compact subspace of o1 for each n 2 o, fix
an < o1 with Kn � an; there exists a < o1 such that an < a for all n 2 o. As a
consequence,

S
{Kn : n 2 o} � a which proves that no s-compact subspace of

o1 can be dense in o1.

To prove that Cp(Cp(X)) has a dense s-compact subspace we will need the

following fact.

Fact 1. If f : o1! R is an arbitrary continuous function then, for any e > 0, the set

A( f, e) ¼ {a < o1 : jf(a) � f(a þ 1)j r e} is finite.

Proof. If A( f, e) is infinite then it has an accumulation point b (Problem 314); there

exists a sequence {an : n2o}� A( f, e) such that anþ 1< anþ1 for each n and an! b.
By continuity of f at the point b, there exists g < b such that f að Þ � f bð Þj j< e

3
for

all a 2 (g, b). Since an! b, we can choose n 2 o with an > g. Since an 2 A( f, e),
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we have eb f anð Þ � f an þ 1ð Þj jb f anð Þ � f bð Þj j þ f bð Þ � f an þ 1ð Þj j< e
3
þ e

3
< e

which is a contradiction. Fact 1 is proved.

Returning to our solution, recall that it suffices to prove that there is a

compact K � Cp(Cp(X)) which separates the points of Cp(X) (Fact 3 of S.312).

Let z( f) ¼ f(0) and za( f) ¼ f(a) � f(a þ 1) for any f 2 Cp(X) and any a < o1.

Denote by u the function which is identically zero on Cp(X). We claim that the set

K ¼ {u} [ {z} [ {za : a < o1} � Cp(Cp(X)) is compact.

Given a function ’ 2 Cp(Cp(X)), a number e > 0 and a finite set P � Cp(X),
we let O(’, P, e) ¼ {d 2 Cp(Cp(X)) : jd( f) � ’( f)j < e for all f 2 P}. Then the

family U’ ¼ {O(’, P, e) : P is a finite subset of Cp(X) and e > 0} is a local base

at ’ in the space Cp(Cp(X)). If U � t(Cp(Cp(X))) is an open cover of the space

K then there is W 2 U and a finite set P � Cp(X) such that O(u, P, e) � W
for some e > 0. Apply Fact 1 to conclude that, for each f 2 P the set Af ¼ {a <
o1 : jza( f)j r e} is finite. This shows that the set A ¼ S{Af : f 2 P} is also

finite and, for any a 2 X \A, we have jza( f)j < e for all f 2 P, i.e., za 2 O(u, P, e)
� W. As a consequence, K \W is finite so it can be covered by a finite subfamily U0
of the family U. Thus {W} [ U0 is a finite subcover of U which shows that K is

compact.

To prove that K separates the points of Cp(X), take any f, g 2 Cp(X) such that

’( f) ¼ ’(g) for any ’ 2 K. In particular, z( f) ¼ f(0) ¼ z(g) ¼ g(0). If f 6¼ g then

the set B ¼ {a < o1 : f(a) 6¼ g(a)} is non-empty; let b be the minimal element

of B. If b ¼ a þ 1 for some a < o1 then f(a) ¼ g(a) and, since za( f) ¼ f(a) �
f(a þ 1) ¼ za(g) ¼ g(a) � g(a þ 1), we also have f(b) ¼ f(a þ 1) ¼ g(a þ 1) ¼
g(b) which is a contradiction.

Now, since f(0)¼ g(0), we have b> 0 so bmust be a limit ordinal. However B is

an open set by continuity of f and g, so there is a < b such that (a, b) � B which is

a contradiction with minimality of b. Therefore f ¼ g and hence K is a compact

subset of Cp(Cp(X)) which separates the points of X. Applying Fact 3 of S.312

we can conclude that Cp(Cp(X)) has a dense s-compact subspace, so our solution

is complete.

S.335. Suppose that every compact subspace of X is metrizable. Is the same true for
Cp(Cp(X))?

Solution. No, it is not true; the space X ¼ o1 is the relevant example. Suppose that

K is a compact subspace of X. If K is cofinal in o1 then {[0,a) : a < o1} is an open

cover of K which has no finite subcover, a contradiction. Thus there is a < o1 such

that K � a. This shows that every compact K � X is countable; any countable

compact space has countable network weight and hence countable weight (Fact 4

of S.307), so K is metrizable.

However, not every compact subspace of Cp(Cp(X)) is metrizable. To see this

recall that we proved in S.334 that there is a compact subspace L of Cp(Cp(X))
which separates the points of Cp(X). Suppose that the space L is metrizable; then L
is second countable (Problem 212). Given f 2 Cp(X), let ’( f)(z)¼ z( f) for all points
z 2 L. Then ’ : Cp(X) ! Cp(L) is a continuous map (Problem 166) and, since L
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separates the points of Cp(X), the map ’ is a condensation. There is a condensation

of Cp(L) onto a second countable space because L is separable (Problem 173). The

composition of the two mentioned condensations is also a condensation of Cp(X)
onto a second countable space. Therefore iw(Cp(X)) ¼ o which implies d(X) ¼ o
(Problem 173).

In Fact 2 of S.232 it was proved that the set [0,a] ¼ {b < o1 : b b a} is a

compact subspace ofo1 for each a<o1. Since every countable A�o1 is contained

in [0, a] for some a<o1, the closure of any countable subset ofo1 is compact. This

shows that X ¼ o1 is not separable because it is not compact (Problem 306). This

contradiction shows that the compact space L � Cp(Cp(X)) cannot be metrizable so

our solution is complete.

S.336. Give an example of a compact space X such that Cp(Cp(X)) is not Lindel€of.

Solution. We will prove that, for the compact space X ¼ o1 þ 1, the space

Cp(Cp(X)) is not Lindel€of. For any ordinal a < o1, let sa(b) ¼ b if b b a and

sa(b) ¼ a if b > a. It is clear that sa : (o1 þ 1)! [0, a] is a continuous map. The

map s�a : Cp 0; a½ 
ð Þ ! Cp o1 þ 1ð Þ defined by s�a fð Þ ¼ f 	 sa for all f 2 Cp([0,a]),
is an embedding (Problem 163) and therefore the space Ra ¼ s�a Cp 0; a½ 
ð Þ� �

is

second countable being homeomorphic to Cp([0, a]) (Problem 169). Let pa :

Cp(o1 þ 1) ! Cp([0, a]) be the restriction map, i.e., pa( f) ¼ fj[0, a] for each
function f 2 Cp(o1 þ 1). Observe that ra ¼ s�a 	 pa maps Cp(o1 þ 1) onto Ra and

ra( f) ¼ f for any f 2 Ra. It is easy to see that Ra ¼ {f 2 Cp(o1 þ 1) : f(b) ¼ f(a) for
all b r a}. Recall that, for every f 2 Cp(o1 þ 1), there is a < o1 such that f(b) ¼
f(a) for all b r a (Problem 314); this shows that

S
{Ra : a < o1} ¼ Cp(o1 þ 1).

Fact 1. Every closed F � Ra is C-embedded in Cp(o1 þ 1).

Proof. Take any continuous function ’ : F ! R; since the space Ra is second

countable, it is metrizable and hence normal (see Problems 209, 214 and 124).

Take a continuous function F : Ra ! R such that FjF ¼ ’. Then we have ~’ ¼
F 	 ra 2 Cp Cp o1 þ 1ð Þ� �

and ~’ fð Þ ¼ F ra fð Þð Þ ¼ F fð Þ ¼ ’ fð Þ for any f 2 F

(we used the equality ra( f) ¼ f because it is true for all f 2 Ra and F � Ra). Thus

~’ is a continuous extension of ’ over the space Cp(o1 þ 1) so Fact 1 is proved.

Given a space Z, call a family F � exp(Z) countably centered if
T F0 6¼ ; for

any countable F0 � F .
Fact 2. A space Z is Lindel€of if and only if any countably centered family of closed

subsets of Z has a non-empty intersection.

Proof. Suppose that Z is Lindel€of and F is a countably centered family of closed

subsets of Z with
T F ¼ ;. Then U ¼ {Z \F : F 2 F} is an open cover of the space

Z. If U0 � U is a countable subcover of U then F0 ¼ {Z \U : U 2 U0} is a countable
subfamily of F with \ F0 ¼ ; which is a contradiction.

Now assume that any countably centered family of closed subsets of Z has

a non-empty intersection and take any open cover U of the space Z. The family

F ¼ {Z \U : U 2 U} consists of closed subsets of Z and
T F ¼ ;. This shows that
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the family F cannot be countably centered so there is a countable F0 � F such

that
T F0 ¼ ;. It is immediate that the family U0 ¼ {Z \ F : F 2 F0} is a countable

subcover of the cover U so the space Z is Lindel€of and Fact 2 is proved.

Returning to our solution, assume that the space Cp(Cp(o1 þ 1)) is Lindel€of.
Take any closed discrete set D� Cp(o1þ 1) of cardinality o1 (see Fact 1 of S.320).

If Da¼D \ Ra for each a<o1 then there exists a0<o1 with Da0 6¼ ; ; besides, Da

6¼ D for any a< o1 for otherwise the uncountable closed discrete set D is contained

in a second countable space Ra which is impossible.

Given an arbitrary d : D! R, let Fa ¼ {’ 2 Cp(Cp(o1 þ 1)) : ’jDa ¼ djDa} for

all a r a0. Note first that Fb � Fa if b > a. Another observation is that Fa 6¼ ; for
any a 2 [a0, o1). Indeed, the set Da is closed and discrete in Ra so djDa is a

continuous map. Applying Fact 1, we can see that there is ’ 2 Cp(Cp(o1þ 1)) such

that ’jDa¼ djDa and hence we have ’ 2 Fa. It is evident that the family F ¼ {Fa :

a0 b a < o1} consists of closed subsets of Cp(Cp(o1 þ 1)). Assume that F0 is a
countable subfamily of F . Then there exists an ordinal a< o1 such that F0 � {Fb :

b < a}. As a consequence,
T F 0 � Fa 6¼ ; which proves that the family F is

countably centered. Since we assume that Cp(Cp(o1 þ 1)) is Lindel€of, there is a

function ’ 2T F by Fact 2; it is straightforward that ’jD¼ d. As a result, the setD
is C-embedded in Cp(o1 þ 1).

Let pD : Cp(Cp(o1 þ 1))! Cp(D) be the restriction map, i.e., pD(’) ¼ ’jD for

any ’ 2 Cp(Cp(o1 þ 1)). Then pD is a continuous map (Problem 152); it follows

from the fact that D is C-embedded in Cp(o1þ 1) that pD(Cp(Cp(o1þ 1)))¼ Cp(D)
¼ RD. Since the space RD is homeomorphic to Ro1, we conclude that Ro1 is

Lindel€of being a continuous image of the space Cp(Cp(o1 þ 1)). However, Ro1

is not even normal (Fact 2 of S.215) which gives us the final contradiction.

Therefore Cp(Cp(o1 þ 1)) is not Lindel€of and our solution is complete.

S.337.Given a space X prove that, for any n 2N, the space Xn is homeomorphic to a
closed subspace Cn of the space Lp(X) (see Problem 078). Therefore, every Xn

embeds into Cp(Cp(X)) as a closed subspace.

Solution. We will identify any space Z with the respective closed subset of the

space Cp(Cp(Z)); this identification treats any z 2 Z as a map on Cp(Z) defined by

z( f) ¼ f(z) for any f 2 Cp(Z) (see Problem 167). Since any z, z0 2 Z are functions on

Cp(Z), usual arithmetical operations can be applied to them (see Problem 027)

to obtain all possible functions l · z þ l0 · z0 where l, l0 2 R. Another important

point is the equality in Z and in Cp(Cp(Z)); as usual, two functions ’, ’
0 2 Cp(Cp(Z))

are called equal if ’( f) ¼ ’0( f) for any f 2 Cp(Z). Let us denote this by ’ � ’0. It is
clear that if y, z 2 Z and y ¼ z then y � z. Now, if y � z and y 6¼ z then, by the

Tychonoff property of Z, there is f 2 Cp(Z) such that f(z) ¼ 1 and f(y) ¼ 0; this

implies y( f) ¼ 0 6¼ 1 ¼ z( f) which is a contradiction. As a consequence, for any y, z
2 Zwe have y¼ z if and only if y� z. If z, y 2 Z and z 6¼ y, the equality zþ y� yþ z
shows that, in general, it is not true that y, z, u, v 2 Z and yþ z� uþ v implies y¼ u
and z ¼ v. However, we have the following fact.
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Fact 1. Let y1, z1,� � �, yn, zn be any (not necessarily distinct) points of a space Z. If
y1þ 2 · y2þ � � � þ 2n � 1 · yn� z1þ 2 · z2þ � � � þ 2n � 1 · zn then yi¼ zi for all ib n.

Proof. The proof is by induction on n. In the first paragraph of our solution, we

showed that the statement of our Fact is true for n ¼ 1. Assume that k r 1 and

our fact is true for all n b k; take a set Y ¼ {yi, zi : 1 b i b (k þ 1)} � Z such that

’ � d where ’ ¼ y1 þ 2 · y2 þ � � � þ 2k · ykþ1 and d ¼ z1 þ 2 · z2 þ � � � þ 2k ·

zkþ1. Assume first that ykþ1 6¼ zkþ1. Let zj1,. . ., zjm be a listing of all points from

the set {z1,. . ., zkþ1} coinciding with ykþ1; by our assumption we have jl 6¼ k þ 1

for all l b m. Take any f 2 Cp(Z, [0, 1]) such that f(ykþ1) ¼ 1 and f(z) ¼ 0 for all

z 2 Y such that z 6¼ ykþ1. Then

d fð Þ ¼
Xm

i¼1 2
ji�1 � f zji

� � ¼Xm

i¼1 2
ji�1b 20 þ � � � þ 2k�1 ¼ 2k � 1:

On the other hand, ’( f) r 2k · f(ykþ1) ¼ 2k which is a contradiction with ’( f)
¼ d( f) b 2k � 1. Therefore, we have ykþ1 ¼ zkþ1; it is clear that this implies y1 þ
2 · y2 þ � � � þ 2k�1 · yk � z1 þ 2 · z2 þ � � � þ 2k�1 · zk so we can apply the

induction hypothesis to conclude that yi ¼ zi for all i b k. Therefore yi ¼ zi for all
i b k þ 1 and Fact 1 is proved.

Fact 2. Given spaces Y, Z and T assume that p : Y ! Z and q : Z ! T are

condensations such that r ¼ q 	 p is a homeomorphism. Then both p and q are

homeomorphisms.

Proof. The maps p�1 ¼ r�1 	 q and q�1 ¼ p 	 r�1 are continuous because r is a
homeomorphism and hence the map r�1 is continuous. Fact 2 is proved.

Returning to our solution, fix any n 2 N for any y ¼ (y1,. . ., yn) 2 (bX)n, let
Fn(y) ¼ y1 þ 21 · y2 þ � � � þ 2n�1 · yn 2 Cp(Cp(bX)). It follows from the results

of Problems 115 and 116 that the map Fn : (bX)n ! Cp(Cp(bX)) is continuous.

It is also injective by Fact 1, so if Bn ¼ Fn((bX)
n) then Fn : (bX)n ! Bn is a

homeomorphism (Problem 123); being compact the set Bn is closed in Cp(Cp(bX)).
If f 2 C�p Xð Þ, then f : X! [�n, n] for some n 2 N by Problem 257 there exists a

map f 0 2 Cp(b X,[�n, n])� Cp(bX) such that f 0jX ¼ f. This shows that the restriction
map r : Cp bXð Þ ! C�p Xð Þ is a condensation (see Problem 152). The dual map

r� : CpðC�p Xð ÞÞ ! Cp Cp bXð Þ� �
is an embedding (see Problem 163). Observe that

C�p Xð Þ is a dense subspace of the space Cp(X) (Fact 3 of S.310), so the restric-

tion mapping p : Cp Cp Xð Þ� �! Cp C�p Xð Þ
� �

is a condensation onto the space

p(Cp(Cp(X))) (Problem 152). We will also need the map ’n : X
n! Cp(Cp(X)) defined

by ’n(x) ¼ x1 þ 21 · x2 þ � � � þ 2n�1 · xn 2 Lp(X) � Cp(Cp(X)) for any point

x ¼ (x1,. . ., xn) 2 Xn. Recalling that Xn � (bX)n we claim that

(�) r�(p(’n(x))) ¼ Fn(x) for any x 2 Xn.

Indeed, p(’n(x)) is defined by p ’n xð Þð Þ gð Þ ¼Pn
i¼1 2

i�1 � g xið Þ for any function

g 2 C�p Xð Þ ; hence
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r� p ’n xð Þð Þð Þ fð Þ ¼ p ’n xð Þð Þ r fð Þð Þ ¼
Xn

i¼1 2
i�1 � r fð Þ xið Þ ¼

Xn

i¼1 2
i�1 � f xið Þ

for any f 2 Cp(bX). Since Fn xð Þ fð Þ ¼Pn
i¼1 2

i�1 � f xið Þ ¼ r� p ’n xð Þð Þð Þ fð Þ for all
f 2 Cp(bX), we have r�(p(’n(x))) ¼ Fn(x) for any x 2 Xn so (�) is proved.

Let Cn ¼ ’n(X
n) and Dn ¼ p(Cn). Since Cn � Lp(X) � Cp(Cp(X)), it suffices to

show that ’n : Xn ! Cn is a homeomorphism and Cn is closed in Cp(Cp(X)).
If F0n ¼ FnjXn then the map F0n : X

n ! B0n ¼ F0n Xnð Þ is a homeomorphism.

It follows from (�) that r� Dnð Þ ¼ B0n and hence r�ð Þ�1	F0n : Xn ! Dn is a homeo-

morphism. This shows that we can apply Fact 2 to the maps ’n : Xn ! Cn

and pjCn : Cn ! Dn whose composition is the homeomorphism r�ð Þ�1	F0n,
to conclude that ’n is a homeomorphism. Finally note that Bn is closed in

Cp(Cp(bX)) and Cn ¼ (r� 	 p)�1(Bn) so Cn is closed in Cp(Cp(X)) and our solution

is complete.

S.338. Say that a space X is Ksd if there exists a space Y such that X � Y and
X ¼ T{Yn : n 2 o} where each Yn is a s-compact subset of Y. Prove that a space
X is Ksd if and only if X embeds as a closed subspace into a countable product of
s-compact spaces. Deduce from this fact that

(i) Any closed subset of a Ksd-space is a Ksd-space.
(ii) Any countable product of Ksd-spaces is a Ksd-space.
(iii) If X is a Ksd-space then Xo is Lindel€of.

Solution. Take any space Y � X and any family {Yn : n 2 o} of s-compact

subspaces of Y such that X ¼ T{Yn : n 2 o}. Apply Fact 7 of S.271 to conclude

that X can be embedded as a closed subspace in the space P ¼P{Yn : n 2 o}. This
proves necessity.

Now assume that X is a closed subspace of a space Z ¼ P{Zn : n 2 o}
where Zn is s-compact for any n 2 o. Let B ¼ P{bZn : n 2 o}; denote by pn the
natural projection of the space B onto the factor bZn. Observe that the space

Tn ¼ p�1n Znð Þ ¼ Zn �
Q

bZk : k 2 on nf gf g is s-compact for all n 2 o and Z ¼T
{Tn : n 2 o}. The set Y ¼ clB(X) � X is compact and therefore Yn ¼ Tn \ Y is

s-compact; observe also that Z \ Y ¼ X because X is closed in Z. Now
T
{Yn : n

2 o} ¼ T{Tn : n 2 o} \ Y ¼ Z \ Y ¼ X and hence X is Ksd.

The statement of (i) follows immediately from the fact that if X is a closed

subspace of a countable product of s-compact spaces and F is closed in X then F is

a closed subspace of the same product.

To prove (ii) suppose that X is a closed subspace of a countable product P of

s-compact spaces. Then Xo is a closed subspace of the space Po which is also a

countable product of s-compact spaces.

To establish (iii) observe that any countable product of s-compact spaces is

Lindel€of by Fact 6 of S.271. Since any closed subspace of a Lindel€of space is

Lindel€of, any Ksd-space X is Lindel€of. Therefore Xo is Lindel€of because it is also
a Ksd-space by (ii).
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S.339. Give an example of a Ksd-space which is not s-compact.

Solution. Let P � R be the space of irrational numbers with the topology induced

from R. Observe that P ¼T{R \ {q} : q 2 Q} and each space R \ {q} is s-compact;

thus P is a Ksd-space. If P is s-compact then the spaceQ¼R \ P is aGd-subset ofR
which it is not (276). Therefore P a Ksd-space that is not s-compact.

S.340. Prove that Cp(X) is a Ksd-space for any metrizable compact space X.

Solution. Since X is compact and metrizable, the space Cp(X) is separable

(Problem 213); fix a dense countable D � Cp(X). Call a topological property

P complete if it satisfies the following conditions:

(1) Any metrizable compact space has P:
(2) If n 2 N and Zi has P for all i ¼ 1,� � �, n then Z1 � � � � � Zn has P.
(3) If Z has P then every continuous image of Z has P.

It is clear that s-compactness is a complete property. It was proved in Fact 2 of

S.312 that if P is a complete property and A � Cp(X) has P then there exists an

algebra R(A) � A such that R(A) is s-P, i.e., R(A) can be represented as a countable
union of spaces with the property P. When P ¼“s-compactness” then any space

with the property s-P is also s-compact. Applying these remarks to the (countable

and hence s-compact) set D � Cp(X), we conclude that there exists an algebra

R(D) � Cp(X) which is dense in Cp(X) and s-compact. The density of R ¼ R(D)
implies that R separates the points of X. As a consequence, for every f 2 Cp(X) there
exists a sequence {fn : n 2 o} � R such that fn !! f (Problem 191). Let In ¼ �1

n;
1
n

	 

and Sn ¼ R� IXn ; it is evident that Sn is s-compact. If s ¼ ( f, h) 2 Sn let ’n(s) ¼
f þ h 2 RX. Since RX ¼ Cp(D(jXj)) and R� IXn � RX � RX, we can apply

Problem 115 to conclude that ’n is a continuous map for any n 2 N. Consequently,
Tn ¼ ’n(Sn) is a s-compact subset of RX.

Given any g 2 Cp(X) and n 2 N, we can find f 2 R such that g xð Þ � f xð Þj j< 1
n for

all x 2 X. Thus, h ¼ g� f 2 IXn and g ¼ f þ h ¼ ’n f ; hð Þ 2 ’n R� IXn
� � ¼ Tn.

Therefore Cp(X) � Tn for all n 2 N, i.e., Cp(X) �
T
{Tn : n 2 N}.

On the other hand, if g 2T{Tn : n 2 N} then, for every n 2 N, we have g ¼ fn þ
hn where fn 2 R and hn 2 IXn . Therefore g xð Þ � fn xð Þj j ¼ hn xð Þj jb 1

n for any x 2 X
which shows that fn !! g. Since the uniform limit of continuous functions {fn : n 2
N} � R � Cp(X) has to be a continuous function (Problem 029), the function g is

continuous. Since we took g arbitrarily, we have
T
{Tn : n 2 N} � Cp(X) and hence

Cp(X) ¼
T
{Tn : n 2 N}. Recalling that each Tn is s-compact, we conclude that the

space Cp(X) is Ksd so our solution is complete.

S.341. Prove that Cp(X) is a Ksd-space for every countable metrizable X.

Solution. To abbreviate complicated formulas, we will only indicate the summation

variable omitting the symbol “2N” in the summation indices; for example, the

formula
T
{
T
{Skm : m 2 N} : k 2 N} will be written as

T
k

S
m Skm. Fix some metric

d on the space X ¼ {xl : l 2 N} with t(d) ¼ t(X). Given any numbers k, l, n 2 N, let
Mkln ¼ {f 2 IX : j f(x) � f(y)j b 1/k whenever d(x, xl) < 1/n and d( y, xl) < 1/n}. We

claim that
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(�) Cp(X, I) ¼
T

k

T
l

S
n Mkln.

To prove it, take any f 2 Cp(X, I) and any k, l 2 N. Since f is continuous at the
point xl, there is n 2 N such that d(z, xl) < 1/n implies jf(z) � f(xl)j < 1/(2k). Now
if d(x, xl)< 1/n and d( y, xl)< 1/n then j f(x)� f(y)j b j f(x)� f(xl)j þ j f(xl)� f(y)j <
1/(2k) þ 1/(2k) ¼ 1/k which shows that f 2 Mkln. The function f has been taken

arbitrarily, so we proved that, for any k, l 2N there exists n 2N such that Cp(X, I)�
Mkln; this means, of course, that Cp(X, I)�

T
k

T
l

S
n Mkln. To establish the inverse

inclusion, suppose that f 2Tk

T
l

S
n Mkln and take any e> 0. Choose any l 2N and

any k2Nwith 1/k< e; there exists n2N such that j f(x)� f(y)jb 1/k< e if d(x, xl)<
1/n and d(y, xl)< 1/n. In particular, j f(x)� f(xl)jb 1/k< e for any x 2 Xwith d(x, xl)
< 1/n. This shows that f is continuous at the point xl for any l2N, i.e., f2Cp(X, I) and
(�) is established.

The next observation is that the set Mkln is compact for all k, l, n 2 N. Indeed, if
f 2 IX \ Mkln then there are x,y 2 X such that d(x, xl) < 1/n, d(y, xl) < 1/n while jf(x)
� f(y) j> 1/k. Choose e> 0 such that j f(x)� f(y)j> 1/kþ 3e; the setW¼ {h 2 IX :
jh(x)� f(x)j< e and jh(y)� f(y)j< e} is open in IX and f 2W. If h 2W then jh(x)�
h(y)j r j f(x) � f(y)j � jh(x) � f(x)j � j f(y) � h(y)j > 1/k þ 3e � e � e > 1/k which
shows that h =2Mkln. This proves that IX \ Mkln is open in IX soMkln is compact being

closed in IX. As a consequence, Cp(X, I) is a countable intersection of s-compact

subspaces of IX. Observe also thatWm ¼ {f 2 IX : f(xm) 2 (�1, 1)} is an open subset
of the metrizable compact space IX for any m 2 N. Thus, Wm is s-compact for all

m 2 N. Observe finally that

Cp(X, (�1,1)) ¼ (
T

m Wm) \ Cp(X, I) ¼ (
T

m Wm) \ (
T

l

T
k

S
n Mkln) which

shows that Cp(X, (�1, 1)) is a countable intersection of s-compact subspaces of IX.
Since Cp(X) is homeomorphic to Cp(X, (�1, 1)) (Fact 1 of S.295), the space Cp(X) is
Ksd so our solution is complete.

S.342. Let M be a separable metrizable space. Prove that there is a countable space
Y such that M is homeomorphic to a closed subspace of Cp(Y).

Solution. Let B be a countable base ofM; call a pair p ¼ (U, V) 2 B � B special if

U � V. By normality of the space M, for each special pair p ¼ (U, V) there exists a
function fp 2 C(M, [0, 1]) such that fpj U � 1 and fpj(M\V) � 0. Let F ¼ {fp : p 2 B
� B is a special pair}. It is clear that the set F is countable; let Y¼ {r1f1þ � � � þ rnfn
: n 2 N, f1,� � �, fn 2 F and r1,� � �, rn 2 Q}. The set Y is also countable; we claim that

M embeds in Cp(Y) as a closed subspace.

The map e : M ! Cp(Y) defined by e(z)( f) ¼ f(z) for any z 2 M and f 2 Y, is
continuous (166); given z 2 M and a closed G � M with z =2 G there is V 2 B
such that z 2 V � M\G. By regularity of M there is U 2 B such that z 2 U � U �
V. This means that the pair p ¼ (U, V) is special so f ¼ fp 2 F � Y and f(z) ¼ 1

while f(G) ¼ {0}. As a consequence f(z) is not in the closure (in R) of the set

f(G); this proves that the map e : M ! T ¼ e(M) is a homeomorphism (the

respective criterion was also formulated in Problem 166). Let us finally show that

T is closed in Cp(Y).
Take any function ’ 2 Cp(Y) \T; it is easy to see that u 2 Y, where u is the

function which is identically zero on M. Observe that t(u) ¼ 0 for every t 2 T.
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If ’ (u)¼ s 6¼ 0 then the setW¼ {d 2 Cp(Y) : jd(u)� ’ (u)j< jsj} is open in Cp(Y),
contains ’ and W \ T ¼ ;, i.e., ’ is not in the closure of T.

Given a finite K � M and e > 0, let O(K, e) ¼ {g 2 Cp(M) : jg(z)j < e for all
z 2 K}. It is clear that the family {O(K, e) : K is a finite subset of M and e > 0} is

a local base of Cp(M) at u.
Now suppose that ’ (u)¼ 0. By continuity of ’ there exist V 2 t(u, Y) with ’ (V)

� (�1/3, 1/3). Recalling that Y� Cp(M) we can find a finite set K¼ {z1,� � �,zn}�M
and e > 0 such that O(K, e) \ Y � V. Let ti ¼ e(zi) for all i b n; then L ¼ e(K) ¼
{t1,� � �,tn} is a finite subset of T with ’ =2 L. Find disjoint Wi 2 t(ti, T), i b n such

that ’ =2 W1 [ � � � [ Wn (the closure is taken in Cp(Y)). Since the map e is a

homeomorphism, the sets e�1(Wi) are open, disjoint and zi 2 e�1(Wi) for all i b n.
Using regularity ofM again, we can findUi, Vi 2 B, ib n such that zi 2Ui�Ui� Vi

� e�1(Wi) for all ib n. The pair pi¼ (Ui, Vi) is special and hence fi¼ fpi 2 F for all

numbers i b n. The function f ¼ 1 � ( f1 þ � � � þ fn) belongs to the set Y and fjL �
0 while f(M\

S
ibn Vi) ¼ {0}. Since f 2 O(K, e) \ Y, we have ’ ( f) 2 (�1/3, 1/3)

while t( f) ¼ 1 for any t 2 P ¼ T \
S

ibn e(Vi). As a consequence, ’ is not in the

closure of P in the space Cp(Y). Since T \P � S
ibn Wi, the map ’ is not in the

closure of T and hence T is closed in Cp(Y). Our solution is complete.

S.343. Prove that there exists a countable space X for which Cp(X) is not a
Ksd-space.

Solution. Call a space Z uniformly uncountable if every non-empty open subset of

Z is uncountable.

Fact 1. If M is an uncountable second countable space then there is a closed

uniformly uncountable P � M.

Proof. Let C ¼ {U 2 t�(M) : U is countable}. SinceM is hereditarily Lindel€of, there
is a countable C0 � C such that O ¼ S C0 ¼ S C. Since every element of C0 is
countable, the set O is also countable. The set P ¼ M\O is as promised; indeed, if

W 2 t�(P) is a non-empty countable set thenW [ O is open inM and countable; this

countable open set is strictly larger than O which is a contradiction. Thus P is

uniformly uncountable and Fact 1 is proved.

Fact 2. If M be a second countable uncountable Ksd-space then there is a subspace

C � M which is homeomorphic to the Cantor set K (see Problem 128).

Proof. Fix a metric d on M with t(d) ¼ t(M); let Y � M be any space such that

M ¼ T{Yn : n 2 N} where each Yn is a s-compact subspace of Y. A set A � M
will be called n-precompact if clY (A) is a compact subset of Yn. Given a set A � M,

the symbol A denotes the closure of A in M. For each k 2 N, denote by Ck the set

of all functions from k ¼ {0,. . ., k � 1} to {0, 1}. We will construct by induction

a family {Pf : f 2 Ck, k 2 N} of non-empty closed subsets of M with the following

properties:

(1) The family {Pf : f 2 Ck} is disjoint for any k 2 N.
(2) If m, k 2 N, m < k and f 2 Ck then Pf � Pfjm.
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(3) For any k 2 N, the space Pf is uniformly uncountable, k-precompact and diam

(Pf) b 1
k for any f 2 Ck.

Since the set Y1 � M is a countable union of compact spaces, there is a

compact K1 � Y1 such that the set K1 \ M is uncountable; it is clear that K1 \ M
is closed in M. Take a uniformly uncountable closed M1 � K1 \ M (this is

possible by Fact 1). Pick distinct x0, x1 2M1 and choose U 2 t(x0,M), V 2 t(x1,M)

such that U \ V ¼ ;. There is e 2 (0, 1/2) such that B(x0, e) � U and B(x1, e) � V.
We have C1 ¼ {f0, f1}, where fi(0) ¼ i for i b 1; let Pf0 ¼ clM(B(x0, e) \ M1) and

Pf1 ¼ clM(B(x1, e) \ M1). It is clear that the properties (1)–(2) are satisfied for the

family {Pf : f 2 C1}.

As to the property (3), observe that the closure of any open set in a uniformly

uncountable space is uniformly uncountable so Pfi , is uniformly uncountable for

every i 2 {0,1}. Since Pfi � K1 � Y1, every Pfi is 1-precompact. To see that diam

(Pfi) b 1, observe that, for any r > 0 and any z 2 M we have

(�) diam(B(z,r)) b 2r.
Indeed, if a, b 2 B(z,r) then d(a, b) b d(a, z) þ d(z, b) < 2r which implies

diam(B(z,r)) ¼ sup{d(a,b) : a, b 2 B(z, r)} b 2r. In our particular case, we have

diam Pfi

� �
bdiam B xi; eð Þð Þ ¼ diam B xi; eð Þð Þb 2e<1 (see (�) and Fact 1 of S.236)

so (3) is also satisfied.

Suppose that, for each k b n, we defined Pf for all f 2 Ck so that the properties

(1)–(3) hold. Any function f 2 Cnþ1 is an extension of the function fjn and there are
exactly two such extensions. This shows that Cnþ1 ¼ f g0 ; f

g
1 : g 2 Cn

� �
where

f
g
i jn ¼ g and f

g
i nð Þ ¼ i for i ¼ 0, 1.

Now, take an arbitrary function g 2 Cn; observe that the uncountable set Pg is

contained in Ynþ1 which is s-compact. Therefore, there is a compact Knþ1 �
Ynþ1 such that Knþ1 \ Pg is closed in Pg and uncountable. Apply Fact 1 to find

a closed uniformly uncountable Mnþ1 � Knþ1 \ Pg. The space Mnþ1 has

no isolated points and hence we can take distinct x0, x1 2 Mnþ1. Fix any set

U 2 t(x0, M), V 2 t(x1, M) such that U \ V ¼ ;. We can find a number e 2 (0,

1/(2n)) such that B(x0, e) � U and B(x1, e) � V. Let Pf
g
0
¼ clM B x0; eð Þ \Mnþ1ð Þ

and Pf
g
1
¼ clM B x1; eð ÞTMnþ1ð Þ. Since the function g 2 Cn was taken arbitrarily,

we indicated how to construct sets Pf
g
0
and Pf

g
1
for all g 2 Cn. This gives the

desired family {Pf : f 2 Cnþ1}. The property (1) has only to be checked for k ¼
n þ 1. Observe that, if f 6¼ g and fjn ¼ gjn then Pf \ Pg ¼ ; by our

construction. If fjn 6¼ gjn, then we have Pf \ Pg � Pfjn \ Pgjn ¼ ; by the

induction hypothesis. The property (2) is guaranteed by our construction for m ¼
n and k ¼ n þ 1. Therefore (2) holds for k ¼ n þ 1 and all m b n by the

induction hypothesis.

As to the property (3), observe that the closure of any open set in a uniformly

uncountable space is uniformly uncountable so Pf
g
i
is uniformly uncountable for

every g 2 Cn and every i 2 {0,1}. Since Pf
g
i
� Knþ1 � Ynþ1, every set Pf

g
i
has to

be (n þ 1)-precompact. Applying (�) and Fact 1 of S.236 to the sets Pg
fi
¼

B xi; eð Þ \Mnþ1 we conclude that
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diam Pg
fi

� �
¼ diam B xi; eð Þ\Mnþ1ð Þbdiam B xi; eð Þ

� �
¼ diam B xi; eð Þð Þb 2e< 1=n

so (3) is also satisfied.

Once we have at our disposal the family {Pf : f 2 Cn, n 2 N} with the

properties (1)–(3), let Qf ¼
T
{clY (Pfjn) : n 2 N} for each f 2 K; here we consider

that K ¼ {0, 1}o (see Problem 128). Observe that the family {clY (Pfjn) : n 2 N}
consists of non-empty decreasing closed compact sets by (2) and (3) so Qf 6¼ ;.
Besides, (3) implies that there is a compact set Kn � Yn such that clY (Pfjn) � Kn

� Yn and consequently Qf �
T
{Yn : n 2 N} ¼ M. Since Qf � clY (Pfjn) for every

n 2 N, we have Qf � clY (Pfjn) \ M ¼ clM (Pfjn) ¼ Pfjn. Thus, Qf �
T
{Pfjn : n 2 N}.

Since diam(Pfjn) ! 0, there is xf 2 M such that we have Qf ¼ {xf} for all f 2 K.

Letting ’ ( f ) ¼ xf we obtain a map ’ : K ! M.

The map ’ is injective because if f 6¼ g then fjn 6¼ gjn for some n 2 N; as
a consequence, ’ ( f) 2 Pfjn and ’(g) 2 Pgjn. Since Pfjn \ Pgjn ¼ ; by (1), we have

’( f ) 6¼ ’(g).
The map ’ is continuous; to see this, take any f 2 K and any e > 0. There exists

n 2N such that 1/n< e. The setW¼ {g 2K : gjn¼ fjn} is open inK and f 2W. For

any g 2 W we have ’ (g) 2 Pgjn ¼ Pfjn; since diam(Pfjn) b 1/n, we have d(’ (g),
’ ( f)) b 1/n < e and hence ’ (W) � B(’ ( f), e) which proves continuity of ’ at the

point f. Thus ’ : K ! C ¼ ’ (K) is a condensation and hence homeomorphism.

This shows that K embeds in M so Fact 2 is proved.

Fact 3. There is a subspace Y � K which is not Ksd.

Proof. It follows from Fact 5 of S.151 that there exist disjoint sets A, B � K such

that A \ P 6¼ ; B \ P for any uncountable compact P�K. Let us prove that Y¼ A
is not Ksd. If, on the contrary, Y is a Ksd-space then there is P � A which is

homeomorphic toK (Fact 2). Thus, P is an uncountable compact subset of A�K \B,
which is a contradiction with the fact that B meets every uncountable compact

subset of K. Fact 3 is proved.

Now, it easy to finish our solution. Take any second countable space Y such that

Y is not Ksd (see Fact 3). Apply Problem 342 to find a countable space X such that Y
embeds in Cp(X) as a closed subspace. If Cp(X) is a Ksd-space then so is Y by

Problem 338, which is a contradiction. Thus X is a countable space such that Cp(X)
is not a Ksd-space so our solution is complete.

S.344. Call a subset A� Cp(X) strongly (or uniformly) dense if, for every f 2 Cp(X),
there is a sequence {fn : n 2 o} � A such that fn!! f. In other words, a subset is
strongly dense in Cp(X) if it is dense in the uniform convergence topology on C(X).
Prove that,

(i) If A � Cp(X) is strongly dense in Cp(X) then it is dense in Cp(X).
(ii) For any compact X, the space Cp(X) has a strongly dense s-compact subspace

if and only if it has a dense s-compact subspace.
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Solution. (i) Assume that A is strongly dense in Cp(X) and take an arbitrary function
f 2 Cp(X). There exists a sequence {fn} � A with fn!! f. It is immediate that the

sequence {fn(x)} converges to f(x) for any x 2 X so the sequence {fn} converges to
f in the topology of Cp(X) (143). Thus, f 2 ffng � A which shows that A ¼ CpðXÞ,
i.e., A is dense in Cp(X).

(ii) It follows from (i) that we only have to prove sufficiency. Suppose that B is a

s-compact dense subset of Cp(X) for a compact space X.
Call a topological property P complete if it satisfies the following conditions:

(1) Any metrizable compact space has P.
(2) If n 2 N and Zi has P for all i ¼ 1,. . ., n then Z1 � � � � � Zn has P.
(3) If Z has P then every continuous image of Z has P.

It is evident that s-compactness is a complete property; apply Fact 2 of S.312 to

conclude that there exists an algebra A ¼ R(B) � Cp(X) such that A is a countable

union of s-compact spaces. This means, of course, that the set A is a dense

s-compact algebra in Cp(X). Since A separates the points of X, we can apply

Problem 191 to conclude that A is strongly dense in Cp(X).

S.345. Give an example of a space X such that Cp(X) has a dense s-compact
subspace while there is no strongly dense s-compact subspace in Cp(X).

Solution. Any countable space is s-compact, so any separable Cp(X) has a dense

s-compact subspace. Let X be the set N with the discrete topology. Then Cp(X) is
separable being second countable. Assume that A is a strongly dense subspace of

Cp(X) with A ¼
S
{Kn : n 2 N}, where each Kn is compact. For any x 2 X, the map

ex : Cp(X) ! R defined by ex( f) ¼ f(x) for any f 2 Cp(X), is continuous (Problem
166). Therefore, for each n 2 N, the set Pn ¼ en(Kn) is compact being a continuous

image of Kn. Any compact subset of R is bounded, so we can choose rn 2 R such

that z þ 1 < rn for any z 2 Pn. The function f : X ! R defined by f(n) ¼ rn, is
continuous because X is discrete. Since A is strongly dense in Cp(X), there is g 2 A
with jg(x) � f(x)j < 1/2 for all x 2 X. If g 2 Kn then g(n) ¼ en(g) 2 Pn; thus jg(n) �
f(n)j ¼ rn � g(n) > 1 which is a contradiction. Therefore Cp(X) is a separable space
that has no strongly dense s-compact subspace.

S.346. Prove that Cp(A(k)) has a strongly dense s-compact subspace for any
cardinal k.

Solution. By Problem 344 it suffices to show that Cp(A(k)) has a dense s-compact

subspace. By Fact 3 of S.312 this is equivalent to having a compact K � Cp(A(k))
which separates the points of A(k). Denote by u the function which is identically

zero on A(k); for each a 2 k, let fa(a) ¼ 1 and fa(z) ¼ 0 for all z 2 A(k) \ {a}. Then
fa 2 Cp(A(k)) for each a 2 k; consider the set K ¼ {fa : a < k} [ {u}.

The set K separates the points of A(k). To see this, take any distinct points

x, y 2 A(k). One of them, say x, is distinct from the point a 2 A(k); if x¼ a 2 k then

fa(x) ¼ 1 6¼ 0 ¼ fa(y).

306 2 Solutions of Problems 001–500



To see that the subspace K is compact, take any open cover U of the set K. Since
the point u 2 K belongs to someU 2 U , there is a finite P� A(k) and e> 0 such that

W ¼ {f 2 Cp(A(k)) : jf(x)j < e for all x 2 P} � U. This shows that fa 2 U for all

a 2 k \ P and therefore the set K0 ¼ K \U is finite. Choosing a finite U0 � U to cover

the set K \U, we get a finite subcover U0 [ {U} of the cover U. As a consequence
K is a compact subspace of Cp(A(k)) that separates the points of A(k) so our solution
is complete.

S.347. Suppose that there exists a strongly dense subset A � Cp(X) such that t(A) b
k. Prove that t(Cp(X)) b k.

Solution. Recall that U � t(X) is called an open o-cover of X if, for any finite

K � X, there is U 2 U with K � U. It suffices to prove that for any open o-cover
U of the space X, there is U0 � U such that U0 is an o-cover of X and jU0j b k (see

Problem 148 and 149).

Given f 2 A, let S( f)¼ {x 2 X : f(x)r 1/3}; consider the set P¼ {f 2 A : S( f)�U
for some U 2 U}. Observe that the function u1 � 1 is in the closure of P. Indeed,
if K is a finite subset of X and e > 0, then there is U 2 U such that K � U; take any
h 2 Cp(X) with hjK� 1 and hj(X \U)� 0. Since A is strongly dense in Cp(X), there is
f 2 A such that jf(x)� h(x)j <min{1/3, e} for all points x 2 X. Then f(x)< 1/3 for all

points x 2 X \U and jf(x) � 1j < e for all x 2 K, which shows that S( f) � U and f(x)
is e-close to u1(x) for all x 2 K. Therefore, u1 2 P; since t(A) b k, there is B � A
with jBj b k such that u1 2 B. For each f 2 B fix Uf 2 U such that S(f) � Uf; then

U0 ¼ {Uf : f 2 B} � U has cardinality b k. Given a finite K � X there is f 2 B such

that jf(x) � 1j < 1/3 for all x 2 K; thus f(x) > 2/3 for all x 2 K and hence K � Uf.

This shows that U0 is an o-cover of X so our solution is complete.

S.348. Suppose that there exists a strongly dense Fréchet-Urysohn subspace A in
the space Cp(X). Prove that Cp(X) is a Fréchet-Urysohn space.

Solution. Recall that U � t(X) is called an open o-cover of X if, for any finite

K � X, there is U 2 U with K � U. We say that U ! X if, for every x 2 X, the set
{U 2 U : x =2 U} is finite.

Take any open o-cover U of the space X. Given function f 2 A, let S( f ) ¼ {x 2
X : f(x) r 1/3}; consider the set P ¼ {f 2 A : S( f) � U for some U 2 U}. Observe
that the function u1 � 1 is in the closure of P. Indeed, if K is a finite subset of X
and e > 0 then there is U 2 U such that K � U; take any h 2 Cp(X) with hjK � 1

and hj(X \U) � 0. Since A is strongly dense in Cp(X), there is f 2 A such that jf(x)
� h(x)j < min{1/3, e} for all x 2 X. Then f(x) < 1/3 for all x 2 X \U and jf(x) � 1j
< e for all x 2 K, which shows that S( f ) � U and f(x) is e-close to u1(x) for all x 2
K. Therefore, u1 2 P; since A is Fréchet–Urysohn, there is a sequence T ¼ {fn :

n 2 o} � A such that fn! u1. For each f 2 T fix Uf 2 U such that S( f) � Uf; then

the family U0 ¼ {Uf : f 2 T} � U is countable. Given any x 2 X, there is m 2 o
such that fn(x) > 2/3 for all n r m. This shows that x 2 Ufn for all n r m and

hence U0 ! X.
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This proves that, for any open o-cover U of the space X, there exists a countable
U0 � U such that U0 ! X. Applying Problem 144(ii) we conclude that Cp(X) is a
Fréchet–Urysohn space.

S.349. Suppose that there exists a strongly dense subspace A � Cp(X) with
c(A) b o. Is it true that Cp(X) has countable pseudocharacter?

Solution. No, it is not true. We will prove this for the space A(c). Fix any set T with

jTj ¼ c; take any point a =2 T and introduce in the set X ¼ T [ {a} a topology like

in A(c), i.e., all points of T are declared isolated in X and U 2 t(a, X) if and only if

a 2 U and T \U is finite. It is evident that the space X is homeomorphic to A(c).

Denote by Fin(T) the family of all finite subsets of T. Observe that the set R ¼S
{RP : P 2 Fin(T)} has cardinality c and fix an enumeration {ha : a < c} of the

set R. For any a < c, let Sa be the finite set P for which ha 2 RP. It is easy to find a

disjoint family T ¼ {Ta : a < c} such that T ¼ S T and each Ta is countably

infinite, i.e., Ta ¼ tan : n 2 N
� �

where tan 6¼ tam if n 6¼ m.
For each a < c and m 2 N define a point wm

a 2 RX as follows: wm
a ðaÞ ¼ 0 and

wm
a ðtÞ ¼ haðtÞ for all t 2 Sa; if t 2 tan : nbm

� � [ Tn Sa [ Tað Þð Þ then wm
a ðtÞ ¼ 0; if

t ¼ tan 2 TanSa and n>m thenwm
a ðtÞ ¼ 1=n. LetBm ¼ wm

a : a< c
� �

andB¼ S {Bm :

m 2 N}. If Qm
a ¼ Sa [ tai : i>m

� �
then it is immediate that wm

a tð Þ : t 2 Qm
a

� �
is

a sequence which converges to zero and wm
a tð Þ ¼ 0 for all t 2 TnQm

a . This shows

thatwm
a 2 Cp Xð Þ for eachm2N and a< c. Given any r2R, let ur be the function onX

with ur(x) ¼ r for each x 2 X. Consider the set A ¼ {w þ ur : w 2 B and r 2 R}.
The set A is strongly dense in Cp(X). To prove this, take any f 2 Cp(X); if f(a)¼ r,

then there exists a setD¼ {sn : n2N}� T such that f(sn)! r and f(t)¼ r for all points
t 2 T \D. For each m 2N the function fm¼ ( f� ur)j{si : ibm} belongs to the set R;
take am< cwith Sam ¼ {si : ibm} and ham ¼ fm. Then gm ¼ wm

am þ ur 2 A for allm2
N and gm!! f. Indeed, fix e> 0; there exists k2N such that 1/k< e/2 and j f(si)� rj<
e/2 for all i r k. Now, if m r k then we have gm(si) ¼ f(si) for all i b m. As a
consequence jgm(t)� f(t)j ¼ 0< e for all t2 Sam . For any t2 T \ Sam ¼ T \ {si : ibm},
we have gm tð Þ � rj j ¼ wm

am tð Þ�� ��b1=mb 1=k< e=2. Thus, if t 2 T \D then jgm(t) �
f(t)j ¼ jgm(t)� rj< e/2< e. If t¼ si for some i>m then jgm(t)� f(t)jb jgm(t)� rj þ
jr� f(t)j< e/2þ e/2¼ e. Thus, we proved that, for anymr k, we have jf(x)� gm(x)j
< e for all x 2 X; hence gm!! f.

To see that c(A) b o, take any f ¼ wm
a þ ur 2 A. The set Bf ¼ Ta [ Sa [ {a} is

countable; suppose that g ¼ wk
b þ us 2 A and gjBf ¼ fjBf. Then g(a) ¼ r and hence

s ¼ r. If a 6¼ b then Ta \ Tb ¼ ;; take any t ¼ tan 2 Tan Sa [ Sb
� �

with n > m. Then
t 2 Bf and f ðtÞ ¼ 1

n 6¼ 0 ¼ gðtÞ which is a contradiction. This shows that a ¼ b.
It is an easy exercise that the set E ¼ {h 2 Cp(X) : hjBf ¼ fjBf} is a Gd-set in

Cp(X). We proved that f 2 E \ A and E \ A � wm
a þ ur : m 2 N

� �
. It turns out that

for any f 2 A there is a Gd set E
0 ¼ E \ A in A such that f 2 E0 and E0 is countable.

This implies that {f} is a Gd-set in A, i.e., c( f, A) b o. Since the function f 2 A was

chosen arbitrarily, we proved that c(A) b o. Therefore, A is a strongly dense

subspace of Cp(X) with c(A) b o. However, c(Cp(X)) > o because X is not

separable (Problem 173) so our solution is complete.
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S.350. Suppose that there exists a strongly dense s-pseudocompact subspace A in
the space Cp(X). Prove that X is pseudocompact.

Solution. We will need the following simple facts for further references.

Fact 1. A space Z is not pseudocompact if and only if there exists a countably

infinite closed discrete D � Z such that D is C-embedded in Z.

Proof. If a set D ¼ {dn : n 2 o} � Z is faithfully indexed, closed, discrete and

C-embedded in Z, let f(dn)¼ n for all n 2o. The function f :D!R is continuous as

is any function on a discrete space. Since D is C-embedded, there is g 2 C(Z) such
that gjD ¼ f. The function g being unbounded, the space Z is not pseudocompact so

sufficiency is proved.

Now, if Z is not pseudocompact then, by Problem 136, there exists a discrete

family U ¼ {Un : n 2 o} � t�(Z). Take a point xn 2 Un for each n 2 o and fix

a function fn 2 C(Z, [0, 1]) such that fn(xn) ¼ 1 and fn(Z \Un) ¼ {0}. It is clear that

D ¼ {xn : n 2 o} is a discrete and closed subspace of Z. If f : D ! R then the

function g ¼ Sn2o f (xn) · fn is continuous on Z. Indeed, if y 2 Z then there is a set

U 2 t(y, Z) which meets at most one element of U, say, Uk. Then gjU¼ ( f(xk) · fk)jU
is a continuous function. This implies continuity of g at the point y and hence g is

continuous. This shows that D is C-embedded in Z so Fact 1 is proved.

Fact 2. Let Z be any space. If Y is C-embedded in Z and D is strongly dense in Cp(Z)
then pY(D) is strongly dense in Cp(Y). Here pY : Cp(Z)! Cp(Y) is the restriction map

defined by pY ( f) ¼ fjY for all f 2 Cp(Z).

Proof. Take any f 2 C(Y) and any e > 0; there exists g 2 C(Z) with gjY ¼ f. Since D
is strongly dense in Cp(Z), there is h 2 D such that jh(x) � g(x)j < e for all x 2 Z. If
h1 ¼ pY (h) then jh1(y) � f(y)j ¼ jh(y) � g(y)j < e for all y 2 Y which proves that

pY (D) is strongly dense in Cp(Y). Fact 2 is proved.

Suppose that A ¼ S
{Kn : n 2 N} is strongly dense in Cp(X) and each Kn is

pseudocompact. If X is not pseudocompact then, by Fact 1, there is a closed

discrete D ¼ {dn : n 2 o} � X which is C-embedded in X. Apply Fact 2 to

conclude that E ¼ pD(A) is strongly dense in Cp(D). Observe that E ¼ S
{Ln :

n 2 o} where Ln ¼ pD(Kn) is compact being a pseudocompact second countable

space for each n 2 o.
For any x 2 D, the map ex : Cp(D)! R defined by ex( f)¼ f(x) for any f 2 Cp(D),

is continuous (Problem 166). Therefore, for each n 2 N, the set Pn ¼ edn (Ln) is
compact being a continuous image of Ln. Any compact subset of R is bounded, so

we can choose rn 2 R such that z þ 1 < rn for any z 2 Pn. The function f : D! R
defined by f(dn) ¼ rn, is continuous because D is discrete. Since E is strongly

dense in Cp(D), there is g 2 E with jg(x) � f(x)j < 1/2 for all x 2 D. If g 2 Ln then
g(dn) ¼ edn (g) 2 Pn; thus 1/2 > jg(dn) � f(dn)j ¼ rn � g(dn) > 1 which is a

contradiction. Therefore X is pseudocompact and our solution is complete.

S.351. Suppose that there exists a strongly dense s-countably compact set
A � Cp(X). Prove that X is compact.

2 Solutions of Problems 001–500 309



Solution. The author’s politics is to never refer to anything which will be proved

in the future solutions. Well, they are not future for the reader, but they are so for

the author who is writing the solutions one by one in the order the problems come.

There are some results in the future problems (I will give no reference partly

because I haven’t written their solutions yet) which will easily imply the state-

ment of this problem. When I formulated it I hoped to be able to find a direct

solution which would not involve the heavy artillery. However, I failed to do this

and the solution I present is really difficult because it has to develop some

methods which give rise to a variety of famous and non-trivial results of Cp-

theory. I still have hope that some reader will find a simpler solution before

reading mine. If I am alive by then, send it to me to include it in the future

versions of this book.

If T is a space then a continuous map r : T! T is called a retraction if r	r¼ r. A
subspace R � T is called a retract of T if there is a retraction r : T ! T such that

r(T) ¼ R. Given a continuous map ’ : T! T0, the dual map ’� : Cp(T
0)! Cp(T) is

defined by ’�( f ) ¼ f 	 ’ for any f 2 Cp(T
0). If ’ is onto then ’� is an embedding

(see Problem 163). If A� T and B� Cp(T) say that B separates the points of A if, for

any distinct a1, a2 2 A, there is f 2 B such that f(a1) 6¼ f(a2). A map ’ : Z ! Y is

called a condensation of Z into Y if ’ is an injective (but not necessarily surjective)

continuous map. If there exists a condensation of Z into Y we say that Z condenses

into Y.
Given a function f 2 Cp(T), a number e > 0 and a finite set K � T, we let

OT( f, K, e) ¼ {g 2 Cp(T) : j f(x) � g(x)j < e for all x 2 K}. Then the family U f ¼
{OT( f, K, e) : K is a finite subset of T and e > 0} is a local base at f in the space

Cp(T). If I is an infinite set then S�(I) ¼ {x 2 RI : for any e > 0, the set {i 2 I : jx(i)j
r e} is finite}. The space S�(I) is a linear subspace of RI, i.e., ax þ by 2 S�(I) for
any x, y 2 S�(I) and a, b 2 R. Thus it is also a linear space. Given any x 2 S�(I), let
jjxjj ¼ sup{jx(i)j : i 2 I}. It is clear that jjxjj is finite for any x 2 S�(I). If Z is a

compact space and f 2 Cp(Z) then f is a bounded function so the number jj f jj ¼ sup

{j f(z)j : z 2 Z} is also finite. We use the same symbol jj·jj of norm for the points of

S�(I) and for elements of function spaces because it is convenient for our notation

and never leads to confusion. If M and L are linear spaces then a map ’ :M! L is

called linear if ’(ax þ by) ¼ a’ (x) þ b’ (y) for any x, y 2 M and a, b 2 R. Since
any Cp(Z) is a linear space (see Problem 027), this gives a definition of a linear map

’ : Cp(Z)! Cp(Y) or a linear map ’ : Cp(Z)! S�(I).
Suppose that Z is a compact space and Y is a compact subspace of Cp(Z) which

separates the points of Z. Given A � Z and B � Y, let pA : Cp(Z) ! Cp(A) be the

restriction map defined by pA( f) ¼ f jA for every f 2 Cp(Z). Now, eB : Z! Cp(B) is
the evaluation map defined by eB(z)( f)¼ f(z) for any f 2 B and z 2 Z. Both maps are

continuous (see Problems 152 and 166 for related information). Call the sets A and

B conjugate if pA(B) ¼ pA(Y) and eB(A) ¼ eB(Z). The sets A and B will be called

preconjugate if pA(B) is dense in pA(Y) and eB(A) is dense in eB(Z). The notion of

(pre)conjugacy, obviously, depends on spaces Z and Y so we might say that A and B
are (Z, Y)-(pre)conjugate if Z and Y are not clear from the context.
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Fact 0. Let Y and Z be any spaces. Suppose that D is dense in Y and f, g : Y! Z are

continuous maps such that fjD ¼ gjD. Then f ¼ g.

Proof. Suppose not and take any y 2 Ywith z¼ f(y) 6¼ t¼ g(y). Choose disjointU, V
2 t(Z) such that z 2 U and t 2 V. If U0 ¼ f�1(U) and V0 ¼ g�1(V) then U0,V0 2 t(Y)
and y 2 U0 \ V0, i.e., U0 \ V0 6¼ ;. Since D is dense in Y, there is d 2 D \ U0 \ V0.
Then f(d) 2U and g(d) 2 V; recalling that we have f jD¼ gjD, we conclude that g(d)
¼ f(d) 2 V \ U ¼ ; which is a contradiction. Fact 0 is proved.

Fact 1. For any space T, a continuous map r : T ! T is a retraction if and only if

there exists a closed set R � T such that r(T) ¼ R and r(z) ¼ z for every z 2 R. In
particular, we can define a retraction r as a continuous map from T to Rwith r(z)¼ z
for all z 2 R.

Proof. If R� T is a closed set as in the hypothesis then, for any point t 2 T, we have
(r 	 r)(t)¼ r(r(t))¼ r(t) because z¼ r(t) 2 R. Therefore (r 	 r)(t)¼ r(t) for any t 2 T
which means that r 	 r ¼ r, i.e., r is a retraction.

Let r : T! T be a retraction. Take any z 2 R ¼ r(T); then z ¼ r(t) for some t 2 T
and hence r(z) ¼ r(r(t)) ¼ (r 	 r)(t) ¼ r(t) ¼ z. Thus, r(z) ¼ z for any z 2 R; in
particular, r(z) 6¼ z implies z =2 R.

To see that R is closed, take any t 2 T \R; then r(t) 6¼ t and therefore there exist

disjoint U, V 2 t(T) such that t 2 U and r(t) 2 V. By continuity of r there exists a set
W 2 t(t, T) such thatW � U and r(W) � V. The setsW and V � r(W) are disjoint so

r(t0) 6¼ t0 for any t0 2 W. By the last remark of the second paragraph, we have W \
R ¼ ; so T \R is open in T. Fact 1 is proved.

Fact 2. Let T be any space; assume that A � T and B � Cp(T). Then

(a) If B separates the points of A and B0 is dense in B then B0 also separates the

points of A;
(b) The map eBjA is injective if and only if B separates the points of A;
(c) The map pAjB is injective if and only if eB(A) separates the points of B;
(d) If eB(A) is dense in eB(T) then eB(A) separates the points of B. As a consequence

if eB(A) is dense in eB(T) then the map pAjB is an injection.

Proof. (a) Take any distinct a1, a2 2 A; since B separates the points of A, there is f 2 B
such that f(a1) 6¼ f(a2). Then e ¼ j f(a1) � f(a2)j > 0 and, for any g 2 B0 \
OT( f, {a1, a2}, e/3), we have

g a1ð Þ�g a2ð Þj jr f a1ð Þ� f a2ð Þj j� f a1ð Þ�g a1ð Þj j� f a2ð Þ�g a2ð Þj jre� e
3
� e

3
> 0;

and therefore g(a1) 6¼ g(a2), i.e., B
0 also separates the points of A.

(b) The map eB is injective if and only if, for any distinct a1, a2 2 A, we have

eB(a1) 6¼ eB(a2) which is equivalent to the existence of some f 2 B with eB(a1)( f ) 6¼
eB(a2)( f ), i.e., f(a1) 6¼ f(a2); hence eB is injective if and only if B separates the

points of A.
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(c) The map pAjB is injective if and only if, for any distinct f, g 2 B, we have

f jA 6¼ gjA which is equivalent to existence of a point a 2 A with f(a) 6¼ g(a), i.e.,
eB(a)( f) 6¼ eB(a)(g). It is evident that the last statement is equivalent to the fact that

eB(A) separates the points of B.
(d) It is evident that eB(T) separates the points of B so we can apply (a) to

conclude that eB(A) also separates the points of B. Fact 2 is proved.

Fact 3. Suppose that Z is compact and Y is a compact subspace of Cp(Z) which
separates the points of Z. If compact sets A � Z and B � Y are conjugate then

(a) The maps pAjB : B! pA(B) and eBjA : A! eB(A) are homeomorphisms.

(b) If pA ¼ (eBjA)�1 	 eB and qB ¼ (pAjB)�1 	 (pAjY) then the maps pA : Z! A and

qB : Y! B are retractions.

(c) f(pA(z)) ¼ f(z) for any z 2 Z and f 2 B.
(d) qB ¼ ((pA)

� 	 pA)jY.
Proof. Take any distinct points a1, a2 2 A; since Y separates the points of Z, there
is f 2 Y such that f(a1) 6¼ f(a2). There is a function g 2 B with gjA¼ fjAwhich shows

that g(a1) 6¼ g(a2). As a consequence, B separates the points of A so the map eBjA is

injective (Fact 2). The space A being compact, the mapping eBjA : A! eB(A) is a
homeomorphism and therefore (eBjA)�1 : eB(A) ¼ eB(Z)! A is also a continuous

map. As a consequence, the composition (eBjA)�1 	 eB makes sense and the map

pA ¼ (eBjA)�1 	 eB : Z! A is continuous. It is clear that A is a closed subset of Z
such that pA : Z! A and pA(a) ¼ a for any a 2 A. Thus, pA : Z! A is a retraction

(Fact 1).

Since the set eB(Z) separates the points of B and eB(Z)¼ eB(A), the set eB(A) also
separates the points of B and therefore pAjB is an injection by Fact 2. The space

B being compact, the map pAjB : B ! pA(B) is a homeomorphism; therefore the

map (pAjB)�1 : pA(B) ¼ pA(Y) ! B is also continuous. As a consequence, the

composition (pAjB)�1 	 (pAjY) makes sense and the mapping qB ¼ (pAjB)�1 	
(pAjY) : Y! B is continuous. It is immediate that qB( f) ¼ f for any f 2 B; the set B
being compact, it is closed in Y so qB is indeed a retraction (Fact 1). This completes

the proof of (a) and (b).

To prove (c), observe that, for each point z 2 Z, the definition of the retraction pA
implies eB(pA(z)) ¼ eB((eBjA)�1(eB(z))) ¼ eB(z); thus eB(pA(z)) ¼ eB(z) which is

equivalent to f(pA(z)) ¼ eB(pA(z))( f) ¼ eB(z)( f) ¼ f(z) for all f 2 B and this is

precisely what (c) says.

Take any g 2 B; then g(pA(z)) ¼ g(z) for any z 2 Z by (c). This is equivalent to

(gjA) 	 pA ¼ g, i.e., (pA)
�(pA(g)) ¼ g. Now, if f 2 Y then g ¼ qB( f) 2 B. We have

pA(g) ¼ pA( f ) by definition of the map qB; therefore (pA)
�(pA( f )) ¼ (pA)

�(pA(g)) ¼
g¼ qB( f ) which shows that qB¼ ((pA)

� 	 pA)jY and this is what was promised in (d).

Fact 3 is proved.

Fact 4. Suppose that Z is compact and Y is a compact subspace of Cp(Z) which
separates the points of Z. If A0 � Z and B0 � Y are preconjugate then A¼ clZ(A

0) and
B ¼ clY(B

0) are conjugate.
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Proof. Since A � A0 is compact and eB0(A
0) is dense in eB0(Z), we have the equality

eB0(A)¼ eB0(Z). For any z 2 Z, there is a 2 A such that eB0(a)¼ eB0(z); the maps eB(z)
and eB(a) are continuous onB and coincide on a dense set B0 of the space B. By Fact 0,
they coincide on the whole B, i.e., eB(a) ¼ eB(z) which shows that eB(A) ¼ eB(Z).

Analogously, since B � B0 is compact and pA0(B0) is dense in pA0(Y), we have

pA0(B) ¼ pA0(Y). For any f 2 Y, there is g 2 B such that pA0( f) ¼ pA0(g); the maps

pA( f) and pA(g) are continuous on A and coincide on a dense set A0 of the space A.
By Fact 0, they coincide on the whole A, i.e., pA( f) ¼ pA(g) which shows that

pA(B) ¼ pA(Y). Fact 4 is proved.

Fact 5. Suppose that Z is compact and Y is a compact subspace of Cp(Z) which
separates the points of Z. Given a limit ordinal b, assume that we have defined sets

Aa � Z, Ba � Y for all a < b in such a way that

(a) Aa � Aa0 and Ba � Ba0 for all a < a0 < b.
(b) pAa (Baþ1) is dense in pAa (Y) and eBa(Aaþ1) is dense in eBa (Z) for all a < b.

Then A ¼ clZ(
S
{Aa : a < b}) and B ¼ clY(

S
{Ba : a < b}) are conjugate.

Proof. It suffices to show that A0 ¼ S
{Aa : a < b} and B0 ¼ S

{Ba : a < b} are

preconjugate (Fact 4). Take any f 2 Y and any W 2 t(pA0( f), Cp(A
0)). There exists a

finite K� A0 and e> 0 such that OA0(pA0( f ), K, e)�W; take a< b such that K� Aa.

Since the set pAa (Baþ1) is dense in pAa(Y), we can find g 2 Baþ1 � B0 such that

pAa (g) 2 OAa(pAa ( f ), K, e). This implies that jg(z) � f(z)j < e for each z 2 K and

therefore pA0(g) 2 OA0(pA0(f ), K, e); thus pA0(g) 2 pA0(B0) \ W which shows that

pA0( f) is in the closure of the set pA0(B0). Since the function f 2 Y was taken

arbitrarily, we conclude that pA0(B0) is dense in pA0(Y).
Take any z 2 Z and any V 2 t(eB0(z),Cp(B

0)). There exists a finite L� B0 and e> 0

such that OB0(eB0(z), L, e)� V; take a < b such that L� Ba. Since the set eBa (Aaþ1) is
dense in the space eBa (Z), we can find t 2 Aaþ1 � A0 such that eBa (t) 2 OBa (eBa (z),
L, e). This implies jeB0(z)( f ) � eB0(t)( f )j ¼ j f(z) � f(t)j ¼ jeBa (z)( f ) � eBa (t)( f )j < e
for each f 2 L and therefore we have eB0(t) 2OB0(eB0(z), L, e); thus eB0(t) 2 eB0(A0) \ V
which shows that eB0(z) is in the closure of the set eB0(A

0). Since the point z 2 Z was

taken arbitrarily, we conclude that eB0(A
0) is dense in eB0(Z). Fact 5 is proved.

Fact 6. Suppose that Z is compact and Y is a compact subspace of Cp(Z) which
separates the points of Z. Given a limit ordinal b, assume that we have defined

conjugate sets Aa� Z and Ba� Y for all a< b so that Aa� Aa0 and Ba� Ba0 for all a
< a0 < b. Then, the sets A ¼ clZ(

S
{Aa : a < b}) and B ¼ clY(

S
{Ba : a < b}) are

conjugate.

Proof. For each a < b, we have pAa (Baþ1) � pAa (Ba) ¼ pAa(Y). Analogously
eBa(Aaþ1) � eBa(Aa) ¼ eBa (Z) and therefore the families {Aa : a < b} and {Ba :

a < b} satisfy the hypothesis of Fact 5. As a consequence, the sets A and B are

conjugate so Fact 6 is proved.

Fact 7. Suppose that Z is compact and Y is a compact subspace of Cp(Z) which
separates the points of Z. Given an infinite cardinal k, assume that we have P � Z
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and Q � Y such that jPj b k and jQj b k. Then there exist sets A0 � Z and B0 � Y
such that P � A0, Q � B0, jA0j b k, jB0j b k and the sets A ¼ clZ(A

0) and B ¼ clY(B
0)

are conjugate.

Proof. Let P0¼ P andQ0¼Q. Assume that we have sets P0, . . . , Pn andQ0, . . . ,Qn

with the following properties:

(1) pi � Z, Qi � Y, jPij b k and jQij b k for all i b n.
(2) pi � piþ1 and Qi � Qiþ1 for all i < n.
(3) pPi

(Qiþ1) is dense in pPi
(Y) and eQi

(Piþ1) is dense in eQi
(Z) for all i < n.

Since weight of the space pPn
(Y) does not exceed k, there exists Qnþ1 � Y such

that Qn � Qnþ1, jQnþ1j b k and pPn
(Qnþ1) is dense in pPn

(Y). Analogously, since
weight of the space eQn

(Z) does not exceed k, there exists Pnþ1 � Z such that Pn

� Pnþ1, jPnþ1j b k and eQn
(Pnþ1) is dense in eQn

(Z). This shows that the

inductive construction can go on to give us sequences of sets {Pi : i 2 o} and

{Qi : i 2 o} which satisfy (1)–(3). Applying Fact 5 we can conclude that the sets

A0 ¼ S
{pi : i 2 o} and B0 ¼ S

{Qi : i 2 o} are as promised. Fact 7 is proved.

Fact 8. Suppose that Z is compact and Y is a compact subspace of Cp(Z) which
separates the points of Z. Suppose that we have sequences of sets {An : n 2 o} and
{Bn : n 2 o} with the following properties:

(a) An � Z, Bn � Y, An � Anþ1 and Bn � Bnþ1 for all n 2 o.
(b) The sets An and Bn are conjugate for all n 2 o.

Denote by pn the retraction pAn
: Z ! An defined in Fact 3. For the set A ¼

clZ(
S
{An : n 2 o}) assume that {zn : n 2 o} � A and zn converges to a point z

for some z 2 Z (it is clear that the point z has to belong to A). Then the sequence

{pn(zn) : n 2 o} also converges to z.

Proof. Let B0 ¼ S
{Bn : n 2 o}; the sets A and B ¼ clY(B

0) are conjugate by

Fact 6 and therefore the mapping eBjA : A ! eB(A) is a homeomorphism (see

Fact 3). Since B0 is dense in B, the restriction map p : Cp(B)! Cp(B
0) is injective

(Problem 152). Therefore pjeB(A) is also a homeomorphism of eB(A) onto

p(eB(A)). It is straightforward that p 	 eB coincides with eB0 so A is mapped

homeomorphically onto eB0(A). This shows that the sequence {pn(zn) : n 2 o}
converges to z if and only if the sequence S ¼ {eB0(pn(zn)) : n 2 o} � Cp(B

0)
converges to eB0(z).

Fix any g2 B0; there is k 2o such that g2 Bk. For any nr kwe have g2 Bk� Bn;

since the sets An and Bn are conjugate and g 2 Bn, we have g(pn(zn)) ¼ g(pAn
(zn)) ¼

g(zn) by property (c) of Fact 3. The function g being continuous, we have g(zn)! g(z);
since the sequences {g(pn(zn)) : n r k} and {g(zn) : n r k} coincide, we conclude

that we have g(pn(zn))! g(z). The function g was taken arbitrarily, so we established
that g(pn(zn))! g(z) for all g 2 B0.

It remains to observe that eB0(z)(g) ¼ g(z) and eB0(pn(zn))(g) ¼ g(pn(zn)) for each
n 2 o to conclude that the sequence S(g) ¼ {eB0(pn(zn))(g) : n 2 o} converges to

eB0(z)(g) for each g 2 B0. Therefore S ¼ {eB0(pn(zn)) : n 2 o} converges to eB0(z)
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in Cp(B
0) (Problem 143) and hence {pn(zn) : n 2 o} converges to z. Fact 8 is

proved.

Fact 9. Let T be a pseudocompact space. Then nw(P) b o for any countable

P � Cp(T).

Proof. Define a map ’ : T!RP by the formula ’ (z)( f)¼ f(z) for all z 2 T and f 2 P.
It is evident that ’ is a continuous map so L ¼ ’ (T) is a second countable compact

space. Therefore, nw(Cp(L)) ¼ nw(L) ¼ o. Let ’�( f) ¼ f 	 ’ for each f 2 Cp(L).
It was proved in Problem 163 that ’� : Cp(L)! Cp(T) is an embedding; the set F ¼
’�(Cp(L)) is closed in Cp(T) because ’ is an R-quotient map (see Problem 163(iii)

and Fact 3 of S.154). It is immediate that P� F so P� F and hence nw(P)b nw(F)
¼ nw(Cp(L)) b o so Fact 9 is proved.

Fact 10. Let T be a compact space. Then any compact subspace Y of the space Cp(T)
is a Fréchet–Urysohn space.

Proof. We have t(Y) b t(Cp(T)) ¼ o (Problem 149). Given any P � Y and any

y 2 P, find a countable D� P such that y 2 D. The space D has a countable network

by Fact 9; being compact, D is second countable (Fact 4 of S.307). Thus D is a

Fréchet– Urysohn space and therefore there is a sequence S¼ {dn : n 2o}�Dwith

dn! y. It is clear that S � P and S! y whence Y is Fréchet–Urysohn so Fact 10 is

proved.

Fact 11. Suppose that Z is a compact space of density k r o and Y is a compact

subspace of Cp(Z) which separates the points of Z. Then it is possible to find

families {Aa : a < k} and {Ba : a < k} such that

(a) Aa is a compact subset of Z and Ba is a compact subset of Y for each a < k.
(b) Aa and Ba are conjugate for all a < k.
(c) Aa � Ab and Ba � Bb for all a < b < k.
(d) d(Aa) b o · jaj and d(Ba) b o · jaj for all a < k.
(e) clZ(

S
{Aa : a < k}) ¼ Z and Ab ¼ clZ(

S
{Aa : a < b}) for any limit b < k.

Proof. Fix a dense set D ¼ {za : a < k} in the space Z. We will construct families

{Aa : a < k} and {Ba : a < k} by transfinite induction so that

(f) za 2 Ab for all a < b < k

and the properties (a)–(e) are satisfied.

Let P ¼ {z0} and Q ¼ {f0} for some f0 2 Y. Apply Fact 7 to find compact

conjugate sets A0 � Z, B0 � Y such that P � A0, Q � B0, d(A0) b o and d(B0) b o.
It is clear that z0 2 A0 and the conditions (a)–(e) are satisfied (most of them

vacuously) for the sets A0 and B0.

Assume that b < k and we have constructed families {Aa : a < b} and {Ba :

a < b} with the properties (a)–(e) where applicable. If b is a limit ordinal, let

Ab¼ clZ({Aa : a< b}) and Bb¼ clY({Ba : a< b}). The sets Ab and Bb are conjugate

by Fact 6. Applying the property (d) we can find Ca � Aa and Ea � Ba such that

clZ(Ca)¼ Aa, clY(Ea)¼ Ba and jCajb o · jaj, jEajb o · jaj for all ordinals a< b. If
C ¼ S

{Ca : a < b} and E ¼ S
{Ea : a < b} then clZ(C) ¼ Ab, clY(E) ¼ Bb and
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jCj b o · jbj as well as jEj b o · jbj. Thus, the condition (d) is satisfied for Ab and

Bb; it is evident that (f) also holds.

Now, if b ¼ a þ 1 then we can find sets Ca � Aa and Ea � Ba such that clZ(Ca)¼
Aa, clY(Ea) ¼ Ba and jCaj b o · jaj, jEaj b o · jaj. By Fact 7 applied to the sets P ¼
Ca [ {za} andQ¼ Ea, there exist Cb� P, Eb� Q such that jCbjb o · jbj, jEbjb o ·
jbj and the sets Ab ¼ clZ(Cb), Bb ¼ clY(Eb) are conjugate. It is obvious that the

conditions (a)–(f) are satisfied where applicable also for the families {Aa : ab b} and
{Ba : ab b}. Thus our inductive construction can be carried out giving us the families

{Aa : a < b} and {Ba : a < b} with the properties (a)–(f). The first part of (e) is also

fulfilled because D � S {Aa : a < k} by property (f). Fact 11 is proved.

Call a compact space Z Eberlein compact if there is a compact Y � Cp(Z) which
separates the points of Z. A family {pa : a < k} of retractions on a compact space Z
with d(Z) ¼ k is called resolving if it satisfies the following conditions:

(r1) For any a < k, the space pa(Z) is either separable or the density of pa(Z) is
strictly less than k.

(r2) pa(Z) � pb(Z) if a < b.
(r3) If b < k is a limit ordinal then pb(Z) ¼ clZ(

S
{pa(Z) : a < b}).

(r4) If {zn : n 2 o} � Z, zn! z 2 Z and we are given an increasing sequence {an :
n 2o}� kwith {zn : n 2o}�

S
{pan (Z) : n 2o} then the sequence {pan(zn) :

n 2 o} also converges to z.
(r5) Z ¼ clZ(

S
{pa(Z) : a < k}).

A compact space Z is called resolvable if every closed F � Z has a resolving

family of retractions.

Fact 12. (a) A compact space Z is Eberlein compact if and only if it embeds into

Cp(K) for some compact space K.
(b) Any closed subspace of an Eberlein compact space is Eberlein compact.

(c) Any Eberlein compact space is Fréchet–Urysohn and resolvable.

Proof. (a) If Z is Eberlein compact then there is a compact K � Cp(Z) which

separates the points of Z. The map eK : Z ! Cp(K) is an injection by Fact 2(b);

therefore it embeds Z into Cp(K). To prove sufficiency, observe that, if Z� Cp(K) is
compact then the space Y ¼ eZ(K) is a compact subspace of Cp(Z) which separates

the points of Z.
(b) This is an easy consequence of (a) because if Z is a subspace of Cp(K) for

some compact K then any closed subset of Z embeds in the same Cp(K).
(c) If Z is Eberlein compact then Z � Cp(K) for some compact K by (a); apply

Fact 10 to conclude that Z is Fréchet–Urysohn. Now, if d(Z) ¼ k and Y � Cp(Z) is
compact and separates the points of Z then there exist families {Aa : a < k} and

{Ba : a < k} with the properties (a)–(e) of Fact 11. If we let pa ¼ pAa , where pAa :

Z! Aa is the retraction determined by the conjugate pair (Aa, Ba), then the family

{pa : a < k} is as promised. Indeed, (r1) follows from pa(Z) ¼ Aa and Fact 11(d).

The property (r2) is a consequence of Fact 11(c); (r3) and (r5) follow from Fact

11(e). Finally (r4) follows from Fact 8. We showed that every Eberlein compact Z
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has a resolving family of retractions. Since every closed subspace of Z is also an

Eberlein compact by (b), the space Z is resolvable so Fact 12 is proved.

Fact 13. Let Z be a compact Fréchet–Urysohn space. Suppose that {pa : a < k} is a
family of retractions on Z with the properties (r2)–(r5). Let Aa ¼ pa(Z) for each
ordinal a < k; denote by h�1 the restriction map pA0

. For any ordinal a < k, let ha( f)
¼ pAaþ1 	 ( f� ( pa)

�(pAa ( f))). In other words, ha : Cp(Z)! Cp(Aaþ1) and for every z
2 Aaþ1, we have ha( f )(z) ¼ f(z) � f(pa(z)). Then we have

(a) If f, g 2 C(Z) and f 6¼ g then there is a 2 [�1,k) such that ha( f) 6¼ ha(g).
(b) For any f 2 C(Z) and for any e > 0 the set K( f, e)¼ {a< k : there exists a point

z 2 Aaþ1 with jha( f)(z)j r e} is finite.

Proof. (a) We have Z ¼ S Aa : a<kf g by (r5); apply Fact 0 to conclude that

fj(S {Aa : a < k}) 6¼ gj(S {Aa : a < k}). Therefore, there exists a < k for which

fjAa 6¼ gjAa; let b be the minimal of such a. Applying the property (r3) in the same

way we applied (r5), we can see that b cannot be a limit ordinal. If b ¼ 0 then

h�1( f) ¼ f jA0 6¼ gjA0 ¼ h�1(g) so a ¼ �1 is suitable for checking (a).

If b > 0 then b ¼ a þ 1 for some a < k; take any z 2 Ab with f(z) 6¼ g(z). By the
choice of b we have f jAa ¼ gjAa whence f(pa(z)) ¼ g(pa(z)). As a consequence,

f(z) � f(pa(z)) 6¼ g(z) � g(pa(z)), i.e., ha( f ) 6¼ ha(g) so (a) is proved.

(b) If the set K( f, e) is infinite then there exist sequences {zn : n 2o}� Z and {an :
n 2 o}� k such that zn 2 Aanþ1, an 6¼ am if m 6¼ n and jhan( f )(Zn)jr e for all n 2 o.
Now, k is a well-ordered set and Z is Fréchet–Urysohn; this implies that we can

assume that an < anþ1 for all n 2 o and the sequence {Zn : n 2 o} converges to

some point z 2 Z for if it is not so, we can restrict our consideration to the respective

subsequences. We have zn 2 Aanþ1 � Aanþ1 because an þ 1b anþ1. This shows that
{Zn : n 2 o}�S {Aan : n 2 o}; applying (r4) we can see that the sequence {pan (zn) :
n 2 o} also converges to z. The function f being continuous, we have f ( pan (zn))!
f(z) and f(zn)! f(z). Therefore there exists m 2 o such that j f(zm)� f(pam (zm))j< e,
i.e., jham ( f )(xm)j< ewhich is a contradiction with the choice of the point zm. Fact 13
is proved.

Fact 14. If Z is a separable compact space then Cp(Z) condenses linearly onto a

subspace of S�(N) without increasing the norm. In other words, there exists a

linear injective continuous map ’ : Cp(Z) ! S�(N) such that jj’ ( f)jj b jj f jj for
all f 2 Cp(Z).

Proof. Take any dense set D ¼ {zn : n 2 N} in the space Z. For any f 2 Cp(Z) let

’ fð Þ nð Þ ¼ 1
n f znð Þ for all n2N. It is straightforward that’ ( f)2RN for each function

f 2 Cp(Z) and the map ’ : Cp(Z)! RN is linear and continuous. Take any f 2 Cp(Z);
the space Z being compact, the function f is bounded, so there is L> 0 such that j f(z)j
b L for all z 2 Z. If e > 0 then 1

m<
e
L for some m 2 N. Thus ’ fð Þ nð Þj j ¼

1
n f znð Þj jb 1

n � Lb 1
m � L< e for all n r m which shows that ’ ( f) 2 S�(N). Therefore

’ is a linear map from Cp(Z) to S�(N). If f 6¼ g then f jD 6¼ gjD (Fact 0) so f(Zn) 6¼ g
(Zn) for some n 2 N. Hence ’ ( f)(n) 6¼ ’ (g)(n) so ’ ( f ) 6¼ ’ (g); this proves that ’ is
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a condensation. Observe finally that j f(Zn)j b jj fjj and ’ fð Þ nð Þj j ¼ 1
n f znð Þj jb fk k for

all n 2 N. This shows that jj ’ ( f )jj b jj f jj so Fact 14 is proved.

Fact 15. Let Z be a resolvable compact Fréchet–Urysohn space. Then the space

Cp(Z) can be linearly condensed without increasing norm into S�(I) for some I of
cardinality d(Z). In other words, there exists a linear continuous injective map ’ :

Cp(Z)! S�(I) such that jj’ ( f )jj b jj f jj for each f 2 Cp(Z).

Proof. The proof will be by induction on the cardinal number k ¼ d(Z). Our
statement is true for k ¼ o by Fact 14. Assume that d(Z) ¼ k for some k > o
and the statement of our Fact is true for any resolvable compact Fréchet–Urysohn

space of density < k.

There exists a resolving family {pa : a < k} of retractions on the space Z. Let
Aa ¼ pa(Z) for each a < k; denote the restriction map pA0

: Cp(Z)! Cp(A0) by g�1.
For any ordinal a < k, let ga fð Þ ¼ 1

2
� pAaþ1 	 f � pað Þ � pAa fð Þð Þð Þ� �

. In other

words, ga : Cp(Z) ! Cp(Aaþ1) and for every point z 2 Aaþ1, we have

ga fð Þ zð Þ ¼ 1
2
f zð Þ � f pa zð Þð Þð Þ. It is easy to see that ga is a linear continuous map

with jjga( f)jj b jjfjj for any f 2 Cp(Z) and any a 2 [�1, k). Here the norm of ga( f) is
taken in the space Cp(Aaþ1). The condition (rl) implies that the density of the

compact space Aaþ1 is strictly less than k; since the space Aaþ1 is resolvable, by
the induction hypothesis, there exists a linear injective continuous map ’a :

Cp(Aaþ1) ! S�(Iaþ1) with jj’a( f)jj b jjfjj for any function f 2 Cp(Aaþ1);
here Iaþ1 is a set with jIaþ1j ¼ d(Aaþ1) < k. Without loss of generality we

can assume that Iaþ1 \ Ibþ1 ¼ ; if a 6¼ b. Observe also that the cardinality of

the set I ¼ S {Iaþ1 : �1 b a < k} is equal to k.
For any f 2 Cp(Z) let us define ’ ( f) 2 S�(I) as follows. If i 2 I then there is a

unique a 2 [�1, k) such that i 2 Iaþ1; let ’ ( f)(i) ¼ ’a(ga( f))(i). It is immediate that

’ ( f ) 2 P ¼ Q{S�(Iaþ1) : a 2 [�1,k)} � RI and, for every a 2 [�1, k), we have
wa	 ’ ¼ ’a 	 ga, where wa : P! S�(Iaþ1) is the respective natural projection. The
map ’ a 	 ga being continuous for each a 2 [�1,k), this shows that ’ is a continuous

map (Problem 101). The linearity of ’ follows easily from the fact that ’ a 	 ga is
linear for each a 2 [�1,k). Observe, also that jjhjj ¼ sup{jjwa(h)jj : a 2 [�1,k)} for
each h 2P. Since jjwa(’ ( f ))jj ¼ jj’a(ga( f))jjb jjga( f )jjb jj f jj, we have jj’ ( f )jjb
jj fjj for each f 2 Cp(Z).

Now, if we take any f, h 2 Cp(Z) with f 6¼ h then there is a 2 [�1,k) such that

ga( f) 6¼ ga(h) (see Fact 13(a) applied to ga ¼ 1
2
� ha). Since the map ’a is a

condensation, we have ’a(ga( f)) 6¼ ’a(ga(h)) whence ’ ( f) 6¼ ’ (h), i.e., the map

’ is injective. The last thing we must prove is that ’ ( f) 2 S�(I) for each f 2 Cp(Z).
To obtain a contradiction suppose not. Then there is e> 0 and an infinite J� I such
that j ’ ( f)(i)jr e for each i 2 J. If J \ Iaþ1 is infinite for some a 2 [�1, k) then we
have the desired contradiction because wa(’ ( f)) 2 S�(Iaþ1), which means that the

number of i’s with i 2 Iaþ1 with j’ ( f)(i)j r e, is finite.
Now, if J \ Iaþ1 is finite for each a 2 [�1, k) then there are infinitely many

ordinals a 2 [�1,k) such that, for some i 2 Iaþ1, we have j ’ ( f )(i)j ¼ j ’a(ga( f ))(i)j
r e. By the definition of the norm in S�(Iaþ1) we have jj ’a(ga( f ))jj r e and hence
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jjga( f )jj r e because the map ’a does not increase the norm. As a consequence, for

infinitely many a’s there exists a point z 2 Aaþ1 with jga( f)(z)jr e. This contradicts
Fact 13(b) applied to the functions ha ¼ 2 · ga and the number 2e. The obtained

contradiction shows that ’ (Cp(Z)) � S�(I) so Fact 15 is proved.

Fact 16. (a) If Z is an Eberlein compact space then Cp(Z) condenses into S�(I) for
some set I.
(b) A compact space Z is Eberlein if and only if Z embeds in S�(I) for some set I.

Proof. (a) Any Eberlein compact space Z is Fréchet–Urysohn and resolvable

(Fact 12(c)) so we can apply Fact 15 to conclude that Cp(Z) condenses into S�(I)
for some set I.

(b) Suppose that Z is a compact subspace of S�(I) for some I. For any i 2 I,
denote by pi the natural projection of RI to the ith factor. Let u 2 Cp(Z) be the

function equal to zero at all points of Z and fi¼ pijZ for all i 2 I. Observe that the set
K ¼ {u} [ {fi : i 2 I} separates the points of Z. Indeed, if y, z 2 Z and y 6¼ z then,
recalling that Z � RI, we conclude that there is i 2 I such that pi(y) 6¼ pi(z), i.e.,
fi(y) 6¼ fi(z).

To see that K is compact take any open (in Cp(Z)) cover U of the set K. There is
U 2 U such that u 2 U; choose e > 0 and a finite P ¼ {z1, . . . , zn} � Z such that

OZ(u, P, e) � U. Since zk 2 S�(I) for all k b n, there is a finite J � I such that

jpi(zk)j < e for all i 2 I \ J and k b n. Therefore jfi(zk)j < e for all i 2 I \ J and k b n
which implies fi 2 OZ(u, P, e) � U for all i 2 I \ J. Thus the set K \U is finite and

can be covered by some finite subfamily U0� U . Since the family {U} [ U0 is a
finite subcover of U, we proved that K is a compact subset of Cp(Z) which

separates the points of Z. This shows that Z is an Eberlein compact so we proved

sufficiency.

Now, if Z is an Eberlein compact, fix a compact Y � Cp(Z) which separates the

points of Z. The map eY : Z ! Cp(Y) is injective by Fact 2 so eY : Z ! eY(Z) is a
homeomorphism, i.e., Z embeds into Cp(Y). Since Y is a compact subspace of Cp(Z),
it is also Eberlein compact by Fact 12. Now apply (a) to find a condensation ’ of

Cp(Y) into S�(I) for some I. It is clear that ’ 	 eY is an embedding of Z into S�(I) so
Fact 16 is proved.

Fact 17. Let Z be an Eberlein compact space. Then, for any x 2 Z, there is a family

V ¼ {Vn : n 2N}� t�(Z) which converges to x in the sense that, for anyU 2 t(x, Z),
there is m 2 N such that Vn � U for all n r m.

Proof. We can consider that Z � S�(I) for some set I (Fact 16). Let u be the

element of S�(I) with u(i) ¼ 0 for all indices i 2 I. Observe that, a, b 2 S�(I)
implies a þ b 2 S�(I) and a � b 2 S�(I). If a 2 S�(I), define a map Ta : RI! RI

by the formula Ta(c) ¼ c � a for all c 2 RI. Then Ta : RI ! RI is a homeomor-

phism (Problem 079) such that Ta(S�(I)) � S�(I). Thus, considering the space

Tx(Z) instead of Z, we do not loose generality and reduce our task to the case

when x ¼ u 2 Z. So let us show that there is a family U ¼ {Un : n 2 o} � t�(Z)
which converges to u.

2 Solutions of Problems 001–500 319



The following property is crucial for our proof.

(�) For any W 2 t(u, Z) and any e > 0, there exists V 2 t�(Z) and a finite J � I
such that V � W and jz(i)j b e for any z 2 V and i 2 I \ J.

Given a finite K � I, let O(K) ¼ {z 2 Z : jz(i)j > e for every i 2 K}; it is
evident that O(K) is an open subset of Z for every finite K � I. Assume that (�)
does not hold and take W 2 t(u, Z) which witnesses this. Let W0 ¼ W and J0 ¼ ;.
Suppose that we have W0, . . . ,Wn 2 t�(Z) and finite sets J0, . . . ,Jn � I with the

following properties:

(1) W ¼ W0 � � � � � Wn and J0 � � � � � Jn.
(2) Wkþ1 ¼ Wk \ O(Jkþ1) and Jkþ1 \ Jk 6¼ ; for every k b n � 1.

If, for every i 2 I \ Jn and every w 2Wn, we have jw(i)j b e then we can take V ¼
Wn and J ¼ Jn to show that (�) holds for W, a contradiction. Therefore there exists

i 2 I \ Jn and y 2 Wn such that jy(i)j > e. Let Jnþ1 ¼ Jn [ {i}; the set Wnþ1 ¼
O(Jnþ1) \ Wn is non-empty because y 2Wnþ1 so our inductive construction can go
on giving us sequences {Wn : n 2o} and {Jn : n 2o} with properties (1) and (2) for
every n 2 o. The set P¼ S {Jn : n 2o} is infinite by (2); for each n 2 N, the set Fn

¼ {z 2 Z : jz(i)j r e for all i 2 Jn} is non-empty because ; 6¼ Wn � O(Jn) � Fn by

(2). Besides, Fn is closed and Fnþ1 � Fn for each n 2 o. As a consequence, F ¼
\ {Fn : n 2 o} 6¼ ; because Z is compact. But if y 2 F then jy(i)jr e for every i 2 P
which contradicts the fact that y 2 S�(I) and P is infinite. The property (�) is proved.
Given a non-empty finite set J � I and any n 2 N, we will need the set

W J; nð Þ ¼ z 2 Z : z ið Þj jf < 1
n for each i 2 J}; if J ¼ ; then we let W(J, n) ¼ Z. It

is clear that W(J, n) is an open subset of Z which contains u for all n 2 N.
Applying (�) to the setW¼ Z, we can find a set V1 2 t�(Z) and a finite B1� I such

that jz(i)j b 1 for any i 2 I \ B1 and z 2 V1.

Suppose that n 2N and we have constructed sets V1, . . . , Vn 2 t�(Z) and B1, . . . ,
Bn � I with the following properties:

(4) B1 � � � � � Bn.

(5) Vkþ1 � W(Bk, k þ 1) for each k ¼ 1, . . . , n � 1.

(6) For any k b n, we have jz(i)j b 1/k for any i 2 I \ Bk and z 2 Vk.

Apply (�) to the setW ¼W(Bn, n þ 1) to find Vnþ1 2 t�(Z) and a finite set P � I
such that Vnþ1�W and z ið Þj j b 1

nþ1 for all z 2 Vnþ1 and i 2 I \ P. Letting Bnþ1¼ Bn

[ P, we accomplish our inductive construction getting sequences {Vn : n 2 N} and
{Bn : n 2 N} with properties (4)–(6) for all n 2 N. The sequence {Vn : n 2 N}
converges to u. To see this, take any U 2 t(u, Z); there exists a finite J� I and k 2N
such thatW(J, k) � U. The set J is finite, so there is m 2 N such that m > k and J \
Bm ¼ J \ (

S
{Bn : n 2 N}).

For any n r m þ 1 and any z 2 Vn, if i 2 J \ Bm then i 2 Bn�1 and hence

z ið Þj j < 1
n <

1
m < 1

k by (5). If i 2 J \ Bm then i =2 Bn which implies z ið Þj jb 1
n<

1
m<

1
k by

(6). As a consequence, z ið Þj j < 1
k for all i 2 J, i.e., z 2W(J, k). The point z 2 Vn was

chosen arbitrarily, so Vn�W(J, k)�U for all nrmþ 1 and therefore the sequence

{Vn : n 2 N} converges to u. Fact 17 is proved.
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Fact 18. If a space Z has a dense pseudocompact subspace then Z is also pseudo-

compact.

Proof. Let Y be a dense pseudocompact subspace of Z. If f : Z! R is a continuous

function then f Zð Þ ¼ f clZ Yð Þð Þ � f Yð Þ (the bar denotes the closure inR). However,
f(Y) is compact being a pseudocompact second countable space (Problem 212) so f
(Y) is closed and bounded in R whence f Zð Þ � f Yð Þ ¼ f Yð Þ. Thus f(Z) is bounded
and hence Z is also pseudocompact. Fact 18 is proved.

Fact 19. If Z is an Eberlein compact space then any pseudocompact subspace of Z is

compact and hence closed in Z.

Proof. Assume that P � Z is a pseudocompact non-closed subspace of Z. Fix any

point z 2 P \P; the space Y ¼ P is Eberlein compact (Fact 12) and Y \ {z} is

pseudocompact because it has a dense pseudocompact subspace P (Fact 18).

Apply Fact 17 to find a sequence {Vn : n 2 N} � t�(Y) which converges to z.
Since P� Y \ {z} is dense in Y, the sequence V ¼ {Vn \ {z} : n 2 N} consists of non-
empty open subsets of Y \ {z}. We claim that the family V is locally finite in Y \ {z}.
Indeed, if y 2 Y \ {z} then take U, V 2 t(Y) such that z 2 U, y 2 V and U \ V ¼ ;.
Since V converges to z, there exists m 2 N for which Vn � U for all n r m. This
shows that V is a neighbourhood of ywhich intersects at mostm elements of V. Thus
V is an infinite locally finite family of non-empty open subsets of Y \ {z} which is a
contradiction with pseudocompactness of Y \ {z}. Fact 19 is proved.

We are, at last, ready to present our solution. Let X be a space with a strongly

dense s-countably compact set A � Cp(X). The space X is pseudocompact

by Problem 350. Let A ¼ S
{An : n 2 o} where each An is countably compact.

For each f 2 Cp(X) there is a unique e( f) 2 Cp(bX) such that e( f)jX ¼ f (Fact 4 of

S.309). The set Bn¼ e(An) is also a countably compact subspace of Cp(bX) for each
n 2 o (Fact 6 of S.309). If Cn is the closure of Bn in Cp(bX) then Cn is compact for

each n 2 o (see Fact 18 of this solution and Fact 2 of S.307).

The set B ¼ S {Bn : n 2 o} is dense in Cp(bX). Indeed, if f 2 Cp(bX) then g ¼
f jX is a uniform limit of some sequence S � A. In particular, g is in the closure of S
in the space Cp(X). Now apply Fact 5 of S.309 to conclude that f is in the closure of
e(S) in the space Cp(bX). Since e(S) � B, we have f 2 B; the function f was chosen
arbitrarily so B¼ Cp(bX). If C¼

S
{Cn : n 2o} then C� B¼ Cp(bX) which shows

that a s-compact set C is dense in Cp(bX). As a consequence, there is a compact

subset of Cp(bX) which separates the points of bX (Fact 5 of S.310). Therefore bX is

an Eberlein compact; finally apply Fact 19 to conclude that X is closed in bX and

hence X ¼ bX is compact. Our solution is complete.

S.352. Suppose that there exists a strongly dense countable A� Cp(X). Prove that X
is compact and metrizable.

Solution. Every countable space is, evidently, s-compact so A is a strongly dense

s-compact subspace of Cp(X); hence X is compact by Problem 351. Since Cp(X) is
separable, the space X is metrizable by Problem 213.
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S.353. Give an example of a non-compact space X for which there exists a strongly
dense s-pseudocompact A � Cp(X).

Solution. There exists an infinite pseudocompact space X such that Cp(X, I) is

pseudocompact and every countable subset of X is closed and discrete in X (see

Facts 1 and 4 of S.286). This shows that X is not even countably compact because in

a countably compact space every closed and discrete subspace is finite.

Since [�n, n] is homeomorphic to I, the space Cp(X, [�n, n]) is homeomorphic

to Cp(X, I) for each n 2 N; as a consequence, Cp(X, [�n, n]) is pseudocompact for

each n 2 N so the space Cp(X) ¼
S
{Cp(X, [�n, n]) : n 2 N} is s-pseudocompact

and, of course, strongly dense in itself.

S.354. Prove that L(k)o is a Lindel€of space for any k.

Solution. A family of sets V is inscribed in a family of sets U if, for any V 2 V there

is U 2 U such that V � U. The family V is a refinement of U if it is inscribed in U
and

SV ¼ SU. Call a space X completely screenable if, for any U � t(X), there
exits a s-disjoint family V � t(X) such that V is inscribed in U and

SV ¼ SU. In
other words a space X is completely screenable if any family of open subsets of X
has a s-disjoint open refinement.

Fact 1. The space L(k)o is completely screenable for any uncountable cardinal k.

Proof. Let us first prove by induction that L(k)n is completely screenable for any

n 2 N. If n ¼ 1 and U � t(L(k)) then we have two cases:

(1) a =2 SU. Then the family V ¼ {{a} : a 2 U for some U 2 U} � t(L(k)) is
disjoint, inscribed in U and

SV ¼ SU.
(2) a 2 SU. Pick anyW 2 U with a 2W; then the family V ¼ {W} [ {{a} : a 2 U

for some U 2 U} � t(L(k)) is s-disjoint (in fact, it is a union of two disjoint

families), inscribed in U and
SV ¼ SU. Thus, we proved that L(k) is

completely screenable.

Assume that L(k)n is completely screenable for some n 2 N and take any

family U � t(L(k)nþ1). For any x ¼ (x1, . . . , xn, xnþ1) 2 L(k)nþ1, the point p(x) ¼
(x1, . . . , xn, a) belongs to L(k)nþ1; it is evident that p : L(k)nþ1 ! L(k)nþ1 is a

continuous map and F ¼ p(L(k)) ¼ L(k)n � {a} is a closed set of L(k)nþ1

homeomorphic to L(k)n.
Observe that L(k)nþ1 \ F ¼ S

{Va : a < k}, where Va ¼ L(k)n � {a} for each

a 2 k. It is clear that each Va is open in L(k)nþ1 and the family {Va : a < k} is

disjoint. Of course, each Va is also homeomorphic to L(k)n. By the induction

hypothesis there exists a s-disjoint family Va � t(Va) such that Va is inscribed

in Ua ¼ {U \ Va : U 2 U} and
SUa ¼ SVa for each a < k. Let

Va ¼
S Vma : m 2 o
� �

where Vma is disjoint for each m 2 o. Then the family

Vm ¼ S Vma : a<k
� �

is disjoint, inscribed in U and consists of open subsets of

L(k)nþ1. It is easy to see that V0 ¼ S {Vm : m 2 o} is a s-disjoint family of open

subsets of L(k)nþ1 such that (
SU) \ (L(k)nþ1 \ F) ¼ SV0.
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The space F is also homeomorphic to L(k)n so there is a s-disjoint familyW of

open subsets of F such thatW is inscribed in UF ¼ {U \ F : U 2 U} and SW ¼SU f. SinceW is also inscribed in U, for each W 2 W we can find O(W) 2 U with

W � O(W). Observe that p(z) ¼ z for any z 2 F which shows that W � p�1(W) for

each W 2 W. Besides, the family {p�1(W) : W 2 W} is s-disjoint and consists of

open subsets of L(k)nþ1. To make it inscribed in U, let V00 ¼ {p�1(W) \ O(W) :W 2
W}. Then the family V00 is s-disjoint, inscribed in U, consists of open subsets of

L(k)nþ1 and
SV00 � (

SU) \ F. Now, the family V ¼ V0 [ V00 is s-disjoint,
inscribed in U, consists of open subsets of L(k)nþ1 and

SV ¼ SU. Therefore
L(k)n is completely screenable for any n 2 N.

Now take any family U � t(L(k)o); let pn : L(k)o ! L(k)n be the respective

natural projection of L(k)o onto the product of its first n factors. Since it suffices to

prove our property for any open refinement of U, we can assume that every U 2 U
is a standard set, i.e., there is n 2 o and V 2 t(L(k)n) such that U ¼ p�1n Vð Þ; let
i(U)¼ n. Then U ¼ S {Un : n 2 o} where Un¼ {U 2 U : i(U)¼ n}. For any n 2 o,
the family U0n ¼ pn Uð Þ : U 2 Unf g consists of open subsets of L(k)n; since we

proved that L(k)n is completely screenable, we can find an open (in L(k)n) s-disjoint
refinement Wn of U0n. Then the family Vn ¼ p�1n Wð Þ : W 2 Wn

� �
is s-disjoint,

inscribed in U, consists of open subsets of L(k)o and
SVn ¼ SUn. As a conse-

quence, the family V ¼ S
{Vn : n 2 o} is an open s-disjoint refinement of U so

Fact 1 is proved.

Claim. ext(L(k)o) ¼ o, i.e., every closed discrete subset of L(k)o is at most

countable.

Proof. Suppose that, on the contrary, there is a set D¼ {xa : a<o1}� L(k)owhich

is closed and discrete. Denote by qn the natural projection of L(k)o onto its

nth factor. If q0(D) is countable then there exist c0 2 L(k) such that the set

D0 ¼ q�10 c0ð Þ \ D is uncountable. If q0(D) is uncountable then let c0 ¼ a, choose

xd 2 q�10 dð Þ \ D for every d 2 q0(D) and let D0 ¼ {xd : d 2 q0(D)}. Observe that in
both cases D0nq�10 Uð Þ�� ��bo for any open neighbourhood U of the point c0 in the

space L(k).

Assume that we have chosen points c0, . . . , cn 2 L(k) and uncountable subsets

D0 � � � � � Dn of the set D such that, for every k b n, the set Dk is concentrated
around ck, i.e., Dknq�1k Uð Þ�� ��bo for every U 2 t(ck, L(k)).

We have to consider two cases:

(1) The set qnþ1(Dn) � L(k) is countable. Then there is cnþ1 2 L(k) such that the
set Dnþ1 ¼ Dn \ q�1nþ1 xð Þ is uncountable.

(2) The set qnþ1(Dn) � L(k) is uncountable. Then choose xd 2 q�1nþ1 dð Þ \ Dn for

every d 2 qnþ1(Dn), let cnþ1 ¼ a and Dnþ1 ¼ {xd : d 2 qnþ1(Dn)}.

It is clear that in both cases the set Dnþ1�Dn is also concentrated around cnþ1 so
our inductive construction can be continued to give us a point c 2 L(k)o such that c
(n) ¼ cn for all n 2 o. The point c is an accumulation point for D: to see it, take

anyW 2 t(c, L(k)o). There is n 2 o and U0, . . . , Un 2 t(L(k)) such that ck 2 Uk for

each k b n and U ¼ T q�1k Ukð Þ : k b n
� � � W. The set Dn is uncountable and
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Ej ¼ Dnnq�1j Uj

� � � Djnq�1j Uj

� �
is countable for any j b n. As a consequence, the

set Dn \U ¼
S
{Ej : j b n} is countable whence W \ D � U \ D � U \ Dn is

uncountable. Since W 2 t(c, L(k)o) was chosen arbitrarily, we proved that c is an
accumulation point of D which is contradiction with the fact that D is closed and

discrete so our Claim is proved.

A family g of subsets of X is called point-countable if every point of X belongs to

at most countably many elements of g. Call a space X metalindel€of if every open

cover U of the space of X has a point-countable open refinement. Observe that every

completely screenable as well as any Lindel€of space is metalindel€of.

Fact 2. Every metalindel€of space of countable extent is Lindel€of.

Proof. Suppose that X is a metalindel€of space, ext(X)b o and U is an open cover of

X which has no countable subcover and hence no countable open refinement. Fix a

point-countable open refinement V for the cover U. Take any x0 2 X and let V0 ¼S
{V 2 V : x0 2 V}. Then V0 is countable because V is point-countable. Assume

that b < o1 and we have {xa : a < b} � X and {Va : a < b} with the following

properties:

(1) Va ¼ {V 2 V : xa 2 V} for each a < b.
(2) xg =2

S
{
SVa : a < g} for each g < b.

The family V being point-countable, each Va is countable and hence the family

V0b ¼
S Va : a<bf g is also countable. Thus

SV0b 6¼ X and hence we can find a

point xb 2 Xn SV0b� �
. Letting Vb ¼ {V 2 V : xb 2 V}, we finish our inductive

construction which gives us a set D¼ {xa : a< o1}� X and families {Va : a< o1}

with the properties (1)–(2). The set D is closed and discrete; to show this, let x 2 X.
Then x 2 V for some V 2 V; if xa 2 V then V 2 Va and hence xb =2 V for any b 6¼ a
by (2). Therefore every x 2 X has a neighbourhood that intersects at most one

element of D. Hence D is an uncountable closed and discrete subset of X, a
contradiction with ext(X) ¼ o. Thus X is Lindelóf and Fact 2 is proved.

Observe finally that L(k)o is metalindel€of because it is completely screenable by

Fact 1. Applying Fact 2 and claim we conclude that L(k)o is Lindel€of so our

solution is complete.

S.355. Prove that every Gd-subset of X is open if and only if for any countable A �
Cp(X) we have A � Cp(X) (the closure is taken in RX).

Solution. Call a space X a P-space if every Gd-subset of X is open. Suppose that

X is a P-space and A � Cp(X) is countable. Take any f 2 [A] (the brackets denote
the closure in RX). Given any x 2 X, we will prove that f is continuous at the

point x. Note that the set {h(x)} is a Gd-set in the space R for any h 2 A so W ¼
\ {h�1(h(x)) : h 2 A} is a Gd-set in X. Since X is a P-space, the set W is an

open neighbourhood of x; we claim that f(W) ¼ {f(z)}. To see this, suppose that

y 2 W and j f(y) � f(x)j > e for some e > 0. Since f 2 [A], there is h 2 A such

that h xð Þ � f xð Þj j< e
2
and h yð Þ � f yð Þj j< e

2
. However, h(y) ¼ h(x) so we have
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f yð Þ � f xð Þj jb f yð Þ � h yð Þj j þ h xð Þ � f xð Þj j< e
2
þ e

2
¼ e which is a contradiction.

As a consequence, for any e > 0 we have f(W) ¼ {f(x)} � ( f(x) � e, f(x) þ e),
i.e., f is continuous at x and we proved necessity.

Now, suppose that [A] � Cp(X) for any countable A � Cp(X) and take any Gd-

set H � X; fix a family O ¼ {On : n 2 o} � t(X) with H ¼ TO and any z 2 H.
It is easy to construct a family {Un : n 2 o} � t(z, X) such that Un � On and

Unþ1 � Un for each n 2 o. Let f0 : X ! [0, 1] be any continuous function with

f0(z) ¼ 1 and f0(X \U0) � {0}. If we have a continuous function fn : X! [0, 1] with

fn(x) ¼ 1 and fn(X \Un) � {0} take any gn 2 C(X, [0, 1]) with gn(x) ¼ 1 and

gn(X \Unþ1) � {0} and let fnþ1 ¼ fn · gn. This construction provides a sequence {fn :
n 2 o} � C(X, [0, 1]) such that fnþ1(x) b fn(x) for any x 2 X and n 2 o; besides,
fn(x) ¼ 1 and fn(X \Un) � {0} for each n 2 o. The sequence {fn(x)} is bounded and

monotonous for each x 2 X so it has to converge to some f(x) 2 [0, 1]. If Y is the set X
with the discrete topology, then RX ¼ Cp(Y) and the sequence A ¼ { fn : n 2 o} �
Cp(X) converges to f in the space Cp(Y)¼ RX (Problem 143). Therefore, f 2 [A] and
hence f is continuous by our assumption on Cp(X). Thus the set Hz ¼ f�1((0, 1]) is
open in X; it is immediate that Hz �

T
{Un : n 2 o} � T{On : n 2 o} ¼ H which

implies thatH¼ S {Hz : z2H} is an open set. This settles sufficiency andmakes our

solution complete.

S.356. Prove that Cp(L(k), I) is countably compact.
Solution. Say that X is a P-space if every Gd-subset of X is open. It is easy to see

that L(k) is a P-space for each cardinal k. It was proved in Fact 2 of S.310 that

Cp(X,I) is countably compact for any P-space X. Thus Cp(L(k), I) is countably

compact.

S.357. Prove that Cp(L(k)) has a dense s-compact subspace.

Solution. Observe that the spaces L(k) and A(k) have the same underlying set

X ¼ {a} [ k; it is immediate that the identity map ’ : X! X is a condensation of

L(k) onto A(k). Define a map ’� : Cp(A(k))! Cp(L(k)) by the formula ’�( f ) ¼ f 	
’ for any f 2 Cp(A(k)). Then ’� is an embedding and ’�(Cp(A(k))) is dense in

Cp(L(k)) (Problem 163). Since Cp(A(k)) has a dense s-compact subspace P
(Problem 346), the set ’�(P) will be also s-compact and dense in Cp(L(k)).

S.358. Given an uncountable cardinal k, let S(k)¼ {x 2 Rk : the set x�1(R \ {0}) is
countable}. Prove that, if a compact space X is a continuous image of S(k) then X is
metrizable.

Solution. Fix a continuous onto map ’ : S ¼ S(k)! X. We will need the set Y ¼
{x 2 X : w(x, X)bo}. Define a point u 2 S by u(a)¼ 0 for all a 2 k. If A� k then qA
: S! SA¼RA is the natural projection defined by qA(x)¼ xjA for any x 2 S. Given
a space Z, call a set P � Z a zero-set if there exists f 2 C(Z) such that P ¼ f�1(0).

Fact 1. (Vedenissov’s lemma) If Z is a normal space (in particular, if Z is compact)

then a closed P � Z is a zero-set in Z if and only if P is a Gd-set in Z.
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Proof. If P is a zero-set, take any f 2 C(Z) with P ¼ f�1(0) and observe that

Un ¼ f�1 �1
n;

1
n

� �� �
is an open subset of Z for every n 2 N and P ¼ T{Un : n 2 N}.

This settles necessity.

Now, assume that P is a Gd-set in the space Z; it is not difficult to find a sequence

U ¼ {Un : n 2 N} � t(P, Z) such that P ¼ TU and Unþ1 � Un for every n 2 N
(normality of Z must be used here). Applying again normality of Z we can find fn 2
C(Z, [0, 1]) such that fnjP � 0 and fnj(Z \Un) � 1 for each n 2 N. If

gn ¼
Pn

i¼1 2
�i � fi then the sequence {gn : n 2 N} converges uniformly to a function

g 2 C(Z) (see Problem 030). It is clear that g(z)r 0 for every z 2 Z. If z 2 Z \P, then
there is n 2N such that z =2Un and hence fn(z)¼ 1. Consequently, g(z)r gn(z)r 2�n

> 0. On the other hand, gn(z) ¼ 0 for any z 2 P which implies g(z) ¼ 0. This shows

that P ¼ g�1(0) so sufficiency is established and hence Fact 1 is proved.

Fact 2. Suppose that k is an infinite cardinal and P is a Gk-set of a space Z. If Q is a

Gk-set in the space P then Q is also a Gk-set in Z.

Proof. Take a family U ¼ {Ua : a < k} � t(P, Z) such that P ¼ TU and a family

V ¼ {Va : a < k} � t(Q, P) such that Q ¼ TV. There exists V0a 2 t Zð Þ such that

V0a \ P ¼ Va for all a < k. Then, Wa ¼ Ua \ V0a is open in Z for each a < k andT
{Wa : a < k} ¼ Q so Fact 2 is proved.

Fact 3. If L is a Lindel€of subspace of a space Z then, for every z 2 Z \ L, there exists
a closed Gd-set P of the space Z such that z 2 P � Z \ L.

Proof. For any y 2 L fix Uy 2 t(y, Z) such that z =2 Uy. The family {Uy : y 2 L} is

an open cover of the Lindel€of space L. Therefore there is a countable M � L such

that L � S {Uy : y 2M}. It is clear that H ¼T{Z \Uy : y 2M} is a Gd-set in Z and

z 2 H � Z \ L. Finally, apply Fact 2 of S.328 to see that there exists a Gd-set P of

the space Z which is closed in Z and z 2 P � H. Then z 2 P � Z \ L and Fact 3 is

proved.

Claim. If F is a non-empty Gd-subset of X then F \ Y 6¼ ;.
Proof. If not then there is a non-empty Gd-set F � X \ Y. Apply Fact 2 of S.328

to see that there exists a non-empty Gd-set F
0 � F which is closed in X. This

shows that, without loss of generality, we can assume that F is closed in X and

hence compact. No point x 2 F can be a Gd-set in F because otherwise {x} is a

Gd-set in X (Fact 2) and therefore w(x, X) b o (Problem 327) which contradicts

x 2 X \Y. Take any x0 2 F \ {’ (u)}; the set F \ {’ (u)} is a non-empty Gd-set in

F (it is even open in F) so it is a Gd-set in X (Fact 2) and hence there is a

compact Gd-set F0 such that x0 2 F0 � F \ {’ (u)} (Fact 2 of S.328). Apply

Fact 1 to find f0 2 C(X) such that F0 ¼ f�10 0ð Þ. The function f0 	 ’ : S ! R is

continuous on S which is dense in Rk; this makes it possible to apply Problem

299 to conclude that there is a non-empty countable A0 � k and a continuous

map h0 : SA0
! R such that h0 	 qA0

¼ f0 	 ’. It is evident that qA0
uð Þ =2 h�10 0ð Þ;

since ’�1 F0ð Þ ¼ f0 	 ’ð Þ�1 0ð Þ ¼ q�1A0
h�10 0ð Þ� � �u, we have ’�1 F0ð Þ � q�1A0

H0ð Þ
where H0 ¼ SA0

\ {qA0
(u)}.
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Suppose that b< o1 and we have families {Aa : a< b} and {fa : a< b} with the
following properties:

(1) Aa is a non-empty countable subset of k for all a < b.
(2) Aa \ Ag ¼ ; if a, g < b and a 6¼ g.
(3) Fa is a non-empty Gd-subset of F and hence of X.
(4) Fa � Fg if g < a < b.
(5) If Ha ¼ SAa \ {qAa (u)} for all a < b then ’�1 Fg

� � � T q�1Aa
Hað Þ : abg

n o
for

every g < b.

If F0b ¼
T

Fa : a<bf g and Bb ¼
S
{Aa : a < b} then the space Gb ¼ {x 2 S :

qAa(x) 2 Ha for all a < b and x(n) ¼ 0 for all n 2 k \ Bb} � S is homeomorphic to

P{Ha : a < b} and therefore nw(Gb) ¼ o. The space L ¼ ’ Gb
� � \ F0b is Lindel€of

because it has a countable network; apply Fact 3 to find a non-empty closed

Fb � F0b such that Fb a Gd-subset of X and Fb \ L ¼ ;. There exists fb 2 C(X)

such that Fb ¼ f�1b 0ð Þ (Fact 1). Apply Problem 299 to find a countable A0b � k

and hb 2 CðSA0b
Þ such that hb 	 qA0b ¼ fb 	 ’. To see that Ab ¼ A0bnBb 6¼ ; note that

(5) implies that qAa (’
�1(Fb))� Ha for all a< b; as a consequence qBb (’

�1(Fb))�
qBb(Gb). Take any x 2 Gb such that qBb(x) ¼ qBb(y) for some y 2 ’ �1(Fb).

If A0b � Bb then qA0b xð Þ ¼ qA0b yð Þ so fb ’ xð Þð Þ ¼ hbðqA0bðxÞÞ ¼ hbðqA0bðyÞÞ ¼
fb ’ yð Þð Þ ¼ 0 which is a contradiction with fb(’ (z)) 6¼ 0 for all z 2 Gb. Therefore

Ab 6¼ ; and it is straightforward that (1)–(4) are satisfied for the sets {Aa : a b b}
and {Fa : a b b}. To see that (5) also holds, suppose that qAb (’

�1(Fb)) 3 qAb (u);
take any x 2 ’ �1(Fb) with qAb(x)¼ qAb(u). Since qBb (’

�1(Fb))� qBb (Gb)), we can

find y 2 Gb such that qBb (y) ¼ qBb(x). It is immediate that qA0b yð Þ ¼ qA0b xð Þ
and hence 0 ¼ fb(’(x)) ¼ fb(’(y)) which is a contradiction. This proves that

qAb(’
�1(Fb)) � Hb ¼

P
Ab
{qAb(u)} so (5) also holds.

This inductive procedure can be carried out for all countable ordinals providing

families {Aa : a < o1} and {Fa : a < o1} with the properties (1)–(5). Since X is

compact, there is y 2 \ {Fa : a < o1}. If x 2 ’ �1(y) then qAa (x) 6¼ qAa (u) for each
a < o1 by (5). This shows that x(na) 6¼ 0 for some na 2 Aa. Since the family {Aa :

a < o1} is disjoint, the set x�1(R \ {0}) contains the uncountable set {na : a < o1}

which contradicts the fact that x 2 S. Thus our claim is proved.

Now it is very easy to finish our solution. Apply Problem 299 to conclude

that nw(Y) b o and hence Y is Lindel€of. If x 2 X \ Y then there is a non-empty

Gd-set F � X \ Y by Fact 3. However, Y \ F 6¼ ; by our claim which is a

contradiction. Thus X ¼ Y and hence w(X) ¼ nw(X) ¼ o (Fact 4 of S.307) so our

solution is complete.

S.359. Prove that a dyadic compact space of countable tightness is metrizable.

Solution. If X is a dyadic compact space then, by definition, X is a continuous image

of {0, 1}k for some k. The space {0, 1}k is a product of metrizable compact

spaces so if t(X) b o then Fact 6 of S.307 is applicable to conclude that X is

metrizable.
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S.360. Suppose that X is a dyadic space and the set {x 2 X : w(x, X)b o} is dense in
X. Prove that X is metrizable.

Solution. Let Y ¼ {x 2 X : w(x, X) b o}. By definition of a dyadic space, there is a

continuous onto map ’ : K¼ {0, 1}k! X for some cardinal k. Given A� k, let pA :
K! KA¼ {0, 1}A be the natural projection defined by pA(y)¼ yjA for all y 2 K. The
space K is a product of second countable spaces so we can apply Problem 299

to conclude that there is a countable A � k, a closed L � K, a closed M � KA, and

a continuous map h : M! X such that pA(L) ¼ M, ’(y) ¼ h(pA(y)) for every y 2 L
and ’ �1(Y) � L. It follows from ’ �1(Y) � L that Y � ’(L) ¼ h(M); since M is

a second countable compact space, the space h(M) is also a second countable

compact space which contains a dense subset of X. Therefore, h(M) ¼ X so X is

second countable and hence metrizable.

S.361. Show that any hereditarily normal dyadic compact space is metrizable.

Solution.Given a cardinal k and a set A� k let pA : {0, 1}
k! {0, 1}A be the natural

projection onto the face determined by A. We write pa instead of p{a} and Ba instead

of k \ {a} for all a 2 k. Given any x 2 {0, 1}k and any a < k, let ra(x)(a) ¼ 1 � x(a)
and ra(x)(b) ¼ x(b) for any b 2 Ba. In other words, ra(x) coincides with x at all

coordinates except a.

Fact 1. If X is a dyadic space and x 2 X is not an isolated point then there is a

sequence {xn : n 2 o} � X \ {x} which converges to x.

Proof. Fix a cardinal k such that there is a continuous onto map ’ : {0, 1}k! X.
The set F¼ ’ �1(x) is compact; let A¼ {a< k : there is a point ya 2 {0, 1}k \F such

that ra(ya) 2 F}. We claim that

(�) F ¼ pA(F) � {0,1}k \ A.

Of course, it suffices to show that pA(F) � {0, 1}k \ A � F ¼ F. Take any y 2
pA(F)� {0, 1}k \ A; to prove that y 2 F we can restrict ourselves to showing that, for

any finite S � k, there is z 2 F such that pS(z) ¼ pS(y).
There exists a point z0 2 F with pA(y) ¼ pA(z0); if S � A then pS(z0) ¼ pS(y) and

the proof of the property (�) is over. If not, let S \A ¼ {a1, . . . , an}. It follows from
the definition of the set A, that, for any ordinal b 2 k \ A and any w 2 F, we have

rb(w) 2 F. If z0(a1)¼ y(a1) then we let z1¼ z0; if not then z1¼ ra1(z0). In both cases
we change z0 at most at a1 and we obtain z1 2 F such that z1j(A [ {a1}) ¼ yj(A [
{a1}). Assuming that we have a point zk 2 F with zkj(A [ {a1, . . . , ak})¼ yj(A [ {a1,
. . . , ak}), let zkþ1 ¼ zk if zk(akþ1) ¼ y(akþ1); if not, then zkþ1 ¼ rakþ1(zk). It is
straightforward that in both cases we obtain zkþ1 2 F such that

zkþ1j A [ a1; � � � ; ak; akþ1f gð Þ ¼ yj A [ a1; � � � ; ak; akþ1f gð Þ;
so the inductive construction can go on until k ¼ n. It is evident that, for z ¼ zn, we
have zjS ¼ yjS. Thus y 2 F ¼ F; since y 2 pA(F) � {0, 1}k \ A has been chosen

arbitrarily, we finished the proof of (�).
The following step is to prove that the set D ¼ {ya : a 2 A} is infinite (see the

definition of A where the points ya are introduced for each a 2 A). Observe first that
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A is infinite because otherwise {0, 1}A is finite and hence discrete; therefore pA(F)
is open in {0, 1}A and hence F is open in {0, 1}k by (�). The map ’ is closed and

hence quotient so the set {x} has to be open in X which is a contradiction because

x was assumed to be a non-isolated point of X. So the only possibility for the set D
to be finite is when there is some y 2 {0, 1}k such that y ¼ ya for each a 2 B where

B � A is an infinite set. Take any finite C � k. Since B is infinite, there is a 2 B
such that a =2 C. It is evident that ra(y)jC ¼ yjC which proves that

y 2 ra yð Þ : a 2 Bf g. Since ra(y) ¼ ra(ya) 2 F for all a 2 B, we obtain y 2 F ¼ F
which is a contradiction.

This proves that D is an infinite set so we can choose a faithfully indexed set

A0 ¼ {an : n 2 o}� A such that yan 6¼ yam if m 6¼ n. Let zn¼ ran(yan ) for each n 2 o.
Then E ¼ {yan : n 2 o} � {0, 1}k \ F, {zn : n 2 o} � F and we claim that (��) for
any V 2 t(F, {0, 1}k) the set E \V is finite.

Indeed, assume that B�o is infinite and {yan : n 2 B}� {0, 1}k \V. The set {Zn :
n 2 B} can be finite but then the same point will be repeated infinitely many times in

the sequence {zn : n 2 B}. This shows that, infinite or not, the sequence {zn : n 2 B}
has an accumulation point z in the sense that, for every set W 2 t(z, {0, 1}k) there
are infinitely many n 2 B with zn 2W. Evidently, z 2 F� V; given any finite C� k,
the set {n 2 B : znjC ¼ zjC} is infinite and hence there is n 2 B such that an =2 C and

znjC ¼ zjC. Then, znjC ¼ yan jC ¼ zjC which shows that z is also an accumulation

point for the set E \V. However, V is a neighbourhood of z which does not meet

E \V; this contradiction proves (��).
Let xn ¼ ’ (yan ) for all n 2 o; since E � D � {0, 1}k \ ’ �1(x), the sequence

’ (E) ¼ {xn : n 2 o} is contained in X \ {x}. To show that xn! x, take any set U 2
t(x, X). Then F � V ¼ ’ �1(U) so the set E \’ �1(U) is finite by (��). As a

consequence, xn 2 U for all but finitely many n 2 o. Hence xn ! x and Fact 1 is

proved.

Returning to our solution consider the set S ¼ {x 2 {0, 1}k : jx�1(1)j b o}.
Assume that X is a hereditarily normal dyadic space and ’ : {0, 1}k ! X is a

continuous onto map. If ’ (S) ¼ X then X is metrizable by Fact 6 of S.307.

If f(S) 6¼ X then choose any x 2 X \ f(S). Since S is dense in {0, 1}k (Fact 3 of

S.307), the set f(S) is dense in X and therefore x is not an isolated point of X. Apply
Fact 1 to find a sequence {xn : n 2 o} � X \ {x} such that xn! x. The space X \ {x}
contains a dense countably compact subspace f(S) (see Fact 3 of S.307, Fact 1 of

S.310 and S.133) so it is pseudocompact by Fact 18 of S.351. Since X is hereditarily

normal, the space X \ {x} is normal and hence countably compact by Problem 137.

However, it is easy to see that {xn : n 2o} is an infinite closed and discrete subset of
X \ {x}; this contradiction shows that f(S) ¼ X and hence X is metrizable so our

solution is complete.

S.362. Let X be a dyadic compact space. Prove that, if Cp(X) is Lindel€of then X is
metrizable.

Solution. Since Cp(X) is Lindel€of, we have t(X) ¼ o by Problem 189. Now apply

Problem 359 to conclude that X is metrizable.
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S.363. Let X be a dyadic compact space and suppose that Cp(X) has a dense
s-pseudocompact subspace. Prove that X is metrizable.

Solution. Take any family {Pn : n 2 o} of pseudocompact subspaces of Cp(X) such
that

S
{Pn : n 2 o} is dense in Cp(X). The set Qn ¼ Pn is also pseudocompact by

Fact 18 of S.351. Since Qn is closed in Cp(X), we can apply Fact 2 of S.307 to

conclude that Qn is compact. Of course, the s-compact set Q ¼ S {Qn : n 2 o} is

also dense in Cp(X) and hence there is a compact K � Cp(X) which separates

the points of X (Fact 5 of S.310). Consider the map eK : X ! Cp(K) defined by

eK(x)( f) ¼ f(x) for any x 2 X and f 2 K. Then eK is continuous (Problem 166) and

injective (Fact 2 of S.351); thus eK embeds X in Cp(K). Consequently, t(X) b
t(Cp(K)) b o (see Problem 149) so we can apply Problem 359 to conclude that

X is metrizable.

S.364. Prove that the Alexandroff double AD(X) of a compact space X is a compact
space which is metrizable if and only if X is countable.

Solution. We omit an easy proof that the definition of AD(X) indeed gives us

a topology t on the set AD(X) ¼ u0(X) [ u1(X). Given any y ¼ (x, i) 2 AD(X), let
p(y)¼ x; then p : AD(X)! X is a map with p�1(x)¼ {u0(x), u1(x)} for every x 2 X.
To check that t is Hausdorff, take distinct x, y 2 AD(X). If p(x) 6¼ p(y) then there are
U0 2 t(p(x), X), V0 2 t(p(y), X) with U \ V ¼ ;. It is immediate that U ¼ p�1(U0)
and V ¼ p�1(V0) are disjoint open (in AD(X)) neighbourhoods of x and y, respec-
tively. If p(x) ¼ p(y) then, without loss of generality, there is z 2 X such that x ¼
u0(z) and y ¼ u1(z). Then U ¼ AD(X) \ {u1(z)} and V ¼ {u1(z)} are disjoint open

(in AD(X)) neighbourhoods of the points x and y, respectively.

We prove next that, for any U 2 t(u0(X), AD(X)), the set F ¼ u1(X) \U is finite.

Suppose that Z¼ {zn : n 2o}� F and zi 6¼ zj if i 6¼ j. The infinite set {p(zn) : n 2o}
� X has an accumulation point x 2 X because the space X is compact. It is

straightforward that z ¼ (x, 0) is an accumulation point for the set Z in AD(X)
which is a contradiction with the fact that U 2 t(z, AD(X)) andU \ Z¼ ;. The map

u0 : X! u0(X) is clearly injective and continuous; thus u0 is a homeomorphism and

hence u0(X) is a compact subspace of AD(X) homeomorphic to X.
If U is an open cover of the space AD(X) then there is a finite U0 � U such

that u0(X) �
SU0. The observation of the previous paragraph shows that the set

AD(X) \ (
S U0) is finite and hence can be covered with a finite U00 � U. Then V ¼ U0

[ U00 is a finite subcover of U which shows that AD(X) is compact and hence

Tychonoff by Problem 124.

If the space X is countable then AD(X) is also a countable compact and hence

metrizable space. Now, if AD(X) is metrizable then w(AD(X)) b o and hence

c(AD(X)) b w(AD(X)) b o. The family {{z}: z 2 u1(X)} is disjoint, consists of

non-empty open sets of AD(X) and has cardinality jXj; thus jXjb c(AD(X))b o and

our solution is complete.

S.365. Let X be a metrizable compact space. Denote by AD(X) the Alexandroff
double of the space X. Prove that Cp(AD(X)) has a dense s-compact subspace.
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Solution. Given any y ¼ (x,i) 2 AD(X), let p(y) ¼ x; then p : AD(X) ! X is a

continuous map with p�1(x) ¼ {u0(x),u1(x)} for every x 2 X. Fix a countable base

{Un : n2o} in the spaceX. It is evident that the setX \Un is aGd-set inX for any n2o.
Thus, there is fn 2 C(X) such that XnUn ¼ f�1n 0ð Þ for all n 2 o.

For any x 2 X, let hx : AD(X)! {0, 1} be the characteristic function of the set

{u1(x)}, i.e., hx(u1(x)) ¼ 1 and hx(z) ¼ 0 for all z 2 AD(X) \ {u1(x)}. Since the point
u1(x) is isolated in AD(X), the map hx is continuous for any x 2 X. If h(z) ¼ 0 for all

z 2 AD(X), then K¼ {h} [ {hx : x 2 X} is a compact subspace of Cp(AD(X)). Indeed,
take any U � t(Cp(AD(X))) withK�

SU. Then h2U for someU 2 U; there exists a
finite P� AD(X) and e > 0 such thatW¼ {f 2 Cp(AD(X)) : jf(y)j< e for each y 2 P}
�U. If x2 X \p(P) then hx(y)¼ 0 for any y2 P and hence hx2W�U. Consequently,
the set K\U is finite and can be covered by a finite U0 � U. It is clear that the family

{U} [ U0 is a finite subcover of U so we proved that K is compact.

We next show that the set A¼ {fn 	 p : n 2o} [ K separates the points of AD(X).
Let y, z be distinct points of AD(X). If p(y) 6¼ p(z) then there is n 2 o such that p(y)
2 Un and p(z) =2 Un (because p(y) and p(z) are elements of X and {Un : n 2 o}
is a base of X). Then fn(p(y)) 6¼ 0 ¼ fn(p(z)), i.e., ( fn 	 p)(y) 6¼ ( fn 	 p)(z). If p(y) ¼
p(z)¼ x then we can assume, without loss of generality, that y¼ u0(x) and z¼ u1(x).
Then hx(y)¼ 0 6¼ 1¼ hx(z) and we established that A separates the points of AD(X).
It is evident that A is s-compact.

Call a topological property P complete if it satisfies the following conditions:

(1) Any metrizable compact space has P.
(2) If n 2 N and Zi has P for all i ¼ 1, . . . , n then Z1 � � � � � Zn has P.
(3) If Z has P then every continuous image of Z has P.

It is clear that s-compactness is a complete property. It was proved in Fact

2 of S.312 that if P is a complete property and A � Cp(Z) has P then there

exists an algebra R(A) � A such that R(A) � Cp(Z) is s-P, i.e., R(A) can be

represented as a countable union of spaces with the property P. When P¼
“s-compactness” then any space with the property s–P is also s-compact.

Applying these remarks to the set A � Cp(AD(X)), we conclude that there is

an algebra R � Cp(AD(X)) such that A � R and R is s-compact. It follows from

A � R that R separates the points of AD(X). Applying Problem 192 we can see

that R is dense in Cp(AD(X)). Thus R is the promised dense s-compact subset of

Cp(AD(X)) so our solution is complete.

S.366. Let X and Y be any spaces. Given a perfect map f : X! Y, prove that there
is a closed F � X such that f(F) ¼ Y and f jF is an irreducible map. As a
consequence, the same is true for any continuous surjective map between compact
spaces.

Solution. Suppose that there exists no set F � X such that f(F) ¼ Y and the map f jF
is irreducible. The family F ¼ {F� X : F is closed in X and f(F)¼ Y} is non-empty

because X 2 F ; let F0¼ X. Suppose that a< k¼ jXjþ and we have a family {Fb : b
< a} � F such that Fb0 � Fb and Fb \ Fb0 6¼ ; if b < b0. Let Ga ¼ \ {Fb : b < a};
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thenGa is closed in X. It is less evident but true thatGa 2F ; to prove it observe that,
for any y 2 Y, the family GY ¼ {Fb \ f�1(y) : b < a} consists of decreasing non-

empty compact subsets of X. Therefore Ga \ f�1(y) ¼ \GY 6¼ ; which means that

f(Ga) 62 y. Since the point y2 Y has been taken arbitrarily, we proved that f(Ga)¼ Y,
i.e.,Ga 2F . We assumed that the map fjGa cannot be irreducible so there is Fa�Ga

with Fa 2 F and Ga \ Fa 6¼ ;. As a consequence, we can continue our inductive

construction to obtain a family {Fa : a< k} such that Fb0 � Fb and Fb \ Fb0 6¼ ; if b<
b0 < k. This provides a disjoint family {Fa \ Faþ1 : a< k} of non-empty subsets of X
of cardinality k > jXj which is a contradiction.

S.367. Given a cardinal k, let S(k) ¼ {x 2 Rk : the set x�1(R \ {0}) is countable}.
Prove that any compact space of countable tightness admits an irreducible contin-
uous map onto a subspace of S(k) for some k.

Solution. Let X be a compact space such that t(X) b o. Then the space X has a

faithfully indexed point-countable p-base B ¼ {Ua : a< k}, where “point-countable”
means that each point x 2 X belongs to at most countably many elements of B
(Problem 332). For each a < k fix a function fa 2 C(X) such that fa(X \Ua)� {0} and

fa(xa)¼ 1 for some xa 2 Ua. Let f(x)(a)¼ fa(x) for any x 2 X and a < k. This defines
a map f : X! Rk; if qa : Rk! R is the natural projection onto the a-th factor then

qa 	 f ¼ fa is a continuous map for each a < k. Therefore the map f is continuous
(Problem 102).

Next observe that Y ¼ f(X) � S(k). Indeed, if x 2 X then there is a countable

A� k such that x =2 Ua for any a 2 k \ A because B is a point-countable family. Thus

fa(x) ¼ 0 for all ordinals a 2 k \ A and therefore ( f(x))�1(R \ {0}) � A is countable,

i.e., f(x) 2 S(k). To finish our solution, it suffices to show that f : X ! Y is an

irreducible map. Take any closed F � X with X \F 6¼ ;. Since B is a p-base in X,
there is a < k with Ua � X \F. This implies fa(x) ¼ 0 for all x 2 F and therefore

f(x)(a)¼ 0 for every x 2 F. However, f(xa)(a)¼ 1 which shows that there is no x 2 F
with f(x) ¼ f(xa), i.e., f(F) 6¼ Y. Thus f : X! Y � S(k) is an irreducible map.

S.368. Prove that w(bo) ¼ c and jboj ¼ 2c.

Solution. Given a space X and U 2 t(X), call the set U regular open if U ¼ Int(U).
Regular open sets form a base in X; indeed, if x 2 U 2 t(X) then, by regularity of

X there is V 2 t(x, X) such that V � U. Then W ¼ Int(V) is a regular open set and

x 2 W � U.

Fact 1. Suppose that X is any space and Y is a dense subspace of X. If U and V are

regular open subsets of X and U \ Y ¼ V \ Y then U ¼ V.

Proof. We have U ¼ U \ Y ¼ V \ Y ¼ V. Therefore U ¼ Int(U) ¼ Int(V) ¼ V and

Fact 1 is proved.

Fact 2. For any space X, we have w(X) b 2d(X).

Proof. Fix a dense setD� Xwith jDj ¼ d(X). Let B be the family of all regular open

subsets of the space X; we know that the family B is a base of X. Given any U 2 B,
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let ’ (U) ¼ U \ D. Then the map ’ : B ! exp(D) is an injection by Fact 1 and

therefore w(X) b jBj b jexp(D)j ¼ 2d(X) so Fact 2 is proved.

Fact 3. We have w(Ik) ¼ k and jIkj ¼ 2k for any infinite cardinal k.

Proof. That w(Ik) b k is an immediate consequence of the results of Problem 209.

To see that w(Ik) r k observe that w(D(k)) ¼ k and D(k) embeds in Ik by Problem
209. Thus w(Ik) r w(D(k)) ¼ k (see Problem 159) and hence w(Ik) ¼ k.

Since {0, 1}k is a subset of Ik, we have jIkj r j{0, 1}kj ¼ 2k. On the other hand,

w(Ik) b w(Ik) b k implies jIkj b 2k by Problem 329 so jIkj ¼ 2k and Fact 3 is

proved.

Fact 4. If X is compact and Y is a continuous image of X then w(Y) b w(X).

Proof. We have nw(Y) b nw(X) by Problem 157 and hence w(Y) ¼ nw(Y) b
nw(X) ¼ w(X) (see Fact 4 of S.307) so Fact 4 is proved.

Returning to our solution, note that, since the countable set o is dense in bo, we
have w(bo) b 2d(bo) b 2o ¼ c by Fact 2. Besides, w(bo) b w(bo) b c and hence

jboj b 2w(bo) b 2c (see Problem 329).

The space Ic is separable (Problem 108); fix a countable dense D� Ic. There is a
surjective map f : o! D which is continuous because o is discrete. There exists a

continuous map g : bo! Ic such that gjD ¼ f (see Problem 257). Since D is dense

in Ic, we have g(bo) ¼ Ic which proves that jboj r jIcj ¼ 2c (Fact 3). Since Ic is a
continuous image of bo, we can apply Fact 4 to conclude that w(bo) r w(Ic) ¼ c
(Fact 3) so our solution is complete.

S.369. Prove that bo \ {x} is countably compact for any x 2 bo.

Solution. Since o is discrete and dense in bo, all points of o have to be isolated in

bo. Therefore, the case of x 2 o is trivial because the set bo \ {x} is closed in bo
and hence compact.

Fact 1. Suppose that X is a space and a subspace E ¼ {xn : n 2 o} � X is discrete

and faithfully indexed, i.e., m 6¼ n implies xm 6¼ xn. Then there exists a disjoint

family {Un : n 2 o} � t(X) such that xn 2 Un for all n 2 o.

Proof. By discreteness of E there exists Vi 2 t(xi, X) such that Vi \ E ¼ {xi} for all
i 2o. Use regularity of X to findU0 2 t(x0, X) with U0� V0. Assume that we have a

family {U0, . . . , Un} � t(X) such that

(1) xi 2 Ui � Ui � Vi for all i b n.
(2) Ui \ Uj ¼ ; for all i, j b n with i 6¼ j.

Since xnþ1 =2 Vi for each i b n, we have xnþ1 =2 Ui for all i b n. Therefore,
F ¼ U0 [� � �[ Un is a closed set which does not contain xnþ1. By regularity of X
there exists Unþ1 2 t(x, X) such that Unþ1 � Vnþ1 \ F. It is clear that the family

{U0, . . . , Unþ1} satisfies the conditions (1) and (2) so this inductive construction

can be continued giving us a disjoint family {Un : n 2o}� t(X) with xn 2Un for all

n 2 o. Fact 1 is proved.
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Fact 2. If A and B are disjoint subsets of o then A \ B ¼ ; (the bar denotes the

closure in bo.

Proof. The function f : o! {0, 1} defined by f(n) ¼ 0 if n 2 A and f(n) ¼ 1 for all

n 2 o \ A, is continuous because o is a discrete space. There exists a continuous

map g : bo! {0, 1} such that gjo ¼ f (Problem 257). The sets g�1(0) and g�1(1)
are closed in bo so A \ B ¼ f�1 0ð Þ \ f�1 1ð Þ � g�1 0ð Þ \ g�1 1ð Þ ¼ ; so Fact 2

is proved.

Returning to our solution assume that x 2 bo \o. If bo \ {x} is not countably

compact then there exists a sequence {xn : n 2 o} � bo \ {x} such that xi 6¼ xj for
i 6¼ j and the set D ¼ {xn : n 2 o} is closed and discrete. By Fact 1 there exists a

disjoint family {Un : n 2 o} � t(bo) such that xn 2 Un for all n 2 o.
Given any U 2 t(x, bo), if D \U is infinite then the set D \U has an accumulation

point in the compact space bo \ U which is impossible because D \U is closed

and discrete in bo \ U, a contradiction. Thus,D \U is finite for anyU 2 t(x, bo), i.e.,
the sequenceD converges to x. The seto is dense in bo and thereforeWn¼Un \ o
6¼ ; for every n 2 o. The sets A ¼ S {W2n : n 2 o} and B ¼ S {W2nþ1 : n 2 o}
are contained in o, disjoint and dense in the sets A0 ¼ S

{U2n : n 2 o} and

B0 ¼ S
{U2nþ1 : n 2 o}, respectively. Since both sequences {x2n : n 2 o} and

{x2nþ1 : n 2 o} converge to x, we have x 2 B0 \ A0 ¼ A \ B which contradicts

Fact 2 and shows that our solution is complete.

S.370. Prove that every non-empty Gd-subset of o
� ¼ bo \o has a non-empty

interior.

Solution. Leto� ¼ bo \o; given a set A�o, let [A]¼ A \ o� (the bar denotes the
closure in bo).

Fact 1. (a) The set o is open in bo and hence o� is compact.

(b) The set A is clopen in bo for any A � o.
(c) The set [A] is clopen in o� for any A � o.
(d) If A, B � o then [A] � [B] if and only if A \B is finite.

(e) If A, B � o then [A] ¼ [B] if and only if ADB ¼ (A \B) [ (B \A) is finite.
In particular, [A] ¼ ; if and only if A ¼ AD; is finite.

Proof. (a) Since o is a discrete subspace of bo, for every n 2 o there is Un 2 t(bo)
such thatUn \ o¼ {n}. Now,o is dense in bo, so the setUn \ omust be dense in

Un for each n 2 o. Thus, the closed set {n} is dense in Un and hence Un ¼ {n}, i.e.,
{n} is open in bo for each n 2 o. An immediate consequence is that o is a union of

open subsets of bo; thus o is open and o� is closed in bo. Being closed in the

compact space bo, the space o� is compact so (a) is proved.

(b) It is evident that A is closed in bo; since bo ¼ A [ onA and A \ onA ¼ ;
(Fact 2 of S.369), we convince ourselves that the complement of A in bo is also

closed, i.e., A is open in bo.
(c) The intersection of a clopen set of bo with o�must be clopen in o� so [A] ¼

A \ o� is clopen in o� by (b).
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(d) If C � o is finite then C ¼ C and hence [C] ¼ ;. Since A [ B ¼ A [ B, we
have [A] ¼ [(A \B) [ (A\B)] ¼ [A \B] [ [A\B] ¼ [A\B] � [B] if A \B is finite.

On the other hand, if A \B is infinite then it is not compact so the compact set AnB
cannot coincide with A \B. Thus, [A \B] 6¼ ; and AnB½ 
 \ B½ 
 � AnB \ B ¼ ; by
Fact 2 of S.369. Since [A \B] � [A], this shows that [A] is not contained in [B] if
A \B is infinite.

(e) The equality [A]¼ [B] holds if and only if [A]� [B] and [B]� [A] which, by
(d), holds if and only if both sets A \B and B \A are finite, which, of course, is

equivalent to ADB being finite. Fact 1 is proved.

Fact 2. The family O ¼ {[A] : A � o} is a base in o�.

Proof. We already saw that O � t(o�) (Fact 1); take any x 2 o� and any set

U 2 t(x, o�). There is U0 2 t(bo) such that U ¼ U0 \ o�; use regularity of

bo to find a set V 2 t(x, bo) with V � U0. Since A ¼ V \ o is dense in V, we have
x 2 A ¼ V � U0 and therefore x 2 [A] � U0 \ o� ¼ U so Fact 2 is proved.

Returning to our solution, take any non-empty H � o� which is a Gd-set in o�

and fix a family {Un : n 2 o}� t(o�) such that H¼T{Un : n 2 o}. Pick any x 2 H
and apply Fact 2 to choose a sequence {An : n 2 o} � exp(o) such that x 2 [An] �
Un and [Anþ1] � [An] for all n 2 o. We have [An] � [Ai] for all i b n and there-

fore An \Ai is finite for all i b n by Fact 1. Therefore the set Bn ¼ (A0 \ � � � \ An)

\ {0, . . . , n} is obtained from An by cutting off a finite set (
S
{An \ Ai : i < n}) [ {0,

. . . , n} for every n 2 o. We have a sequence {Bn : n 2 o} such that [Bn] ¼ [An],

Bnþ1� Bn for every n 2o and
T
{Bn : n 2o}¼ ;. Take a point xn 2 Bn for all n 2o

and let B ¼ {xn : n 2 o}. Since xn > n for each n 2 o, the set B is infinite and

hence [B] 6¼ ;. The set B \Bn � {x0, . . . , xn} is finite for all n 2 o and therefore [B]
� [Bn] for all n 2 o by Fact 1. Hence the non-empty open set [B] is contained inT
{[Bn] : n 2 o} ¼ T{[An] : n 2 o} � T{Un : n 2 o} ¼ H so our solution is

complete.

S.371. Prove that c(bo \o) ¼ c.

Solution. Let o� ¼ bo \o; then c(o�) b w(o�) b w(bo) ¼ c (see Problem 368).

Given any A� o, let [A]¼ A \ o� (the bar denotes the closure in bo); if A, B� o
then ADB ¼ (A \B) [ (B \A).

Fact 1. Given A, B � o, we have [A] \ [B] ¼ ; if and only if A \ B is finite.

Proof. If A\B is infinite then [A\B] 6¼ ; (Fact 1 of S.370) and [A\B] � [A]\ [B]
which proves necessity. The sets A0 ¼ A \B and B0 ¼ B \A are disjoint so if A \ B is

finite, we have ADA0 ¼ BDB0 ¼ A \ B which implies [A] ¼ [A0] and [B] ¼ [B0]
by Fact 1 of S.370. Since A0 and B0 are disjoint, we have A0 \ B0 ¼ ; (Fact 2

of S.369). As a consequence A½ 
 \ B½ 
 ¼ A0½ 
 \ B0½ 
 � A0 \ B0 ¼ ; so Fact 1 is

proved.

Returning to our solution, apply Problem 141(iii) to find an almost disjoint

family C � exp(o) with jCj ¼ c. “Almost disjoint” means that all elements of

C are infinite and the set A \ B is finite for any distinct A, B 2 C. The family
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U ¼ {[C] : C 2 C} is disjoint by Fact 1, consists of non-empty open subsets of o�

(Fact 1 of S.370) and jUj ¼ jCj ¼ c so c(o�) r c and our solution is complete.

S.372. Prove that bo admits an irreducible map onto a subspace of S(k) for
some k.

Solution. Consider the space S ¼ 0f g [ 1
nþ1 : n 2 o
n o

� R; let f nð Þ ¼ 1
nþ1 for all

n 2 o. The map f : o! S is continuous because o is discrete. Since S is a compact

space, there exists a continuous map g : bo! S such that gjo ¼ f (Problem 257).

Observe first that g(bo \o) ¼ {0}. Indeed, bono � m : nbmf g for all n 2 o (this

closure is taken in bo). Therefore, for any x 2 bo \o, we have

g xð Þ 2 \
g mð Þ : mr nf g : n 2 o

n o
¼ \ 1

mþ1 : mr n
n o

[ 0f g : n 2 o
n o

¼ 0f g

and hence g(x) ¼ 0 (the last closure is taken in the space S).

As a consequence, g�1(g(n)) ¼ {n} for any n 2 o. Now, it is easy to see that the
map g is irreducible; indeed, if F is a closed subset of bo with g(F) ¼ S then

F \ g�1 1
nþ1
� �

6¼ ; and hence n 2 F for each n 2 o. The set F being closed, we have

bo ¼ o � F ¼ F and therefore F ¼ bo, i.e., the map g is irreducible. The space

S is second countable so it embeds in Ro which in turn embeds in S(k) for any
infinite k. Indeed, if k ¼ o then S(k) ¼ Ro; if k > o then the space {x 2 S(k) :
x(a)¼ 0 for all aro} lies in S(k) and is homeomorphic toRo. This proves that bo
maps irreducibly onto a subspace of S(k) for any infinite k so our solution is

complete.

S.373. Prove that bo \o does not admit an irreducible map onto a subspace of S(k)
for any k.

Solution. Let B ¼ {(p, q) : p, q 2 Q, p < q and pq > 0}; in other words, B is the

family of all non-empty rational intervals of R, which do not contain zero. It is

evident that any U 2 t�(R) contains an element of B, i.e., the family B is a p-base
in R. In fact, B has even stronger property: for any a 2 R \ {0} and any U 2 t(a, R),
there exists B 2 B such that a 2 B � U, i.e., B is a base in R \ {0}.

Fix any infinite cardinal k; given a1, . . . , an 2 k, and O1, . . . , On 2 t(R), let
[a1, . . . , an; O1, . . . , On]¼ {x 2 S(k) : x(ai) 2 Oi for each ib n}. It is clear that U ¼
{[a1, . . . , an; O1, . . . , On] : n 2 N, ai < k and Oi 2 t(R) for all i b n} is a base in

S(k). If U¼ [a1, . . . , an; O1, . . . , On] 2 U and Bi� Oi, Bi 2 B for all ib n then V¼
[a1, . . . , an; B1, . . . , Bn]� U, i.e., the family V ¼ {[a1, . . . , an; B1, . . . , Bn] : n 2 N,
ai< k and Bi 2 B for all ib n} is a p-base of S(k). A family C of subsets of a set X is

called point-countable if every x 2 X belongs to at most o-many elements of C.
Fact 1. Any subspace X of the space S(k) has a point-countable p-base.

Proof. Denote by u the element of S(k) for which u(a) ¼ 0 for all a < k. It suffices
to prove our Fact for the space X \ {u}. Indeed, the case when u =2 X is clear; if u 2 X
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and u is an isolated point of X then for any point-countable p-base C in the space

X \ {u}, the family {{u}} [ C is a point-countable p-base in the space X. If u is not

isolated in X then any p-base for X \ {u} is also a p-base for X so again it suffices to

find a point-countable p-base for the space X \ {u}. To simplify the notation we will

assume, without loss of generality, that u =2 X.
The family V is point-countable. To see this, consider the set S¼ x�1(R \ {0}). If

V¼ [a1, . . . , an; B1, . . . , Bn] 2 V and ai =2 S for some ib n then x(ai)¼ 0 =2 Bi which

implies x =2 V. Thus, the family {V 2 V : x 2 V} is contained in the family V0 ¼
{[a1, . . . , an; B1, . . . , Bn] : n 2 N, ai 2 S and Bi 2 B for all ib n} which is countable
because S and B are countable.

We claim that the family VjX¼ {V \ X : V 2 V and V \ X 6¼ ;} is a p-base in X.
Since V is point-countable, this gives us a point-countable p-base in X. Take any

U2 t�(X) and x2U. Then x(a) 6¼ 0 for some a< k; there exist ordinals a1, . . . , an2 k
and sets O1, . . . , On 2 t�(R) such that a1 ¼ a and x 2 V ¼ [a1, . . . , an; O1, . . . , On]

\ X� U. If x(ai) 6¼ 0 then there is Bi 2 B such that x(ai) 2 Bi� Oi; if x(ai)¼ 0 then

0 2Oi. This shows that we do not lose generality if we assume that there is a number

k2 {1, . . . , n} such thatOi¼ Bi2 B for all ib k and x(ai)¼ 02Oi for i¼ kþ 1, . . . , n.
Call a set K0 ¼ {ai1 , . . . , aim}� K¼ {akþ1, . . . , an}marked if there exists a point

y 2 X such that y(ai) 2 Bi for all i b k and y(aij) 2 Oij \ {0} for every j b m. Since
the set K is finite, there exists a maximal marked setM¼ {ai1 , . . . , aim}� K (which

is possibly empty). This means that there is y 2 X with y(ai) 2 Bi for all i b k and
y(aij) 2Oij \ {0} for all jbmwhile for any z 2 X such that z(ai) 2 Bi for all ib k and
z(aij) 2 Oij

\ {0} for all j b m, we have z(b) ¼ 0 for every b 2 K \M.

Changing the enumeration of K if necessary, we can restrict ourselves to the case

whenM¼ {akþ1, . . . , am} for somemb n. Since 0 6¼ y(ai) 2Oi for all ibm, we can
choose Bi 2 B such that y(ai) 2 Bi � Oi for all i 2 {k þ 1, . . . , m}. Then W ¼
[a1, . . . , am; B1, . . . , Bm] \ X 2 VjX because y 2W and hence W 6¼ ;; besides, for
any z 2 W we have z(ai) ¼ 0 2 Oi for all i 2 {m þ 1, . . . , n}. As a consequence,

any z 2W belongs to V, i.e.,W� V�U. This shows that, for anyU 2 t�(X) we have
W 2 VjX with W � U; therefore VjX is a p-base in X so Fact 1 is proved.

Fact 2. If f : X ! Y is a closed and irreducible map then, for any p-base B of the

space Y, the family V ¼ {f�1(U) : U 2 B} is a p-base in X.

Proof. Take any W 2 t�(X); the set F ¼ X \W is closed and F 6¼ X. Since the map

f is irreducible, we have f(F) 6¼ Y, i.e., the set U0 ¼ Y \ f(F) is an open non-empty

subset of Y. Take any U 2 B with U � U0; it is straightforward that V ¼ f�1(U) 2 V
and V � W. Hence V is a p-base in X and Fact 2 is proved.

Fact 3. The space bo \o does not have a point-countable p-base.

Proof. Observe first that no point x 2 bo \o can be isolated in bo \o. Indeed, if {x}
2 t(bo \o) then there is an infinite A� o such that [A]¼ A \ (bo \o)¼ {x} (Fact
2 of S.370). Take B, C � A such that B and C are infinite and B \ C ¼ ;. Then [B]
\ [C] ¼ ; (Fact 1 of S.371) and [B] 6¼ ; 6¼ [C] (Fact 1 of S.370). Since the non-

empty disjoint sets [B] and [C] are contained in [A], it is impossible that [A] ¼ {x},
which is a contradiction.
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Since the space bo \o has no isolated points, for any U 2 t�(bo \o) there exists
an infinite A � o and U0 2 B such that [A] [ U0 � U and [A] 6¼ U 6¼ U0.

Let B be any p-base in o� ¼ bo \o. Take U0 2 B arbitrarily. By Fact 2 of

S.370 and our previous observation there exists an infinite set A � o such that ; 6¼
[A] ¼ A \ o� � U0 (the bar denotes the closure in bo and the inclusion is strict,

i.e., [A] 6¼ U0). The set V0 ¼ [A] � U0 is a non-empty clopen subset of o� by
Fact 1 of S.370. Assume that a is a countable ordinal and we have families {Ub : b<
a} � B and {Vb : b < a} with the following properties:

(1) Vb is a non-empty clopen subset of o� for all b < a.
(2) Ub0 � Vb � Ub (all inclusions are strict) for all b < b0 < a.

Since Vb is compact for each b < a, the set V0a ¼
T

Vb : b< a
� �

is a non-empty

Gd-subset of o
�. Therefore Int V0a

� � 6¼ ; by Problem 370 and hence there exists

Ua 2 B with Ua � V0a (the inclusion is strict). Apply Fact 2 of S.370 again to find A
� o such that ; 6¼ [A] � Ua (this inclusion is also strict). Letting Va ¼ [A],
we conclude our inductive construction obtaining families {Ub : b < o1} � B
and {Vb : b < o1} with the properties (1) and (2).

Since the set Vb is compact for each ordinal b < o1, the property (1) implies

P ¼ T{Vb : b < o1} 6¼ ;. An immediate consequence of (2) is the equality

P ¼ T{Ub : b < o1} 6¼ ;; since all inclusions in (2) are strict, any x 2 P belongs

to at least o1 different elements of B whence B is not point-countable. Fact 3 is

proved.

Now it is easy to finish our solution. Assume that f : o� ! X is an irreducible

map onto some X � S(k) for some infinite ordinal k. The map f is closed because

o� is compact. The space X has a point-countable p-base B by Fact 1. The family

V ¼ {f�1(U) : U 2 B} is a p-base in o� by Fact 2; it is evident that V is also point-

countable. Therefore o� has a point-countable p-base which contradicts Fact 3 and

concludes our solution.

S.374. Prove that tightness of bo \o is uncountable.

Solution. A family U of subsets of a space X is called point-countable if the set

{U 2 U : x 2 U} is countable for any x 2 X. If t(bo \o) ¼ o then the space bo \o
has a point-countable p-base (Problem 332). However this contradicts Fact 3 of

S.373.

S.375. Prove that, for any separable compact space X, the space Cp(X) embeds into
Cp(bo) as a closed subspace.

Solution. Take any countable dense D� X and any surjective map ’0 : o! D. The
map ’0 is continuous because o is discrete. Therefore there exists a continuous

map ’ : bo! X such that ’ jo¼ ’0 (Problem 257). Since ’ (bo)� ’ (o)¼ ’0(o)
¼D, the compact set ’ (bo) is dense in X and hence ’ (bo)¼ X. Since ’ is a closed

continuous onto map, the mapping ’� : Cp(X)! Cp(bo) defined by ’�( f) ¼ f 	 ’
for any f 2 Cp(X), is a closed embedding (Problem 163) so Cp(X) embeds in Cp(bo)
as a closed subspace.
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S.376. Prove that Cp(bo) embeds into Cp(bo \o) while Cp(bo \o) does not embed
into Cp(bo).

Solution. Let o� ¼ bo \o; if A� o then [A]¼ A \ o� (the bar denotes the closure
in bo).

Fact 1. (1) The space bo embeds in o�.
(2) The space o� maps continuously onto bo.

Proof. It is easy to find a sequence {An : n 2 o} of infinite disjoint subsets of o such

that o ¼ S {An : n 2 o}. Choose any point xn 2 [An] (this is possible by Fact 1 of

S.370); we claim that Y ¼ xn : n 2 of g is homeomorphic to bo. To see this,

take any disjoint sets P, Q � X ¼ {xn : n 2 o}. The sets A ¼ S
{An : xn 2 P}

and B ¼ S
{An : xn 2 Q} are disjoint and hence P\Q � A \B ¼ ; (Fact 1 of

S.371). This proves that P\Q ¼ ; for any disjoint P, Q � X. Of course, it is also
true if we consider the closures of P and Q in the space Y. Since Y is a compact

extension of X, we can apply Fact 2 of S.286 to conclude that there is a homeomor-

phism ’ : bo! Y. Since Y is a subset of o�, we settled (1).

For anym 2o, let h(m)¼ xn where n 2o is the unique natural number for which

m 2 An. The map h : o! X is continuous, so there is a continuous map g : bo! Y
such that gjo ¼ f. Given any n 2 o, we have g(An) ¼ h(An) ¼ {xn} and therefore

g(An) ¼ {xn}; in particular, g(x) ¼ xn for any x from a non-empty set [An]. This

shows that X � g(o�); since g(o�) is a compact set dense in Y, we have g(o�) ¼ Y.
Consequently, f ¼ ’�1 	 (gjo�) : o� ! bo is a continuous onto map so Fact 1 is

proved.

Now, by Fact 1 there exists a continuous onto map f : bo \o ! bo; hence
f� : Cp(bo)! Cp(bo \o) embeds Cp(bo) in Cp(bo \o) (Problem 163).

Since bo is separable, the space Cp(bo) condenses onto a second countable

space M (Problem 173). If Cp(bo \o) embeds into Cp(bo) then Cp(bo \o)
condenses onto a subspace of M which shows that iw(Cp(bo \o)) ¼ o and hence

bo \o is separable (Problem 173). However, this contradicts Problem 371 and

concludes our solution.

S.377. Prove that Cp(bo \o) does not condense onto a compact space.

Solution. Suppose that X is a compact space and ’ : Cp(bo \o) ! X is

a condensation.

Fact 1. We have jCp(bo)j ¼ c and jCp(bo \o)j ¼ c.

Proof. If Z is a non-empty space then jCp(Z)jr c; to see that jCp(bo)jb cc observe
that Cp(bo) condenses onto a second countable space M because bo is separable

(Problem 173). Any second countable space embeds in Io and hence jMj b jIoj b
co ¼ c. This shows that jCp(bo)j b jMj b c and hence jCp(bo)j ¼ c.

Since F ¼ bo \o is a closed subspace of a compact (and hence normal) space

bo (Fact 1 of S.370), the restriction map pF : Cp(bo)! Cp(F)¼ Cp(bo \o) is onto
(Problem 152) and hence jCp(bo \o)j b jCp(bo)j ¼ c so Fact 1 is proved.
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Returning to our solution, observe that jXj ¼ c by Fact 1. If w(x, X)r c for every
x 2 X then jXjr 2c > c (Problem 330) which is a contradiction. Thus, there exists a

point x 2 X such that c(x, X) < c; choose a family B � t(X) such that
TB ¼ {x}

and jBj < c. Take f 2 Cp(bo \o) with ’( f) ¼ x and observe that the family B0 ¼
{’ �1(U) : U 2 B} consists of open subsets of Cp(bo \o); it is immediate that {f}¼TB0 and jB0j < c. For any g 2 Cp(bo \o) there exists a homeomorphism T of

the space Cp(bo \o) onto itself such that T( f) ¼ g (Problem 079) and hence

c(g,Cp(bo \o)) ¼ c( f, Cp(bo \o)) < c for any g 2 Cp(bo \o), i.e., c(Cp(bo \o))
< c. However, this implies c ¼ c(bo \o) b d(bo \o) < c (see Problems 371 and

173) which is a contradiction. Our solution is complete.

S.378. Prove that Cp(bo) condenses onto a s-compact space.

Solution. Observe that Cp(o, [�n, n]) ¼ [�n, n]o for each n 2 N because o is

discrete. Thus, Cp(o, [�n, n]) is compact for each n 2 N and therefore, the

space C�p oð Þ ¼ S Cp o; �n; n½ 
ð Þ : n 2 N
� � ¼ S �n; n½ 
o: n 2 Nf g is s-compact.

The restriction map p : Cp(bo) ! Cp(o) is injective because o is dense in bo
(Problem 152). Besides, the map p is onto due to the fact that every bounded map on

o is extendable to a continuous map defined on bo (Problem 257). As

a consequence Cp(bo) condenses onto a s-compact space C�p oð Þ.
S.379. Prove that neither Cp(bo) nor Cp(bo \o) has a dense s-compact subspace.

Solution. Suppose that Cp(bo \o) has a dense s-compact subspace. Then there is

a compact set K � Cp(bo \o) which separates the points of bo \o (see Fact 5 of

S.310). Define a map eK : bo \o! Cp(K) by the formula eK(x)( f ) ¼ f(x) for any
x 2 bo \o and f 2 K. Then eK is injective (Fact 2 of S.351) and hence it embeds

bo \o in Cp(K). As a consequence, t(bo \o) b t(Cp(K)) ¼ o (Problem 149)

which contradicts Problem 374. Thus Cp(bo \o) has no dense s-compact

subspace.

Observe that bo \o is a closed subspace of bo (Fact 1 of S.370) and hence the

restriction map p : Cp(bo) ! Cp(bo \o) is continuous and onto (Problem 152).

If P is a dense s-compact subspace of Cp(bo) then p(P) is a dense s-compact

subspace of Cp(bo \o) which is a contradiction. This proves that Cp(bo) does not
have a dense s-compact subspace either.

S.380. Prove that either of the spaces Cp(bo) or Cp(bo \o) maps openly and
continuously onto another.

Solution. Observe that bo \o is a closed subspace of bo (Fact 1 of S.370) and

hence the restriction map p : Cp(bo) ! Cp(bo \o) is open, continuous and onto

(Problem 152). Thus Cp(bo \o) is an open continuous image of Cp(bo).

On the other hand, the space bo embeds in bo \o (Fact 1 of S.376) and hence

we can consider that bo is a closed subspace of bo \o. The relevant restriction map

is open, continuous and onto (Problem 152) so Cp(bo) is an open continuous image

of Cp(bo \o).
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S.381. Prove that neither of the spaces Cp(bo) or Cp(bo \o) is normal.

Solution. The space Cp(o1þ 1) is not normal (Problem 320); since w(o1þ 1)¼ o1,

the space o1 þ 1 can be considered to be a closed subspace of Io1 (Problem 209).

The restriction map p : Cp(Io1 ) ! Cp(o1 þ 1) is onto because Io1 is normal and

o1þ 1 is closed in Io1 (Problem 152). This shows that we can apply Problem 291 to

convince ourselves that if Cp(Io1 ) is normal, then Cp(o1 þ 1) is also normal which

is a contradiction. Thus, Cp(Io1 ) is not normal.

Take any countable dense subspace D of Io1 (Problem 108) and fix any surjec-

tion ’ : o! D. The map ’ is continuous because the space o is discrete so there

is a continuous map F : bo ! Io1 with Fjo ¼ ’. It is evident that F(bo) ¼ Io1

and therefore the dual map F� : Cp(Io1 )! Cp(bo) is an embedding such that Z ¼
F� (Cp(Io1 )) is closed in Cp(bo) (Problem 163). If Cp(bo) is normal, then Z is also

normal and hence Cp(Io1 ) is normal being homeomorphic to Z. This contradiction
shows that Cp(bo) is not normal.

Observe finally that there exists a continuous onto map l : bo \o! bo (Fact 1

of S.376). The dual map l� embeds Cp(bo) in Cp(bo \o) as a closed subspace

(Problem 163) so if Cp(bo \o) is normal, then so is Cp(bo). This contradiction

shows that Cp(bo \o) is not normal so our solution is complete.

S.382. Prove that, for any discrete space D, we have p(Cp(bD)) ¼ o.

Solution. If D is finite there is nothing to prove, so assume that D is an infinite

discrete space.

Fact 1. If A, B � D and A \ B ¼ ; then A \ B ¼ ; (the bar denotes the closure in
the space bD).

Proof. Let f :D! {0, 1} be defined by f(d)¼ 1 if d 2 A and f(d)¼ 0 for all d 2D \A.
Then f is a continuous map and hence there is g 2 C(bD, {0, 1}) such that gjD ¼ f
(Problem 257). The sets g�1(0) and g�1(1) are closed in bD; it is immediate that

A � g�1(1) and B � g�1(0) whence A \ B � g�1(0) \ g�1(1) ¼ ; so Fact 1 is

proved.

Fact 2. Let E be a countable discrete subspace of bD. Suppose that A, B � E and

A \ B ¼ ;. Then A \ B ¼ ;.
Proof. If E is finite then we have nothing to prove so assume that E is infinite and

take some faithful enumeration {xn : n 2 o} of the set E. There exists a disjoint

family {Un : n 2o}� t(bD) such that xn 2 Un for each n 2 o (Fact 1 of S.369). Let

Vn ¼ Un \ D; since D is dense in bD, we have Vn ¼ Un for each n 2 o.
Let A0 ¼ S

{Vn : xn 2 A} and B0 ¼ S
{Vn : xn 2 B}. Observe that xn 2 Vn for

each n 2 o; this implies A � A0 and B � B0. Since A0, B0 � D and A0 \ B0 ¼ ;, we
can apply Fact 1 to conclude that A \ B � A0 \ B0 ¼ ; so Fact 2 is proved.

Fact 3. Let A and B be countable discrete disjoint subsets of bD. If A is infinite then

there is an infinite A0 � A such that A0 \ B ¼ ;.
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Proof. Take any faithful enumeration {an : n 2o} of the set A. The space K¼ A is a

compact extension of A such that, for any disjoint P, Q� A, we have P \ Q¼ ; by
Fact 2. Therefore there exists a homeomorphism ’ : bo! K such that ’(n)¼ an for
each n 2 o (see Fact 2 of S.286). If P � K then clK(P) ¼ P so it suffices to find an

infinite A0 � A such that A0 \ B0 ¼ ; where B0 ¼ B \ K ¼ B \ (K \A). This shows
that we can identify K with bo considering that A ¼ o and B0 � bo \o. Since B0 is
countable, the set C ¼ (bo \o) \B0 is a Gd-set in bo \o; besides, C is non-empty

because bo \o is uncountable (Problem 368). Therefore C has non-empty interior

in bo \o (Problem 370) and hence there is a non-empty U 2 t(bo \o) such that

U \ B0 ¼ ;. The family {W \ (bo \o) : W is an infinite subset of o} is a base in
bo \o by Fact 2 of S.370 so there exists an infinite A0 � o such that

A0 \ bonoð Þ � U which implies A0 \ B0 ¼ ;. Fact 3 is proved.

Fact 4. Let A be an infinite subspace of a space X. Then there is an infinite B � A
such that the subspace B is discrete.

Proof. If the set I of isolated points of A is infinite then we can take B ¼ I.
If I is finite then A0 ¼ A \ I has no isolated points and hence any U 2 t�(A0) is
infinite. Take any distinct b0; b

0
0 2 A0 arbitrarily and use regularity of A0 to find a set

U0 2 t(b0, A
0) such that b00 =2U0 (the bar denotes the closure in A0). Then U0 6¼ A0;

suppose that we have b0, . . . , bn 2 A0 andU0, . . . ,Un 2 t(A0) such that bi 2Ui for all

ib n, the family {Ui : ib n} is disjoint and V¼ A0 \ (
S

i b n Ui) 6¼ ;. Take any bnþ1
2 V and find Unþ1 2 t(bnþ1, A0) such that Unþ1 \ (

S
i b n Ui)¼ ; – this is possible

by regularity of the space A0. It is evident that this inductive construction can be

carried out for all n 2 N and hence we obtain a disjoint family {Un : n 2 o} of open
subsets of A0 and a set B ¼ {bn : n 2 o} � A with bn 2 Un for all n 2 o. The set B is

infinite because, for any distinct n, m 2N, the points bn and bm lie in disjoint setsUn

andUmwhence bn 6¼ bm. Besides, B is discrete because Un \ B¼ {bn} for all n 2N
and hence each set {bn} is open in B. Fact 4 is proved.

Fact 5.Given any n 2N, let Dn¼ {x¼ (x1, . . . , xn) 2 (bD)n : there exist i,jb n such
that i 6¼ j and xi ¼ xj}. Then the space Dn ¼ (bD)n \ Dn is countably compact for all

n 2 N.
Proof. Observe that D1¼ ; and hence the space D1 ¼ bD is even compact. Now fix

any natural n > 1 and assume that E � Dn is a countably infinite closed discrete

subspace of Dn. Let pi : (bD)
n! bD be the natural projection onto the ith factor for

all ib n.Any infinite subset of E is closed and discrete inDn so to obtain the desired

contradiction, we are going to consider smaller infinite subsets of E to reduce our

situation to simpler ones.

For E0 ¼ E consider the set p1(E0) � bD. If p1(E0) is infinite then use Fact 4

to find an infinite discrete E0 � p1(E0). Taking a point x eð Þ 2 p�11 eð Þ \ E0 for each

e 2 E0 we obtain an infinite set E1 ¼ {x(e) : e 2 E0} � E0 such that p1(E1) is an

infinite discrete subspace of bD and p1jE1 is an injection. If p1(E0) is finite then

there is e 2 p1(E0) such that the set E1 ¼ p�11 eð Þ \ E0 is infinite. It is evident that in

this case p1(E1) is a singleton (�consists of one point). Suppose that i < n and we
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have infinite subsets E1 �� � �� Ei of the set E such that, for each j b i, the set pj(Ej)

is either a singleton or pj(Ej) is infinite, discrete and pjjEj is an injection.

Consider the set piþ1(Ei) � bD. If piþ1(Ei) is infinite then use Fact 4 to find an

infinite discrete E0 � piþ1(Ei). Taking a point x eð Þ 2 p�1iþ1 eð Þ \ Ei for each e 2 E0 we
obtain an infinite set Eiþ1 ¼ {x(e) : e 2 E0} � Ei such that piþ1(Eiþ1) is an infinite

discrete subspace of bD and piþ1jEiþ1 is an injection. If piþ1(Ei) is finite then there

is e 2 piþ1(Ei) such that the set Eiþ1 ¼ p�1iþ1 eð Þ \ Ei is infinite. It is evident that in

this case piþ1(Eiþ1) is a singleton. This inductive procedure can be carried out n
times to obtain an infinite set En� E such that, for every jb n, the set pj(En) is either

a singleton or pj(En) is infinite, discrete and pjjEn is an injection. Without loss of

generality we consider that E ¼ En.

Our next step is to prove that

(�) For any infinite E0 � E and any distinct i, jb n there exists an infinite E00 � E0

such that pi E00ð Þ \ pj E00ð Þ ¼ ;.
Assume first that pi(E

0) and pj(E0) are singletons. If pi(E0)¼ {e}¼ pj(E
0) then for

any d 2 E0 we have pj(d)¼ e¼ pi(d). However, d 2Dn so pj(d) 6¼ pi(d) by definition
of Dn. This contradiction shows that pi(E

0) and pj(E
0) are distinct singletons and

hence pi E0ð Þ \ pj E0ð Þ ¼ ; so we can take E00 ¼ E0.
Now, assume that pi(E

0) ¼ {e} is a singleton and pj(E
0) is infinite and hence

discrete. Choose infinite disjoint sets A, B� E0. The sets pj(A) and pj(B) are disjoint
and pj(A) [ pj (B) is a discrete subset of bD; hence pj Að Þ \ pj Bð Þ ¼ ; by Fact 2. As a
consequence, the closure of one of the sets pj(A) and pj(B), say, pj(A), does not

contain e in its closure. It is evident that we can take E00 ¼ A because in this case

pi E00ð Þ \ pj E00ð Þ ¼ ef g \ pj Að Þ ¼ ;.
The case when the set pj(E

0) is a singleton and pi(E
0) is infinite is considered

analogously, so assume that both sets pi(E
0) and pj(E

0) are infinite and hence

discrete. Let A0 ¼ ; and assume that, for some number n 2 o, we have a set An

� E0 such that jAnj ¼ n and pi(An) \ pj(An) ¼ ;. Since the maps qi ¼ pijE0 and qj¼
pjjE0 are injective, and the set B¼ pi(An) [ pj(An) is finite, we can choose a point a 2
E0n q�1i Bð Þ� [q�1j Bð ÞÞ. Then the set Anþ1¼ An [ {a} has exactly nþ1 elements and

we have

pi Anþ1ð Þ \ pj Anþ1ð Þ ¼ pi Anð Þ \ pj Anð Þ
� � [ pi Anð Þ \ pj að Þ

� �� �
[ pj Anð Þ \ pi að Þf g� � [ pi að Þf g \ pj að Þ

� �� � ¼ ;:
Thus our inductive procedure can be continued giving us, for all n 2 o, a

set An � E0 such that jAnj ¼ n and pi(An) \ pj(An) ¼ ;. It is easy to see that

A ¼ S
n2o An is an infinite subset of E0 and pi(A) \ pj(A) ¼ ;. Since pi(A)

and pj(A) are infinite countable disjoint and discrete subsets of bD, Fact 3 can

be applied to obtain an infinite A0 � A such that pi A0ð Þ \ pj Að Þ ¼ ; and hence

pi A0ð Þ \ pj A
0ð Þ ¼ ;. Applying Fact 3 again, we can find an infinite E00 � A0 such

that pj E00ð Þ \ pi A
0ð Þ ¼ ; and hence pj E00ð Þ \ pi E

00ð Þ ¼ ;. Of course, we also

have pi E00ð Þ \ pj E
00ð Þ � pi A0ð Þ \ pj A

0ð Þ ¼ ;. It is an easy exercise to see that the

2 Solutions of Problems 001–500 343



set pi(E
00) [ pj(E

00) is discrete so Fact 2 can be applied to conclude that

pi E00ð Þ \ pj E00ð Þ ¼ ; which shows that (�) is finally proved.

Now, let {(i1, j1), . . . ,(ik, jk)} be some enumeration of all pairs (i, j) where i, j

b n and i 6¼ j. Here k ¼ n n�1ð Þ
2

but we do not need this; it suffices to know that k is

finite. Applying k times the property (�), we obtain infinite subsets E1� � � � � EK of

the set E such that pim Emð Þ \ pjm Emð Þ ¼ ; for all m b k. It is clear that EK is an

infinite subset of E such that pi Ekð Þ \ pj Ekð Þ ¼ ; for all distinct i, j b n. Therefore,
EK is an infinite closed and discrete subset of Dn for which

Ek � K ¼ Q pi Ekð Þ : kb n
n o

. It is immediate that K is compact and K � Dn so

we found an infinite closed and discrete subset in a compact space K which is a

contradiction concluding the proof of Fact 5.

Returning to our solution, recall that, given x1, . . . , xn 2 bD and rational intervals

O1, . . . ,On the set [x1, . . . , xn;O1, . . . ,On]¼ {f 2 Cp(bD) : f(xi) 2Ui for all ib n} is
called a standard open set of the space Cp(bD). All possible standard open sets form
a base O in the space Cp(bD) (Problem 056).

Suppose that there is a point-finite family U ¼ {Ua : a < o1} � t�(Cp(bD)).
Since every non-empty open set contains an element of O, we can choose Va 2 O
with Va 6¼ ; and Va� Ua for each a< o1. It is clear that the family {Va : a< o1} is

also point-finite and uncountable so, to obtain the desired contradiction, we can

assume, without loss of generality, that Ua ¼ Va for all a < o1.

Thus, we are assuming that all elements of U are standard, i.e., for each a < o1,

we have Ua ¼ xa1; . . . ; x
a
na
;Oa

1; . . . ;O
a
na

h i
where xai : ib na

� � � bD; xai 6¼ xaj for

all i, jb na with i 6¼ j and Oa
i is a rational interval for each ib na. Observe that if we

have a family Wa
i : ib na

� �
of rational intervals with Wa

i � Oa
i for each i b na,

then xa1; . . . ; x
a
na
; wa

1; . . . ;w
a
na

h i
� xa1; . . . ; x

a
na
; Oa

1; . . . ;O
a
na

h i
. It is easy to show

that there exists a disjoint family Wa
i : ib na

� �
of rational intervals such that

Wa
i � Oa

i for all i b na. That the set xa1; . . . ; x
a
na
; Wa

1 ; . . . ;W
a
na

h i
is non-empty, is

an easy consequence of Problem 034.

This argument shows that, for each a< o1, we can assume that Oa
i : ib na

� �
is

a disjoint family of non-empty rational intervals of R. There is an uncountable U0 �
U such that, for some n 2 N and an n-tuple (O1, . . . , On) of disjoint rational

intervals, we have na ¼ n and Oa
i ¼ Oi for all a < o1 such that Ua 2 U0. If

xa ¼ xa1; . . . ; x
a
n

� �
for all a 2 B ¼ {b < o1 : Ub 2 U0} then E ¼ {xa : a 2 B} is an

uncountable subset of Dn (see Fact 5 for the definition of Dn).

For each x¼ (x1, . . . , xn) 2Dn there exists f 2 C(bD) such that f(xi) 2Oi for each

i b n (Problem 034). The set Of ¼ f�1(O1)� � � � �f�1(On) is an open neighbour-

hood of the point x and, if xa 2 Of then f xai
� � 2 Oi for all i b n which shows that

f 2 Ua. Since U0 is point-finite, the function f belong to at most finitely many

elements of U0 so there are only finitely many a 2 B such that xa 2 Of. Conse-

quently, each point x 2 Dn has a neighbourhood which contains only finitely many

elements of E which shows that E is a closed discrete subset of Dn. Since the set E is
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uncountable (and hence infinite), the space Dn cannot be countably compact; this

contradicts Fact 5 and finishes our solution.

S.383. Prove that, for any compact space X and any continuous surjective mapping
f : X! bo, there exists F � X such that f (F) ¼ bo and f jF is a homeomorphism.

Solution. The map f is perfect so we can apply Problem 366 to find a closed F � X
such that f (F) ¼ bo and the map f jF is irreducible. Since every condensation of

a compact space is a homeomorphism, it suffices to prove that the mapping g¼ f jF :

F! bo is injective.

Fact 1. Suppose that h : Y! Z is a closed irreducible map. Given anyW 2 t�(Y), let
h#(W)¼ Z \ h(Y \W). Then the setWh¼ h�1(h#(W)) is dense inW and hence h#(W) is

dense in h(W).

Proof. For an arbitrary O 2 t�(Y), we have Y \O 6¼ Y and therefore h(Y \O) 6¼ Z
because the map h is irreducible. Thus h#(O) 6¼ ; and hence ; 6¼ h�1(h#(O))� O for

any O 2 t�(Y). Now, if Wh is not dense in W then O ¼ W\Wh 2 t�(Y) and hence

Oh � O is a non-empty open subset of W with O \ Wh ¼ ;. However, O � W
implies Oh �Wh; this contradiction shows that O ¼ ;, i.e., Wh is dense inW. Since
the map h is continuous, the set h(Wh)¼ h#(W) is dense in h(W) so Fact 1 is proved.

Fact 2. The set U is open in bo for any U 2 t(bo). As a consequence, for any

U, V 2 t(bo) such that U \ V ¼ ;, we have U \ V ¼ ;.
Proof. If U ¼ ; then there is nothing to prove. If U 6¼ ; then U ¼ U \ o because o
is dense in bo. Now apply Fact 1 of S.370 to conclude that U \ o and hence U is

open in bo. Observe that if a set P does not intersect an open setW then P \ W¼ ;
as well. Therefore, U \ V ¼ ; implies U \ V ¼ ;; since U is open, by the same

remark, we have U \ V ¼ ; so Fact 2 is proved.

Returning to our solution, suppose that x, y 2 F, x 6¼ y and g(x) ¼ g(y). Fix
Ox 2 t(x, F), Oy 2 t(y, F) such that Ox \ Oy ¼ ;. Apply Fact 1 to convince

ourselves that the set g#(Ox) is dense in g(Ox) and g#(Oy) is dense in g(Oy). Since z
¼ g(x) ¼ g(y) 2 g(Ox) \ g(Oy), we have z 2 g# Oxð Þ \ g# Oyð Þ. However, U ¼
g#(Ox) and V ¼ g#(Oy) are disjoint open subsets of bo; therefore U \ V ¼ ; by
Fact 2. This contradiction shows that g is a homeomorphism so our solution is

complete.

S.384. Let T be the two arrows space. Prove that T is a perfectly normal hereditarily
separable compact space and ext(Cp(T)) ¼ c. Deduce from this fact that Cp(T) is
not normal.

Solution. We have T ¼ T0 [ T1, where T0 ¼ (0, 1] � {0} and T1 ¼ [0,1) � {1}. If

we consider T0 as a subspace of T then, for any z ¼ (t, 0) 2 T0, the family {(a, t] �
{0} : 0< a< t} is a base at the point z.An easy consequence is that the map i : T0!
[�1, 0) defined by i(t, 0) ¼ �t, is a homeomorphism if [�1, 0) is considered to be a
subspace of the Sorgenfrey line S (see Problem 165).
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Analogously, if we consider T1 as a subspace of T then, for any z ¼ (t, 1) 2 T1,
the family {[t, a) � {1} : t < a < 1} is a base at the point z, so it is immediate that

the map i : T1 ! [0, 1) defined by i(t, 1) ¼ t, is a homeomorphism if [0, 1) is

considered to be a subspace of the Sorgenfrey line S (see Problem 165).

Since the space T is introduced from scratch, we must check the Tychonoff

property of T. It suffices to prove that T is Hausdorff and compact (see

Problem 124). The map p : T ! [0, 1] defined by p(t, i) ¼ t, is continuous if

[0, 1] is considered with the topology induced from R. Take any distinct z0, z1 2 T.
If p(z0) 6¼ p(z1) then there are sets Ui 2 t(p(zi), [0, 1]), i ¼ 0, 1 such that U0 \
U1¼ ;. Then V0¼ p�1(U0) and V1¼ p�1(U1) are open in T and separate the points

z0 and z1. Now, if z0 ¼ (t, 0) and z1 ¼ (t, 1) for some t 2 (0, 1) then consider the

sets U0 ¼ ((0, t] � {0}) [ ((0, t) � {1}) and U1 ¼ ([t, 1) � {1}) [ ((t, 1) � {0}). It

is immediate that Ui 2 t(zi, T) and U0 \ U1 ¼ ; so the Hausdorff property of T
is verified.

We already saw that Ti is homeomorphic to a subspace of S for each i ¼ 0, 1.

Given any Y � T, we have Y ¼ Y0 [ Y1 where Yi ¼ Y \ Ti for i 2 {0, 1}. Since S is
hereditarily separable and hereditarily Lindel€of, so is Ti and hence Yi is separable
and Lindel€of for each i ¼ 0, 1. A union of two separable and Lindel€of spaces is
separable and Lindel€of so Y is separable and Lindel€of for any Y� T. This shows that
T is hereditarily separable and hereditarily Lindel€of. Since we only know so far, that

T is Hausdorff, it is necessary to observe that all properties mentioned in this

paragraph hold for Hausdorff spaces.

We next prove that the map p is closed. Take any point t 2 (0, 1) and any setW 2
t(p�1(t), T); if zi¼ (t, i) for i 2 {0, 1} then p�1(t)¼ {z0, z1}. Since z0 2W, there is a
2 (0, t) such that U0 ¼ ((a, t] � {0}) [ ((a, t) � {1}) � W. Analogously, z1 2 W
implies that there is b 2 (t, 1) such thatU1¼ ([t, b)� {1}) [ ((t, b)� {0})�W. The
set V ¼ (a, b) is open in [0, 1]; besides, t 2 V and p�1(V) �W. Therefore, for every
t 2 (0, 1) and every W2 t(p�1(t), T) there is V 2 t(t, [0, 1]) such that p�1(V) � W.
The proof of the same property at the points t ¼ 0 and t ¼ 1 is easier so we omit it.

Now apply Fact 2 of S.271 (which is true for Hausdorff spaces) to conclude that the

map p is closed. The set p�1(z) consists of at most two points for each z 2 T so

p�1(z) is compact for all z 2 T. Thus the map p is perfect; since [0, 1] is a compact

space, we can apply Fact 2 of S.259 (which is also true for Hausdorff spaces) to see

that T is compact and hence normal.

To see that T is perfectly normal, it suffices to establish that every closed set in

T is a Gd-set. This is equivalent to saying that every open set of T is an Fs-set. So let

U 2 t�(T). Since we already have regularity of the space T, for any z 2 U we can

take Uz 2 t(z, T) such that Uz � U. Since every subspace of T is Lindel€of, we have
a countable A � U such that U ¼ S

{Uz : z 2 A} ¼ S
{Uz : z 2 A} so U is an

Fs-subset of T which shows that we proved perfect normality of the space T.
For any t 2 (0, 1), let zi¼ (t, i), i 2 {0, 1}. Define a function ft 2 C(T) as follows:

f(zi) ¼ i, i 2 {0, 1}; f(z) ¼ 0 if p(z) < t and f(z) ¼ 1 if p(z) > t. It is clear that the set
F ¼ {ft : t 2 (0, 1)} has cardinality c.We must check that F � C(T) and F is closed

and discrete in Cp(T). Each function ft is continuous because both f
�1
t ð0Þ and f�1t ð1Þ

are open sets; hence F � C(T).
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Now, assume that f 2 Cp(T) is an accumulation point of the set F. If f(z) =2 {0, 1}

for some z 2 T then U ¼ {g 2 Cp(T) : g(z) =2 {0, 1}} is an open neighbourhood of

f with U \ F ¼ ;. Thus f(T) � {0, 1}; assume that f(z) ¼ 0 for some z 2 T. If z0 2 T
and p(z0)< p(z) then f(z0)¼ 0 because otherwise f(z0)¼ 1 and the set V¼ {g2 Cp(T) :
g(z) < 1/2 and g(z0) > 1/2} is an open neighbourhood of f which does not meet F.
Analogously, if f(z) ¼ 1 then f(z0) ¼ 1 for any z0 2 T with p(z0) > p(z). Note that

ft(0, 1) ¼ 0 and ft(1, 0) ¼ 1 for all ft 2 F whence f(0, 1) ¼ 0 and f(1, 0) ¼ 1. There

exists a 2 [0,1] such that f(z)¼ 1 for all z 2 T with p(z)> a and f(z)¼ 0 for all z 2 T
such that p(z) < a. If a ¼ 0, then f(z) ¼ 1 for all Z 2 T \ {(0, 1)} which contradicts

continuity of f at the point y0 ¼ (0, 1). If a ¼ 1 then f(z) ¼ 0 for all z 2 T \ {(1, 0)}
which contradicts continuity of f at the point y1 ¼ (1, 0).

Thus, 0< a< 1; if zi¼ (a, i) for i¼ 0, 1 then f(zi)¼ i. Indeed, z0 is in the closure
of the set A ¼ (0, a) � {0} on which the function f is equal to zero and z1 belongs
to the closure of the set B ¼ (a, 1) � {1} on which f is identically 1. Thus the set

W ¼ {g 2 Cp(T) : g(z0) < 1/2 and g(z1) > 1/2} is an open neighbourhood of

f such that W \ F ¼ {fa} which demonstrates again that f is not an accumulation

point for F. This contradiction shows that F is closed and discrete in Cp(T).
Therefore, ext(Cp(T)) r c; since w(Cp(T)) ¼ jTj ¼ c, we have ext(Cp(T)) b w
(Cp(T)) ¼ c so ext(Cp(T)) ¼ c.

Finally, observe that Cp(T) is not normal because normality of Cp(T) implies ext

(Cp(T)) ¼ o (Problem 295) which is a contradiction with ext(Cp(T)) ¼ c.

S.385. Let T be the two arrows space. Show that p(Cp(T)) ¼ c.

Solution. We have T ¼ T0 [ T1, where T0 ¼ (0, 1] � {0} and T1 ¼ [0, 1) � {1}.

For any t 2 (0, 1) let z0(t) ¼ (t, 0) 2 T0 and z1(t) ¼ (t, 1) 2 T1.

Fact 1. Given an arbitrary function f 2 C(T) and any positive number e, the set

A( f, e) ¼ {t 2 (0, 1) : jf(z1(t)) � f(z0(t))j r e} is finite.

Proof. Suppose that S ¼ {ti : i 2 o} � (0, 1) is a faithfully indexed set such that

jf(z1(ti)) � f(z0(ti))jr e for all i 2 e. Passing to a smaller infinite subset if necessary,

we can assume that S is a monotonous sequence which converges to a point t 2
[0, 1]. We have two cases.

(1) The sequence S is increasing. Then, for every set W 2 t(z0(t), T), there exists

k 2 o such that {z0(ti), z1(ti)}�W for all ir k. The function f being continuous
at the point z ¼ z0(t), there is W 2 t(z0(t), T) such that f ðWÞ � ð f ðz0ðtÞÞ � e

3
;

f ðz0ðtÞÞ þ e
3
Þ. Take an arbitrary i 2 o such that {z0(ti), z1(ti)} � W; then

j f ðz0ðtiÞÞ � f ðzÞj< e
3
and j f ðz1ðtiÞÞ � f ðzÞj< e

3
whence j f ðz1ðtiÞÞ � f ðz0ÞðtiÞjb

j f ðz1ðtiÞÞ � f ðzÞj þ j f ðz0ðtiÞÞ � f ðzÞj< e
3
þ e

3
< e, which is a contradiction.

(2) The sequence S is decreasing. Then, for every set W 2 t(z1(t), T), there exists
k 2 o such that {z0(ti), z1(ti)}�W for all ir k. The function f being continuous
at the point z ¼ z1(t), there is W 2 t(z1(t), T) such that f ðWÞ � ðf ðz1ðtÞÞ � e

3
;

f ðz1ðtÞÞ þ e
3
Þ. Take an arbitrary i 2 o such that {z0(ti), z1(ti)} � W; then

j f ðz0ðtiÞÞ � f ðzÞj< e
3
and j f ðz1ðtiÞÞ � f ðzÞj< e

3
whence j f ðz1ðtiÞÞ � f ðz0ÞðtiÞjb

j f ðz1ðtiÞÞ � f ðzÞj þ j f ðz0ðtiÞÞ � f ðzÞj< e
3
þ e

3
< e, which is a contradiction.

Fact 1 is proved.
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If z 2 T, let e(z)( f )¼ f (z) for all f 2 Cp(T). Then e(z) : Cp(T)!R is a continuous

function (Problem 166). Given any t 2 (0, 1), let ’t( f) ¼ f(z1(t)) � f(z0(t)) for any
function f 2 Cp(T). Then ’t : Cp(T) ! R is continuous because ’t ¼ e(z1(t)) �
e(z0(t)), i.e., ’t is a difference of two continuous functions. Denote by ’ the function

which is identically zero on Cp(T).

Claim. The subspace K ¼ {’t : t 2 (0, 1)} [ {’} of the space Cp(Cp(T)) is

homeomorphic to A(cc).

Proof. It is evident that jKj ¼ c, so it is sufficient to show that K \U is finite for

any U 2 t(’, Cp(Cp(T))). There exist functions f1, . . . , fn 2 Cp(T) and e > 0 such

that V ¼ {d 2 Cp(Cp(T)) : jd( fi)j < e for all i b n} � U. The set A ¼ S {A( fi, e) :
ib n} is finite by Fact 1. For any ib n, if t =2 A then t =2 A( fi, e) and hence j’t( fi)j< e
by definition of A( fi, e). This shows that ’t 2 V� U if t =2 A, i.e., the set K \U � A is

finite so our claim is proved.

Returning to our solution, observe that it is a straightforward consequence of

our claim that p(Cp(T)) ¼ a(Cp(Cp(T))) r c (Problem 178). On the other hand,

p(Cp(T)) b nw(Cp(T)) ¼ nw(T) b jTj ¼ cc whence p(Cp(T)) ¼ c and our solution is
complete.

S.386. Consider the two arrows space T and let S be the Sorgenfrey line. Prove that
Cp(T) embeds into Cp(S) while Cp(S) does not embed into Cp(T).

Solution. We have T ¼ T0 [ T1, where T0 ¼ (0, 1] � {0} and T1 ¼ [0, 1) � {1}. If

we consider T0 as a subspace of the space T then, for any point z ¼ (t, 0) 2 T0, the
family {(a, t]� {0} : 0< a< t} is a base at the point z. An easy consequence is that
the map i : T0! [�1, 0) defined by i(t, 0) ¼ �t, is a homeomorphism if [�1, 0) is
considered to be a subspace of the Sorgenfrey line S (see Problem 165). Thus the

map i�1 : [�1, 0)! T0 is also a homeomorphism and hence i�1 is a continuous map

from [�1, 0) to the space T (Problem 023).

Analogously, if we consider T1 as a subspace of T then, for any z ¼ (t, 1) 2 T1,
the family {[t, a)� {1} : t< a< 1} is a base at the point z so it is immediate that the

map j : T1! [0, 1) defined by j(t, 1)¼ t, is a homeomorphism if [0, 1) is considered

to be a subspace of the Sorgenfrey line S (see Problem 165). Therefore, the map j�1

: [0, 1)! T is also continuous (here we applied Problem 023 again).

Fact 1. Two arrows space is a continuous image of the Sorgenfrey line.

Proof.All subsets ofR in this proof carry the topology induced from the Sorgenfrey

line S. Let ’(x) ¼ i�1(x) for all x 2 [�1, 0) and ’(x) ¼ j�1(x) if x 2 [0, 1). It is easy

to see that ’ : [�1, 1)! T is a continuous onto map. The set [�1, 1) is clopen in

the Sorgenfrey line S so the map p : S! [�1, 1) defined by p(x) ¼ x if x 2 [�1, 1)
and p(x) ¼ 0 for all x 2 S \ [�1, 1), is continuous. It is clear that ’ 	 p maps

S continuously onto T so Fact 1 is proved.

Returning to our solution, fix a continuous onto map p : S ! T. The map p� :
Cp(T)! Cp(S) defined by p

�( f) ¼ f 	 p for all f 2 Cp(T), is an embedding (Problem

163) so Cp(T) embeds in Cp(S).
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To see that Cp(S) does not embed in Cp(T) observe that t(Cp(T))bo because T is

compact (Problem 149). If Cp(S) is homeomorphic to a subspace of Cp(T) then
t(Cp(S)) b t(Cp(T)) ¼ o (Problem 159) and hence t(Cp(S)) ¼ o. Applying

Problem 149 again we convince ourselves that l(S � S) b o which is a contradic-

tion with Problem 165. Therefore Cp(S) does not embed in Cp(T) so our solution is

complete.

S.387. Let M0 be the one-point compactification of the Mrowka space M. Prove that
M0 is a sequential compact space which is not a Fréchet–Urysohn space.

Solution. Let us first prove the following simple fact that might be needed for

further references.

Fact 1. The one-point compactification of any locally compact space is a compact

Hausdorff (and hence Tychonoff) space.

Proof. Let X be a locally compact space; then a(X)¼ X [ {a} where a =2 X. It is clear
that any distinct x, y 2 X can be separated by open sets in X and hence in a(X). Take
any x 2 X; since X is locally compact, there is U 2 t(x, X) such that K ¼ clX(U) is
compact. Therefore V¼ {a}[ (X \K) 2 t(a, a(X)), U 2 t(x, a(X)) and U \ V¼ ; so
a(X) is a Hausdorff space.

To see that a(X) is compact, take any open cover U of the space a(X). Pick any

U 2 U with a 2 U; then K¼ X \U is compact and hence there is a finite U0 � U such

that K �SU0. As a consequence, the family U0 [ {U} is a finite subcover of a(X)
and hence a(X) is compact. Now apply Problem 124 to conclude that a(X) is a

normal and hence Tychonoff space. Fact 1 is proved.

The Mrowka space M is locally compact by Problem 142 so the Alexandroff

compactification of M makes sense. It follows from Fact 1 that M0 is a compact

space. We have M0 ¼M [ o [ {a} where a =2 M ¼M [ o and the space M is

Fréchet–Urysohn (Problem 142). Take any non-closed A �M0 and choose any x 2
A \A. Since all points ofo are isolated, we must have x 2M or x¼ a. If x 2M then

x is in the closure of A \ {a} in the space M. Since M is Fréchet–Urysohn, there is a

sequence {An : n 2 o} � A with An! x =2 A.
Next, observe thatM \ U is finite for any U 2 t(a, M0) becauseM \ U is closed

and discrete in a compact space M0 \U (see Problem 142). As a consequence, any

faithfully indexed sequence {xn : n 2 o} �M converges to a.
Now assume that x ¼ a; if A \ M is infinite, then, by the previous remark, any

faithfully indexed sequence {xn : n 2 o} � A \ M converges to a 2 M0 \ A.
Therefore, the set A0 ¼ A \ o is infinite, a 2 A0 and A00 ¼ A \ M is finite. It is easy

to see that there is W 2 t(A00, M) such that K ¼ clM(W) is compact. The set V ¼
M0 \K is an open neighbourhood of a in the space M0 and hence a 2 V \ A0. This
shows that B ¼ V \ A0 is an infinite set with A00 \ clM(B) ¼ ;. Since only the

points from A00 can be accumulation points of B, we conclude that the infinite set

B has no accumulation points in the space M which implies that the family {{y} :

y 2 B} � t(M) is discrete which is a contradiction with pseudocompactness of M
(see Problem 142). We proved that in all possible cases there exists a sequence
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{xn : n 2 o} � A which converges to some point outside of A. Hence M0 is

a sequential space.

To see that the space M0 is not Fréchet–Urysohn, let A ¼ o and observe that

a 2 A. If {An : n 2 o}� A is a sequence with an! a then the family {{An} : n 2 o}
is infinite, discrete in M and consists of non-empty open subsets of M which is a

contradiction with pseudocompactness of M (Problem 142). Thus M0 is not a

Fréchet–Urysohn space so our solution is complete.

S.388. Let M0 be the one-point compactification of the Mrowka space M. Prove that
M0 \o is homeomorphic to the Alexandroff compactification of a discrete space.

Solution. We have M0 ¼ M [ o [ {a}, where a =2 M ¼ M [ o and M is the

Mrowka space (Problem 142). Observe first that the spaceM0 ¼M0 \ o is closed in

M0 and hence compact because M0 is compact (Problem 387).

If D is a discrete space then D is homeomorphic to the cardinal k ¼ jDj taken
with the discrete topology. It is immediate that a(D) is homeomorphic to A(k) so it

suffices to prove that M0 ¼ M [ {a} is homeomorphic to A(jMj). It is easy to see

that it is sufficient to show that, for any U 2 t(a, M0), the set M0 \ U is finite.

To do this, take any V 2 t(M0) for which V \ M0 ¼ U; then V 2 t(a, M0) and

hence the set M\V is a compact subspace of M. The setM is closed and discrete

inM (Problem 142) and henceM \ (M \V) is closed and discrete inM\V. But the
set M\V is compact so M0 \ U ¼M \ (M\V) is finite, so our solution is complete.

S.389. Let M0 be the one-point compactification of the Mrowka space M. Prove
that, for every second countable space Z and any continuous f : M0 ! Z, the set
f(M0) is countable.

Solution. We have M0 ¼ M [ o [ {a} where a =2 M ¼ M [ o and M is the

Mrowka space (Problem 142).

Fact 1. Let k be any infinite cardinal. Then, for any second countable space X and

any continuous map g : A(k)! X, the set g(A(k)) is countable.

Proof. Let g(b) ¼ r and fix a countable local base {On : n 2 N} at the point r in
the space X (here b is the unique non-isolated point of A(k)). For each n 2 N there is

a finite set An � k such that g(A(k) \An) � On. The set A ¼ S
{An : n 2 N} is

countable; if x 2 A(k) \ A then x 2 A(k) \ An and hence g(x) 2 On for all n 2 N.
This shows that g(x) 2 T{On : n 2 N} ¼ {r} for any x 2 A(k) \A and hence the set

g(A(k)) ¼ {r} [ g(A) is countable so Fact 1 is proved.

Returning to our solution, observe that M0 \o is homeomorphic to A(k) for

k ¼ jM0j (388); hence we can apply Fact 1 to conclude that f(M0 \o) is a countable
subset of Z. Since o is countable, the set f(M0) ¼ f(M0 \o) [ f(o) is also countable

so our solution is complete.

S.390. Let M0 be the one-point compactification of the Mrowka space M. Prove that
Cp(M0) is not Lindel€of.
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Solution. Given a set Z, a finite K� Z, a function f 2 RZ and e > 0, we letWZ( f, K, e)
¼ {g 2RZ : jg(x)� f(x)j< e for all x 2 K}. It is clear that the family {WZ( f, K, e) : K
is a finite subset of Z and e > 0} is a local base at f in RZ.

Now, if X is a space and we are given a finite K � Z, a function f 2 Cp(X) and
e > 0, then we let OX( f, K, e) ¼ {g 2 Cp(X) : jg(x) � f(x)j < e for all x 2 K}. It is
clear that the family {OX( f, K, e) : K is a finite subset of X and e > 0} is a local base

at f in Cp(X).
We haveM0¼M[o [ {a} where a =2M¼M[o andM is the Mrowka space

(Problem 142). We will write D to denote the discrete space {0, 1}. Call a space

X zero-dimensional if it has a base of clopen sets. The expression X ’ Y says that

the spaces X and Y are homeomorphic. If X is a set (or a space) and A � X then let

wA(x) ¼ 1 for all x 2 A and wA(x) ¼ 0 if x =2 A. The function wA is called the
characteristic function of the set A in the set \ space X.

Fact 1. If a space X is zero-dimensional then Cp(X, D) is dense in DX.

Proof. Take any f 2 DX and any finite K ¼ {x1, . . . , xn} � X; since X has a base of

clopen sets, there exist disjoint clopen setsU1, . . . , Un such that xi 2Ui for all ib n.
Let Unþ1 ¼ X \

S
ibn Ui; then {U1, . . . , Un, Unþ1} is a clopen partition of the space

X.Given any ib n, let g(x)¼ f(xi) for all x 2Ui; ifUnþ1 6¼ ;, then take any y 2Unþ1
and let g(x) ¼ f(y) for all x 2 Unþ1. It is evident that g : X ! D and gjK ¼ f jK.
The function g is continuous because we must only check that g�1(0) and g�1(1)
are open in X and this is indeed true because each Ui is open in X and therefore

g�1(0) ¼ S {Ui : f(xi) ¼ 0} and g�1(1) ¼ S {Ui : f(xi) ¼ 1} are also open in X.

As a consequence, for any finite K � X and any e > 0, we have found a function

g 2 Cp(X, D) such that f jK ¼ gjK and hence j f(x) � g(x)j ¼ 0 < e for all x 2 K.
This shows that g 2 WX( f, K, e) and hence f is in the closure of Cp(X, D). The
function f 2 DX has been taken arbitrarily so Fact 1 is proved.

Fact 2. The space M0 is zero-dimensional.

Proof. It is evident that a space is zero-dimensional if and only if it has a local

base of clopen sets at every of its points. If x 2 o then {{x}} is a base at x which
consists of clopen subsets. If x 2M then x \ A is a clopen set inM0 for any finite A�
M0 \ {x} so x also has a local base of clopen sets (recall that any x 2M can also be

considered to be the respective subset of o). Finally, let x¼ a; for any U 2 t(a, M0)

the set P ¼M0 \U is a compact subset ofM. For each y 2 P take Uy 2 t(X, M) such

that clM(Uy) is compact (see Problem 142). We proved that there exists a clopen Vy

such that y 2 Vy�Uy. The set Vy is closed in a compact setUy so Vy is also compact.

By compactness of P, we can choose y1, . . . , yk 2 P such that P� V¼ Vy1 [ . . . Vyk.

The set V is compact and open inM; henceW¼M0 \V is a clopen neighbourhood of

a such that W � U. As a consequence, the point x ¼ a also has a local base which

consists of clopen subsets of M0 so Fact 2 is proved.

Fact 3. The space Cp(M0, D) is not countably compact. An easy consequence is that

the space Cp(M0, D) � oo embeds in Cp(M0) as a closed subspace.
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Proof. Since o is dense in M0, the space M0 is separable; hence Cp(M0) condenses

onto a second countable space (Problem 173). If Cp(M0, D) is countably compact

then, being a subspace of Cp(M0), it also condenses onto a second countable

space Y. Therefore Cp(M0, D) is homeomorphic to Y (Problem 140). Any second

countable countably compact space is compact so both Y and Cp(M0, D) are com-

pact. Facts 1 and 2 imply that Cp(M0, D) is dense in DM0 so Cp(M0, D) ¼ DM0 , i.e.,

every f :M0!D is continuous. However, it is easy to see that this is false; take, for

example, the function f¼ w{a}. Since a is not an isolated point ofM0, the function f
is not continuous. This proves that Cp(M0, D) is not countably compact.

Let S � Cp(M0, D) be a countably infinite closed discrete subset of Cp(M0, D);
then So is a closed subset of (Cp(M0, D))o and hence Cp(M0, D) � So is a closed

subset of Cp(M0, D) � (Cp(M0, D))o ’ (Cp(M0, D))o. Observe first that Do can

be considered a closed subset of R because it is homeomorphic to the Cantor set K
� R (Problem 128). An immediate consequence is that Cp(M0, Do) embeds

in Cp(M0) as a closed subspace (Problem 090). Note also that Cp(M0, Do)

is homeomorphic to (Cp(M0, D))o (Problem 112). Observe finally that

Cp(M0, Do) embeds in Cp(M0) as a closed subspace and Cp(M0, D) � So embeds

in Cp(M0, Do) as a closed subspace so Cp(M0, D) � So ’ Cp(M0, D) � oo

embeds as a closed subspace in Cp(M0) so Fact 3 is proved.

Fact 4. Let X and Y be Hausdorff (not necessarily Tychonoff) spaces. If f : X! Y is

a continuous map then

(1) The set G( f) ¼ {(x, f(x)) : x 2 X} is a closed subset of X � Y.
(2) If pX : X � Y ! X is the natural projection then pXjG( f) : G( f) ! X is a

homeomorphism. In particular G( f) is a closed subspace of X � Y homeomor-

phic to X. The set G( f) is called the graph of the function f.

Proof. Since pX is a continuous map, the mapping ’ ¼ pXjG( f) is continuous.

If z1 ¼ (x1, f(x1)) and z2 ¼ (x2, f(x2)) are distinct points of G( f) then it is easy to see

that x1 ¼ ’ (z1) 6¼ x2 ¼ ’ (z2) so the map ’ is a condensation.

To see that ’�1 : X ! G( f) is also continuous take any z0 ¼ (x0, f(x0)) 2 G( f)
and any W 2 t(z0, X � Y). There exist U 2 t(x0, X) and V 2 t( f(x0), Y) such that

U� V�W; by continuity of f there isU1 2 t(x0, X) such thatU1�U and f(U1)� V.
We claim that ’�1(U1) � W. Indeed, take any x 2 U1; then f(x) 2 V and hence

’ �1(x)¼ (x, f(x)) 2U1� V� U� V�W. Thus, U1 witnesses continuity of ’
�1 at

the point x0 and hence ’ is a homeomorphism.

To see that G( f ) is closed in X � Y take any z0 ¼ (x0, y0) 2 (X � Y) \G( f ). Then
y0 6¼ f(x0) and hence there are disjoint W 2 t( f(x0), Y) and V 2 t(y0, Y). Since f is
continuous, there exists U 2 t(x0, X) such that f(U) � W. The set O ¼ U � V is an

open neighbourhood of z0 in the space X � Y. If z ¼ (x, y) 2 O \ G( f ) then x 2 U,
y 2 V and y ¼ f(x) 2 V whence y 2 W \ V ¼ ; which is a contradiction. Hence

O \ G( f ) ¼ ;, i.e., each point z0 2 (X � Y) \G( f ) has an open neighbourhood

contained in (X � Y) \G( f ). Therefore, the set (X � Y) \G( f ) is open in X � Y and

hence the graph of f is closed. Fact 4 is proved.
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Fact 5. Let X be a zero-dimensional Lindel€of space. Then any open Fs-subset of

X is homeomorphic to a closed subspace of X � o.

Proof. It is straightforward that U is a Lindel€of space. Since X is zero-dimensional,

for each x 2 U there is a clopen Ux 2 t(x, X) such that Ux � U. The open cover

{Ux : x 2 U} of the Lindel€of space U has a countable subcover and therefore U is

a countable union of clopen subsets of X. Since every finite union and any

difference of clopen sets is a clopen set, we can find a family U ¼ {Un : n 2 o}
of clopen subsets of X such thatUn�Unþ1 for all n 2o and

SU ¼U. The setWnþ1
¼ Unþ1 \ Un is also clopen (maybe, empty) for all n 2 o; if we letW0¼ U0 then the

family {Wn : n 2 o} is a partition of U which consists of clopen subsets of X. Given
any x 2 U, let f(x) ¼ n if x 2Wn; it is clear that f is defined consistently. Continuity

of f follows from the fact that the inverse image of any subset of o is open being a

union of some clopen subsets of U. Apply Fact 4 to conclude that G( f ) � U � o is

homeomorphic toU. SinceU�o� X�o, the setG( f ) is also a subset of X�o so

it suffices to show that G( f) is closed in X � o.

Take any z0 ¼ (x0, n0) 2 (X � o) \ G( f); we have two cases.

(1) If x0 2 U apply Fact 4 to observe that G( f) is closed in U � o and hence

W ¼ (U � o) \ G( f ) is an open neighbourhood of z0 in U � o. Since U � o is

open in X�o, the setW is also open in X�o so z0 has an open neighbourhood
in X � o which does not meet G( f ).

(2) If x0 2 X \ U thenW¼ X \ Un0 2 t(x0, X) and hence the setW0 ¼W� {n0} is an
open neighbourhood of z0 in X�o.Now, if z¼ (x, n) 2G( f ) \ W0 then n¼ n0
and f(x) ¼ n0 whence x 2 Un0 . However, also x 2 W ¼ X \Un0 which is a

contradiction.

Thus, every z 2 (X � o) \G( f ) has an open neighbourhood which does not meet

G( f ) so G( f) is a closed subset of X � o homeomorphic to U. Fact 5 is proved.

Returning to our solution, for each x 2M take a clopen Ux 2 t(x, M0) such that

Ux\M ¼ {x}; this is possible because M0 is zero-dimensional (Fact 2) andM is

discrete (Problem 142). Let fx ¼ wUx for all x 2 M; the set F ¼ {fx : x 2 M} �
Cp(X, D) is discrete because OM0

( fx, {x}, 1) \ F¼ {fx} for every x 2M. Consider

the set H¼ {f 2 Cp(M0,D) : f(M[ {a})¼ {0}}; then F [H is closed in Cp(M0, D).
To see this, take any f 2 Cp(M0, D) \ (F [ H). SinceM is dense in M0 ¼ M [ {a},
there is x 2 M such that f(x) 6¼ 0 and hence f(x) ¼ 1; then V ¼ OM0

( f, {x}, 1)\
(F [ H) contains at most the function fx so V \ {fx} is an open neighbourhood of

f which does not meet F [ H.
Consider the set E ¼ {f 2 Do : f�1(0) � U \ o for some U 2 t(M0, M0)}. Since

M0 \ M
0 ¼ o is a countable set, M0 is a Gd-set in M0 and hence w(M0, M0) b o

(Problem 327). Fix an external base B ¼ {Un : n 2o} of the setM0 inM0. The set En

¼ {f 2 Do : f(Un\o) ¼ {0}} is closed in Do for each n 2 o. Of course, En � E for

all n 2 o; if f 2 E then there isW 2 t(M0, M0) such that f(W \ o)¼ {0}. There is n
2 o such that Un � W and hence f(Un \ o) � f(W \ o) ¼ {0} which shows

that we have f 2 En. As a consequence, E¼
S
{En : n 2o} and E is an Fs-set in the

space Do; therefore E0 ¼ Do \ E is a Gd set in Do.
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Let p : F [ H! Do be the restriction map, i.e., p( f) ¼ f jo for every f 2 F [ H.
The graph G(p) of the map p is homeomorphic to F [ H and closed in the space

(F [ H) � Do by Fact 4. Therefore, the set Q ¼ G(p) \ ((F [ H) � E0) is closed in
(F [ H) � E0.

Observe that, for any f 2 H, we have f�1(0) 2 t(M0, M0) and hence p( f) 2 E. On
the other hand, if f ¼ fx 2 F for some x 2 M then p( f ) =2 E for otherwise there

is W 2 t(M0, M0) with f(W \ o) ¼ {0}; since f is continuous and x 2 W, we have

fx(x)¼ 0 which is a contradiction. Therefore p( f ) 2 E0 for any f 2 F. This proves that
p(Q) ¼ F and hence Q is an uncountable closed discrete subspace of (F [ H) � E0.

There exists a family {On : n 2 o} � t(Do) such that E0 ¼ \ n2o On. Therefore

the space E0 embeds as a closed subspace into
Q
{On : n 2 o} (Fact 7 of S.271).

Each On 2 t(Do) is an Fs-set so it embeds into Do � o as a closed subset (Fact 5).

Thus
Q
{On : n 2o} embeds in (Do�o)o ’ Do�oo as a closed set. SinceD is a

closed subset ofo, the spaceDo embeds as a closed subset inoo; as a consequence,

Do � oo embeds as a closed subspace in oo � oo ’ oo. This shows that E0

embeds in oo as a closed subspace and hence (F [ H) � E0 embeds as a closed

subspace in (F [ H)� oo. Since F [ H is closed in Cp(M0, D), the set (F [ H)� E0

embeds in Cp(M0, D) � oo as a closed subspace. Since Q is an uncountable closed

discrete subset of (F [ H) � E0, the space Cp(M0, D) � oo also has an uncountable

closed discrete subset. Finally, Cp(M0, D) � oo embeds in Cp(M0) as a closed

subspace (Fact 3) and hence ext(Cp(M0)) > o. Thus, the space Cp(M0) cannot even

be normal (Problem 295) so our solution is complete.

S.391. Let M0 be the one-point compactification of the Mrowka space M. Prove that
Cp(M0) does not have a dense s-compact subspace.

Solution. If Cp(M0) has a dense s-compact subspace then there is a compact

K � Cp(M0) which separates the points of M0 (Fact 3 of S.312). Such compact

spaces are called Eberlein compact spaces (this definition was first introduced

before Fact 12 of S.351). It was proved in Fact 19 of S.351 that any pseudocompact

subset of an Eberlein compact space is compact so the pseudocompact subset M of

the space M0 must be compact which is false (Problem 142). This contradiction

shows that Cp(M0) has no dense s-compact subspace.

It is not, in fact, necessary to use such a sophisticated result for our solution.

We can also observe that the evaluation map eK : M0 ! Cp(K) defined by the

formula eK(x)( f) ¼ f(x) for all x 2 M0 and f 2 K, is an embedding (Fact 2 of S.351

but this is simple). Therefore M0 embeds in Cp(K); since o is dense in M0,

we can apply Fact 9 of S.351 (it is also simple) to conclude that we have

w(M0) ¼ nw(M0) ¼ o (Fact 4 of S.307) which is false because M0 is not even

Fréchet–Urysohn (Problem 387).

S.392. Let M0 be the one-point compactification of the Mrowka space M. Prove that
Cp(M0) is a Fréchet–Urysohn space.

Solution. Since M0 is compact, the space Cp(M0) has countable tightness (see

Problem 149). Take any set A � Cp(M0) and any f 2 A. There exists a countable
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B � A such that f 2 B. Define a map ’ : M0! RB by ’ (x)( f ) ¼ f(x) for all x 2M0

and f 2 B. It is immediate that ’ is a continuous map; if Z ¼ ’ (M0) � RB then Z is

second countable and hence countable by Problem 389. The map ’ : M0 ! Z is

closed and hence the dual map ’� : Cp(Z)! Cp(M0) defined by ’
�( f )¼ f 	 ’ for all

f 2 Cp(Z), is a closed embedding (see Problem 163). It is also immediate that we

have the inclusions B � B � ’�(Cp(Z)) (the last inclusion holds because ’�(Cp(Z))
is closed in Cp(M0)). Since the space Cp(Z) is homeomorphic to ’�(Cp(Z)), we
have w(B) b w(’�(Cp(Z))) ¼ o so the space B is second countable and hence

Fréchet–Urysohn. Thus there is a sequence {fn : n 2 o} � B � A which converges

to f. Since we have taken arbitrarily a set A � Cp(M0) and f 2 A, we proved that

Cp(M0) is a Fréchet–Urysohn space.

S.393. Prove that IX ¼ b(Cp(X, I)) if and only if every countable subset of X is
closed and C�-embedded in X.

Solution.Assume that every countable subset of X is closed and C�-embedded in X.
Therefore, every countable A � X is discrete so every function is continuous on A.
Given any A � X, let pA : Cp(X, I) ! Cp(A, I) be the restriction map defined by

pA( f ) ¼ fjA for any f 2 Cp(X, I). It is immediate that pA is a restriction of the

relevant natural projection pA : IX! IA. Observe that pA(Cp(X, I)) consists precisely
of those functions from A to I which can be extended to a continuous function from
X to I. Since the set A is C�-embedded in the space X, every function f : A ! I
extends to a continuous bounded function g1 : X! R. Let l(t) ¼ �1 if t < �1, l(t)
¼ 1 if t > 1 and l(t) ¼ t for all t 2 [�1,1]. Then l : R! I is a continuous map and

l(t)¼ t for all t 2 I. We have g¼ l 	 g1 : X! I and g(x)¼ l(g1(x))¼ l( f(x))¼ f(x)
for all x 2 A because g1jA ¼ f and f(x) 2 I for all x 2 A. We proved that, for any

countable A� X and any f : A! I, there exists g 2 C(X, I) such that gjA¼ f. In other
words pA(Cp(X, I)) ¼ IA.

A trivial consequence of Problem 034 is the fact that Cp(X, I) is dense in IX.
Given any continuous function ’ : Cp(X, I)! I there exists a countable A � X and

a continuous map h : pA(Cp(X, I))! I such that h 	 pA¼ ’ (see Problem 299 which

is applicable because Cp(X, I) is dense in IX). We saw that pA(Cp(X, I)) ¼ IA and

therefore we have a continuous mapF : IX! I defined byF¼ h 	 pA. If f 2 Cp(X, I)
then F( f) ¼ h( pA( f )) ¼ h(pA( f )) ¼ ’ ( f ), i.e., FjCp(X, I) ¼ ’. The function ’ has

been chosen arbitrarily so we can apply Fact 1 of S.309 to conclude that IX ¼
b(Cp(X, I)); this settles sufficiency.
Fact 1. If Z is any space and Z � Y � bZ then bY ¼ bZ.

Proof. It is clear that bZ is a compact extension of Y. Given any compact space

K and a continuous map f : Y! K, the map g¼ f jZ : Z! K is continuous and hence

there is a continuous map h : bZ ! K such that hjZ ¼ g ¼ f jZ. The map hjY is

continuous and coincides with f on a dense set Z; therefore hjY¼ f (Fact 0 of S.351).
Now apply Problem 258 to conclude that bY ¼ bZ. Fact 1 is proved.

Assume that IX¼ b(Cp(X, I)); fix any countable A� X and any function f : A! I.
Suppose first that f =2 pA(Cp(X, I)); it is easy to see that pA(Cp(X, I)) is dense in the
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space IA. The space IA is second countable so there is a faithfully enumerated

sequence {fn : n 2 o} � pA(Cp(X, I)) with fn ! f. Given any h 2 IA, let i(h)(x) ¼
g(x) for all x 2 A; if x 2 X \A then i(h)(x)¼ 0. It is clear that i(h) 2 IX for any h 2 IA.
Let g¼ i( f ) and gn¼ i( fn) for all n 2 o. It is straightforward that the sequence {gn :
n 2 o} � IX is faithfully enumerated and converges to g.

Since f =2 pA(Cp(X, I)), we have CpðX; IÞ � Y ¼ IXnp�1A ðf Þ. Applying Fact 1,

we can see that bY ¼ IX. The point f is a Gd-set in IA and therefore p�1A ð f Þ is a
Gd-set in IX. As a consequence, Y is an Fs-set in the compact space IX; thus Y is

s-compact and hence normal. The sequences P ¼ {g2n : n 2 o} � Y and S ¼ {g2nþ1
: n 2 o} � Y are disjoint and converge to the same point g 2 IX \ Y. The set P0 ¼
P[{g} is compact and P0 \ Y ¼ P which implies that P is closed in Y.
Analogously, the set S is also closed in Y. The space Y being normal, there exists

a continuous function r : Y ! [0, 1] such that r(S) ¼ {0} and r(P) ¼ {1}. There

exists a continuous function R : IX ¼ bY ! [0, 1] such that RjY ¼ r. Since g 2 P
(the bar denotes the closure in IX) and R(P) ¼ r(P) ¼ {1}, we have R(g) ¼ 1 by

continuity of R. However, g 2 S and R(S) ¼ r(S) ¼ {0} whence R(g) ¼ 0 which is

a contradiction.

This contradiction proves that pA(Cp(X, I)) ¼ IA for any countable A � X. In
other words, every f : A ! I extends to a continuous function F : X ! I.
In particular, every function f : A! I is continuous on A and hence any countable

A � X is discrete. If x 2 A \A then the set A0 ¼ A [ {x} is also countable and hence
discrete which contradicts the fact that A is not closed in A0. This shows that there
are no points in A \ A and hence every countable A is closed in X.

To see that A is C�-embedded, take any bounded f : A! R there is n 2 N such

that f(A) � [�n, n]. Observe that the function rðtÞ ¼ 1
nt is a homeomorphism

between [�n, n] and I with the inverse function s(t) ¼ nt. Let h ¼ r 	 f; then
h is a function on A and h : A ! I. There exists H 2 Cp(X, I) such that HjA ¼ h;
consider the function F ¼ s 	 H. Then F 2 C�(X) and F(x) ¼ s(H(x)) ¼ s(h(x)) ¼ s
(r( f (x))) ¼ f(x) for all x 2 A which shows that A is C�-embedded in X so our

solution is complete.

S.394. Prove that Cp(X) has a dense s-compact subspace if and only if Cp(X, I) has
a dense s-compact subspace.

Solution. Assume that Cp(X) has a dense s-compact subspace. Since Cp(X) is

homeomorphic to Cp(X, (�1, 1)) (Fact 1 of S.295), the space Cp(X, (�1, 1)) also
has a dense s-compact subspace P.We have Cp(X, (�1, 1))� Cp(X, I); it is an easy
consequence of Problem 034 that Cp(X, (�1,1)) is dense in Cp(X, I) so P is also

dense in Cp(X, I) which settles necessity.

Now assume that Q is a dense s-compact subspace of Cp(X, I). The mapping ’n :

Cp(X, I) ! Cp(X, [�n, n]) defined by ’n( f ) ¼ n · f, is continuous and onto (see

Problem 091) so Pn ¼ ’n(Q) � Cp(X,[�n, n]) is a dense s-compact subspace of

Cp(X, [�n, n]). The set P ¼ S
{Pn : n 2 N} is s-compact and dense in the space

C�pðXÞ ¼
S

CpðX; �n; n½ 
Þ : n 2 N
� �

which in turn is dense in Cp(X) (Fact 3 of

S.310). Therefore P is a dense s-compact subset of Cp(X).
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S.395. Prove that Cp(X) has a dense Lindel€of subspace if and only if Cp(X, I) has a
dense Lindel€of subspace.

Solution. Assume that Cp(X) has a dense Lindel€of subspace. Since Cp(X) is

homeomorphic to Cp(X, (�1, 1)) (Fact 1 of S.295), the space Cp(X, (�1, 1)) also
has a dense Lindel€of subspace P. We have Cp(X,(�1, 1)) � Cp(X, I); it is an easy

consequence of Problem 034 that Cp(X, (�1,1)) is dense in Cp(X, I) so P is also

dense in Cp(X, I) which settles necessity.

Now assume that Q is a dense Lindel€of subspace of Cp(X, I). The mapping

’n : Cp(X, I)! Cp(X, [�n, n]) defined by ’n( f) ¼ n · f, is continuous and onto (see

Problem 091) so Pn¼ ’n(Q)� Cp(X, [�n, n]) is a dense Lindel€of subspace of Cp(X,
[�n, n]). The set P ¼ S

{Pn : n 2 N} is Lindel€of and dense in the space

C�pðXÞ ¼
S

CpðX; �n; n½ 
Þ : n 2 N
� �

which in turn is dense in Cp(X) (Fact 3 of

S.310). Therefore P is a dense Lindel€of subset of Cp(X).

S.396. Suppose that Cp(X, I) is s-compact. Prove that X is discrete and hence the
space Cp(X, I) is compact.
Solution. Recall that a space Z is called a P-space if every Gd-subset of Z is open. It

is easy to see that this is equivalent to saying that, for any x 2 Z and any sequence

{Fn : n 2 o} of closed subsets of Z, if x =2 S {Fn : n 2 o} then x =2S Fn : n 2 of g.
Fact 1. If Cp(Z, I) is s-countably compact then Z is a P-space.

Proof. If not then there exists a point x 2 Z and closed sets {Fn : n 2 N}
such that x =2 Fn, Fn � Fnþ1 for each n 2 N and x 2 S Fn : n 2 Nf g. The subspace
Ix ¼ {f 2 Cp(Z, I) : f(x) ¼ 0} is closed in Cp(Z, I) and hence it is s-countably
compact. Let Ix ¼

S
{Kn : n 2 N} where each Kn is countably compact. We

claim that, for each n 2 N and each e > 0, there is Kn 2 N such that for every

function f 2 Kn there is z 2 Fkn with f(z) < e. If it were not true then, for each i 2
N, there is fi 2 Kn such that fi(y) r e for each y 2 fi. Since Kn is countably

compact, the set {fi : i 2 N} has a accumulation point f 2 Kn. If y 2 F ¼ S {Fi : i
2 N} then y 2 fm for some m 2 N and hence fi(y) r e for all i r m. It is

immediate that f(y) r e as well. Thus, we have f(y) r e for all y 2 F while f(x) ¼
0 which contradicts continuity of f and the fact that x 2 F.

Therefore, we can fix a sequence {Kn : n 2N}�Nwith the following properties:

(1) Knþ1 > Kn for each n 2 N.
(2) For each f 2 Kn there is y 2 Fkn such that f ðyÞ< 1

2n
.

Apply the Tychonoff property of Z to choose a continuous gn : Z ! 0; 1
2n

	 

such

that gn(x) ¼ 0 and gnðFknÞ ¼ 1
2n

� �
for each n 2 N. The function g ¼ Sn2N gn is a

uniform limit of the sequence {g1 þ � � � þ gn}n2N and hence g 2 Cp(Z); it is
easy to see that g 2 Cp(Z, [0, 1]) � Cp(Z, I). It is evident that g(x) ¼ 0 so g 2 Ix.
However, gðyÞrgnðyÞr 1

2n
for each y 2 Fkn whence g =2 Kn for all n 2 o. Therefore

g 2 Ix \ (
S
{Kn : n 2 o}) which is a contradiction. Fact 1 is proved.
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Returning to our solution, consider the map e : X ! Cp(Cp(X, I)) defined by

e(x)( f)¼ f(x) for all x 2 X and f 2 Cp(X, I). Since for any x 2 X and any closed F� X
with x =2 F there is f 2 Cp(X, I) such that f(x) ¼ 1 and f(F) ¼ {0}, we can

apply Problem 166 to conclude that e embeds X in Cp(Cp(X, I)). The space Cp(X, I)
being s-compact, we have t(X) b t(Cp(Cp(X, I))) b o (Problem 149), i.e., t(X) b o.

Now, if A � X and x 2 A \A then there is a countable B � A such that x 2 B. It is
evident that X \B is a Gd-set; therefore x 2 X \B 2 t(x, X) because X is a P-space by
Fact 1. Thus B is closed which is a contradiction with x 2 B \B. This shows that
every A � X is closed and hence X is discrete. As a consequence, Cp(X, I) ¼ IX is a
compact space so our solution is complete.

S.397. Prove that the following conditions are equivalent for any space X:

(i) Cp(X, I) is countably compact.
(ii) Cp(X, I) is s-countably compact.
(iii) Every Gd-subset of X is open in X.

Solution. The implication (i) ) (ii) is obvious; the implication (ii) ) (iii) was

proved in Fact 1 of S.396. The implication (iii) ) (i) was established in Fact 2 of

S.310.

S.398. Prove that the following conditions are equivalent for any space X:

(i) Cp(X, I) is pseudocompact.
(ii) Cp(X, I) is s-pseudocompact.
(iii) Cp(X, I) is s-bounded.
(iv) Every countable subset A of X is closed and C�-embedded in X.

Solution.Given any set A� X, denote by pA : IX! IA the natural projection defined
by pA( f) ¼ fjA for any function f 2 IX. The implication (i) ) (ii) is evident. Any

pseudocompact subspace of any space is bounded in that space; therefore any

s-pseudocompact space is s-bounded so (ii) ) (iii) holds. Observe also that

Cp(X, I) is dense in IX so we can apply Fact 1 of S.286 to conclude that

(�) Cp(X, I) is pseudocompact if and only if pA(Cp(X, I)) ¼ IA for any countable

A� X, i.e., for every (not necessarily continuous) function f : A! I there exists
g 2 Cp(X, I) such that gjA ¼ f.

Now assume that Cp(X, I) is pseudocompact and take any countable A � X;
it follows from (�) that every f 2 IA is a restriction to A of some g 2 Cp(X, I), so any
f 2 IA is continuous on A, i.e., Cp(A, I)¼ IA. This shows that every countable subset
of X is discrete; if A � X is countable and x 2 A \ A then the set A0 ¼ A [ {x} is

also countable and hence discrete which contradicts the fact that A is not closed

in A0. This shows that there are no points in A \A and hence every countable A� X is

closed in X.
To see that every countable A � X is C�-embedded, take any bounded function

f : A!R; there is n 2N such that f(A)� [�n, n]. Observe that the function rðtÞ ¼ 1
nt

is a homeomorphism between [�n, n] and I with the inverse function s(t) ¼ nt.
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Let h ¼ r 	 f; then h is a function on A and h : A! I. It follows from (�) that there
exists H 2 Cp(X, I) such that HjA ¼ h; consider the function F ¼ s 	 H. Then F 2
C�(X) and F(x)¼ s(H(x))¼ s(h(x))¼ s(r( f(x)))¼ f(x) for all x 2 Awhich shows that

A is C�-embedded in X, so we proved that (i) ) (iv).

To prove (iv) ) (i), assume that (iv) holds and take any countable A � X; we
must first note that A is discrete. Indeed, if B� A then B is also countable and hence

closed by (iv). Since all subsets of A are closed (in X and hence in A), the set A is

discrete and, in particular, all functions on A are continuous. Thus the condition (iv)

says that any bounded f 2 RA can be extended to a continuous function on the

whole X. To establish that (i) holds it suffices to prove (�), i.e., to show that, for any

f 2 IA there is g 2 Cp(X, I) such that gjA¼ f.We know that the function f extends to
a continuous function g1 : X ! R. Let l(t) ¼ �1 if t < �1, l(t) ¼ 1 if t > 1 and

l(t) ¼ t for all t 2 [�1, 1]. Then l : R! I is a continuous map and l(t) ¼ t for all
t 2 I. We have g ¼ l 	 g1 : X! I and g(x) ¼ l(g1(x)) ¼ l( f(x)) ¼ f(x) for all x 2 A
because g1jA ¼ f and f(x) 2 I for all x 2 A. This proves that gjA ¼ f and hence (�)
holds; therefore the implication (iv) ) (i) is settled.

At this point we have (iv) , (i) ) (ii) ) (iii) so it suffices to show that

(iii) ) (i). This implication is the most difficult one and requires a good insight

into retractions, bounded sets and their properties. Given a space Z, a continuous

map r : Z! Z is called a retraction if r 	 r¼ r. A subspace R� Z is called a retract
of Z if there is a retraction r : Z! Z such that r(Z)¼ R. Given a retraction r : Z! Z,
the set R ¼ r(Z) is closed in Z and r(x) ¼ x for any x 2 R (Fact 1 of S.351).

Fact 1. Let Z be an arbitrary space.

(1) If r : Z! Z is a retraction and R ¼ r(Z) then R is a retract of Y for any Y � Z
such that R � Y.

(2) If R is a retract of Z then R is C-embedded in Z.
(3) If ’ : Z! Z is a homeomorphism and R is a retract of Z then ’ (R) is a retract of

Z and ’ (R) is homeomorphic to R.

Proof. (1) If r0 ¼ rjY then r0 : Y! Z and r0(Y) ¼ r(Y) � r(Z) ¼ R � Y, i.e., we can
consider that r0 : Y! Y. Given any y 2 Y, we have r0(r0(y)) ¼ r(r(y)) ¼ r(y) ¼ r0(y)
which shows that r0 	 r0 ¼ r0 and hence r0 is a retraction. Since R � Y, we have

r0(x) ¼ r(x) ¼ x for any x 2 R and therefore R ¼ r(Z) � r(Y) ¼ r0(Y) � r0(R) ¼ R
whence R ¼ r0(Y).

(2) If f 2 C(R) and r : Z! R is a retraction, then g ¼ f 	 r 2 C(Z) and gjR ¼ f;
indeed, if x 2 R then r(x) ¼ x and hence g(x) ¼ f(r(x)) ¼ f(x) so R is C-embedded

in Z.
(3) It is clear that ’ jR : R! f(R) is a homeomorphism; if r : Z! R is a retraction

then r0 ¼ ’ 	 r 	 ’ �1 : Z! Z is also a retraction; indeed, r0 	 r0 ¼ ’ 	 r 	 ’ �1 	 ’ 	
r 	 ’ �1 ¼ ’ 	 r 	 r 	 ’ �1 ¼ ’ 	 r 	 ’ �1 ¼ r0. Now, r0(Z) ¼ ’ (r(’ �1(Z))) ¼
’ (r(Z)) ¼ ’ (R) so Fact 1 is proved.

Fact 2. Let Z be an arbitrary space

(1) If A � Z is bounded in Z then A is also bounded in Z.
(2) If A � Z is bounded in Z and B � A then B is also bounded in Z.
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(3) If A is C-embedded in Z and A is bounded in Z then A is pseudocompact.

(4) If R is a retract of Z and there is a bounded A � Z with R � A then R is

pseudocompact.

Proof. (1) Take any function f 2 C(Z); the set f(A) is bounded in R and hence f(A)�
[�n, n] for some n 2 N. Since [�n, n] is compact, we have f ðAÞ � f ðAÞ � �n; n½ 

(the first bar denotes the closure in Z and the second one, in R) and therefore f(A) is
a bounded subset of R. Thus A is bounded.

(2) This is evident because any subset of a bounded subset of R is a bounded

subset of R.
(3) If A is not pseudocompact then there is an unbounded f 2 C(A). Since A is

C-embedded, there is g 2 C(Z) such that gjA ¼ f. It is clear that g is not bounded on
A so A is not bounded in Z which is a contradiction.

(4) Apply (2) to see that R is bounded in Z. The set R is C-embedded in Z by

Fact 1 so it is pseudocompact by (3). Fact 2 is proved.

Fact 3. Given a space Z, e > 0 and any f 2 Cp(Z), let I( f, e) ¼ {g 2 Cp(Z) : jg(z) �
f(z)j b e for all z 2 Z}. Then I( f, e) is a retract of the space Cp(Z) and I( f, e) is
homeomorphic to Cp(Z, I).
Proof. Denote by u the function which is identically zero on Z. It is evident

that Cp(Z, I) ¼ I(u, 1). It is easy to verify that the map ’e : Cp(Z) ! Cp(Z)
defined by ’e(h) ¼ e · h for all h 2 Cp(Z), is a homeomorphism. It is immediate

that ’e(Cp(Z, I)) ¼ I(u, e). Now define Tf : Cp(Z)! Cp(Z) by Tf (h) ¼ h þ f for all
h 2 Cp(Z). The mapping Tf is a homeomorphism by Problem 079 and it is straight-

forward that Tf(I(u, e)) ¼ I( f, e). The set Cp(Z, I) is a retract of Cp(Z) (Problem 092)

and the map ’¼ Tf 	 ’e is a homeomorphism of the space Cp(Z) onto itself such that
’ (Cp(Z, I)) ¼ I( f, e). Now apply Fact 1 to conclude that I( f, e) is a retract of Cp(Z)
and I( f, e) is homeomorphic to Cp(Z, I). Fact 3 is proved.

To finally prove (iii) ) (i) assume that Cp(X, I) ¼
S
{Bn : n 2 o} where each

Bn is bounded in Cp(X, I). Then the set Bn is also bounded in Cp(X, I) by Fact 2 and
Cp(X, I) ¼

S
{Bn : n 2 o} so we can assume, without loss of generality, that each

Bn is closed in Cp(X, I). Given functions f, g 2 C(X, I), let d( f, g)¼ sup{jf(x)� g(x)j
: x 2 X}. Then d is a complete metric on C(X, I) (Problem 248). We will denote

the metric space (C(X, I), d) by Cu(X, I). Given any f 2 Cu(X, I) and any e> 0, let B
( f, e) ¼ {g 2 Cu(X, I) : d( f, g) < e}. It is evident that the topology of Cu(X, I)
contains the topology of Cp(X, I) and therefore each Bn is closed in Cu(X, I). The
space Cu(X, I) has the Baire property (see Problems 274 and 269); the set Bðu; 1

2
Þ

is open in Cu(X, I) and hence it also has the Baire property (Problem 275). We

have the inclusion Bðu; 1
2
Þ � S Bn : n 2 of g and hence all sets Bn \ Bðu; 1

2
Þ cannot

be nowhere dense in Cu(X, I); thus there is n 2 o such that U � Bn \ Bðu; 1
2
Þ for

some open U � Cu(X, I). By definition of the metric topology, there is f 2 U and

e > 0 such that B( f, 2e) � U. It is straightforward that I( f, e) � B( f, 2e) � U � Bn.

The set I( f, e) is a retract of the space Cp(X) (Fact 3); since I( f, e) � Cp(X, I) �
Cp(X), the set I( f, e) is also a retract of Cp(X, I) by Fact 1. Since I( f, e) is contained in
a bounded set Bn, we can apply Fact 2 to conclude that I( f, e) is pseudocompact.
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Since Cp(X, I) is homeomorphic to I( f, e) (Fact 3), the space Cp(X, I) is also

pseudocompact. This finishes the proof of (iii) ) (i) so our solution is complete.

S.399. Prove that the following conditions are equivalent for any space X:

(i) Cp(X) is s-pseudocompact.
(ii) Cp(X) is s-bounded.
(iii) The space X is pseudocompact and every countable subset of X is closed and

C�-embedded in X.

Solution. Every s-pseudocompact space is s-bounded so (i) ) (ii).

Fact 1. Suppose that A is a bounded set in a space Z. Then, for any continuous map

f : Z! Y, the set f(A) is bounded in the space Y.As a consequence, every continuous
image of a s-bounded space is a s-bounded space.

Proof. If r : Z ! R is a continuous function such that r( f(A)) is not bounded in

R then g ¼ r 	 f 2 C(Z) and g(A) ¼ r( f(A)) is not bounded in R which is a

contradiction. Therefore f(A) is bounded in Y.

Now, assume that Z¼ S {Bn : n 2o} where each Bn is bounded in Z. If f : Z! Y
is a continuous onto map then Y¼ S {f(Bn) : n 2 o} and each f(Bn) is bounded in Y
so Y is s-bounded. Fact 1 is proved.

Fact 2. The space Ro is not s-bounded.

Proof. Assume that Ro ¼ S {Bn : n 2 o} where each Bn is bounded in Ro. We can

assume, without loss of generality, that each Bn is closed in Ro (see Fact 2 of

S.398). The spaceRo is normal and hence each Bn is C-embedded inRo; apply Fact

2 of S.398 to conclude that each Bn is pseudocompact. The space Ro being second

countable so is Bn for each n 2 o; therefore Bn is compact for all n 2 o. It turns out
that Ro is s-compact which is false (Fact 2 of S.186). The obtained contradiction

proves Fact 2.

To prove (ii) ) (iii) assume that Cp(X) is s-bounded. Since Cp(X, I) is a

continuous image of Cp(X) (Problem 092), the space Cp(X, I) is also s-bounded by

Fact 1. Therefore, every countable A� X is closed and C�-embedded in X (Problem

398). If X is not pseudocompact then Cp(X) maps continuously onto Ro (Fact 1 of

S.186) so Ro has to be s-bounded by Fact 1. However, Fact 2 says that Ro is not s-
bounded; this contradiction completes the proof of (ii) ) (iii).

Now, if (iii) holds then Cp(X, I) is pseudocompact by Problem 398. Since [�n, n]
is homeomorphic to I, the space Cp(X,[�n, n]) is homeomorphic to Cp(X, I) for each
n 2 N; as a consequence, Cp(X,[�n, n]) is pseudocompact for each n 2 N so the

space Cp(X) ¼
S
{Cp(X, [�n, n]) : n 2 N} is s-pseudocompact. This settles (iii)

) (i) and completes our solution.

S.400. Prove that there exists a dense pseudocompact subspace X of the cube Ic
such that every countable subspace of X is closed and C�-embedded in X. Observe
that Cp(X) is s-pseudocompact. Hence Cp(X) can be s-pseudocompact for an
infinite space X.
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Solution. In Fact 4 of S.286 it was proved that there exists a dense pseudocompact

subspace X of the space Ic such that Cp(X, I) is pseudocompact. Applying Problem

398 we can conclude that every countable A � X is closed and C�-embedded in X.
Since X is also pseudocompact, Problem 399 is applicable to convince ourselves

that Cp(X) is s-pseudocompact. Of course, X has to be infinite to be dense in Ic.
S.401. Prove that the following conditions are equivalent:

(i) X is a realcompact space.
(ii) X embeds as a closed subspace into Rk for some k.
(iii) If X is a dense subspace of a space Y and Y 6¼ X then there exists a continuous

function f : X! R which does not extend to Y continuously.
(iv) If z 2 bX \X then there exists a Gd-set H in bX such that z 2 H � bX \X.

Solution. If X is realcompact then i(X) is closed in RC(X) which is homeomorphic to

Rk for k ¼ jC(X)j. Since i is an embedding, we proved that (i) ) (ii).

Assume that X is a closed subspace ofRk for some cardinal k. Let pa :Rk!R be

the natural projection to the ath factor for all a < k. Suppose that X is a dense

subspace of a space Y; fix any y 2 Y \X and observe that if we find f 2 C(X) which is
not continuously extendable over X [ {y} then f is not continuously extendable over
Y so, for the proof of (ii) ) (iii), we can assume that Y ¼ X [ {y}.

Suppose that each function fa ¼ pajX is extendable to a continuous function ga :
Y! R on the space Y. The function g ¼ D{ga : a < k} maps Y to Rk in such a way

that gjX is the identity, i.e., g(x) ¼ x for each x 2 X. Since X is dense in Y, we have

gðYÞ � gðXÞ ¼ X ¼ X. This means g(y) ¼ z for some z 2 X. There are U 2 t(y, Y),
V 2 t(z, Y) such that U \ V ¼ ;. Since V 2 t(g(y),X), by continuity of g there is

W 2 t(y, Y) such thatW� U and g(W)� V. The set X is dense in Y so we can take a

point x 2W \ X. Then g(x)¼ x 2 V and hence x 2W \ V� U \ V¼ ; which is a
contradiction. This shows that one of the functions fa is not extendable over Y so

(ii) ) (iii) is proved.

Fact 1. Let X be a dense subspace of a space Y. If every function f 2 C(X) such that
f(x) r 1 for all x 2 X, can be extended continuously over Y then every f 2 C(X) can
be extended continuously over Y.

Proof. Let u be the function with u(x) ¼ 0 for all x 2 X. Given any f 2 C(X), let
f1¼max( f, u)þ 1 and f0¼max(�f, u)þ 1. It is straightforward that f¼ f1� f0 and,
for all i ¼ 1, 2, we have fi(x) r 1 for all x 2 X. Take any g0, g1 2 C(Y) such that

gijX ¼ fi, i ¼ 1, 2; then g ¼ g1 � g0 2 C(Y) and gjX ¼ f so Fact 1 is proved.

Returning to our solution fix any z 2 bX \X. By Fact 1 applied to Y ¼ X [ {z},
there exists f 2 C(X) such that f(x) r 1 for all x 2 X and f does not extend to Y. The

function g ¼ 1
f is continuous on X and bounded by 1 so there is G 2 C(bX) such that

GjX ¼ g. If G(z) 6¼ 0 then the function 1
GjY is a continuous extension of the function

f over the space Y, a contradiction. Thus, G(z)¼ 0 and GðxÞ ¼ 1
f ðxÞ 6¼ 0 for all x 2 X.

Therefore H ¼ G�1(0) is a Gd-subset of bX such that z 2 H� bX \X so (iii) ) (iv)

is proved.

362 2 Solutions of Problems 001–500



Fact 2. Let i ¼ DC(X) : X ! RC(X); for the open interval J ¼ (0,1) � R take any

homeomorphism ’ : J ! R and let j ¼ DC(X, J) : X ! JC(X, J). There exists a

homeomorphism F : JC(X, J) ! RC(X) such that F(j(x)) ¼ i(x) for any x 2 X.
In particular, F(j(X)) ¼ i(X) so the map j embeds X in JC(X, J) and j(X) is closed
in JC(X, J) if and only if i(X) is closed in RC(X).

Proof. Let F(v)( f)¼ ’ (v(’ �1 	 f)) for any v 2 JC(X, J) and f 2 C(X). This gives us a
map F : JC(X, J) ! RC(X). Given any f 2 C(X), let pf : RC(X) ! R be the natural

projection onto the fth factor. Analogously, if g 2 C(X, J) then qg : JC(X, J)! J is the
natural projection onto the gth factor. Observe that we have the equalities pf 	 F(v)
¼ ’ (v(’ �1 	 f)) ¼ ’ (qg(v)) where g ¼ ’ �1 	 f. Therefore pf 	 F ¼ ’ 	 qg is a
continuous map for each f 2 C(X) and hence F is continuous (Problem 102). If w 2
RC(X) then let v(g) ¼ ’ �1(w(’	 g)) for each g 2 C(X, J). Then v 2 JC(X, J) and F(v)
¼ w becauseF(v)( f)¼ ’ (v(’ �1 	 f))¼ ’ (’ �1(w(’	 ’�1 	 f)))¼ w( f) for each f 2
RC(X). Therefore the map F is surjective.

Now, if v1, v2 2 JC(X, J) and v1 6¼ v2 then there is g 2 C(X,J) such that

v1(g) 6¼ v2(g). For the function f ¼ ’	 g 2 C(X), we have

Fðv1ðf Þ ¼ ’ðv1ð’�1 	 f ÞÞ ¼ ’ðv1ðgÞÞ 6¼ ’ðv2ðgÞÞ ¼ Fðv2Þðf Þ
which shows that F(v1) 6¼ F(v2) and hence the map F is a bijection. To check

continuity of F�1, observe that F�1(w)(g) ¼ ’ �1(w(’ 	 g)) for any w 2 RC(X) and

any g 2 C(X, J). Indeed, letting v ¼ F�1(w) and f ¼ ’ 	 g, we obtain F(v) ¼ w and

therefore w( f)¼ ’ (v(g)) whence v(g)¼ ’�1(w( f))¼ ’�1(w(’	 g)) and this is what
was promised.

Take any g2 C(X,J); then, for anyw2RC(X), we have qg 	F�1(w)¼F�1(w)(g)¼
’�1(w(’	 g)) ¼ ’�1( pf(w)), where f ¼ ’	 g. As a consequence, the function

qg 	 F�1¼ ’�1 	 pf is continuous for every g 2 C(X, J) so the map F�1 is continuous
(Problem 102). This shows that F is a homeomorphism.

The last thing we need to know about F is that F( j(X)) ¼ i(X). Indeed, for any
x 2 X, we have F(j(x))( f) ¼ ’ (j(x)( ’�1 	 f)) ¼ ’ (’ �1( f(x)) ¼ f(x) ¼ i(x)( f) for
any f 2 C(X) and therefore F(j(x)) ¼ i(x) for every x 2 X.

Finally, observe that the map j is an embedding because j ¼ F�1 	 i; since any
homeomorphism and its inverse are closed maps, the set i(X) ¼ F(j(X)) is closed in

RC(X) if and only if j(X) ¼ F�1(i(X)) is closed in JC(X, J). Fact 2 is proved.

To establish (iv) ) (i) assume that (iv) holds; we must prove that i(X) is closed
in RC(X). By Fact 2 this is equivalent to the set j(X) being closed in JC(X, J). Every
g 2 C(X, J) is a continuous bounded function from X to [0, 1], so there exists a

unique continuous function s(g) : bX! [0, 1] such that s(g)jX ¼ g. The map

s ¼ D sðgÞ : g 2 CðX; JÞf g : bX! 0; 1½ 
CðX; JÞ

is continuous and sjX ¼ j; considering that JC(X,J) � [0, 1]C(X, J), let us check that

j(X) ¼ s(bX) \ JC(X, J). The inclusion j(X) � s(bX) \ JC(X, J) follows from sjX ¼ j.
Take any z 2 bX \X; by (iv) there is a Gd-set H in bX such that z 2 H � bX \X. By
Fact 2 of S.328 we can find a closed Gd-set G in bX such that x 2 G � H. by Fact 1
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of S.358 there exists f 2 C(bX) such that G ¼ f�1(0). Since bX is compact, there is

n 2 N with f(bX) � [�n, n]. If h ¼ 1
2njf j then h 2 CðbX; 0; 1

2

	 
Þ and h�1(0) ¼ G.
The function g ¼ hjX maps X into ð0; 1

2

 � ð0; 1Þ because all zeros of h are in

bX \X; it is evident that h ¼ s(g) and g 2 C(X, J). Therefore s(z)(g) ¼ s(g)(z) ¼ h(z)
¼ 0 =2 J which shows that s(z) =2 JC(X, J). This proves that j(X)¼ s(bX) \ JC(X, J) and
hence j(X) is closed in JC(X, J) because s(bX) is compact and hence closed in

[0,1]C(X, J). This settles (iv) ) (i) and makes our solution complete.

S.402. Prove that an arbitrary product of realcompact spaces is a realcompact
space.

Solution. Assume that Xt is realcompact for all t 2 T. Apply problem 401 to find a

set At such that Xt is homeomorphic to a closed subset Ft of the space RAt . We lose

no generality if we assume that the space At \ As ¼ ; if s, t 2 T, s 6¼ t. Then F ¼
P{Ft : t 2 T} is a closed subset ofP{RAt : t 2 T} and this product is homeomorphic

toRA where A¼ S {At : t 2 T} (Problem 103). It is evident that F is homeomorphic

to X¼P{Xt : t 2 T} and therefore X embeds as a closed subspace in Rk for k¼ jAj.
Applying Problem 401 again we convince ourselves that X is realcompact.

S.403. Prove that a closed subset of a realcompact space is a realcompact space.

Solution. If X is realcompact then we can consider that X is a closed subset ofRk for

some cardinal k (Problem 401). If F is a closed subset of X then F is also a closed

subset of the same space Rk. Applying Problem 401 again we conclude that F is

realcompact.

S.404. Prove that an open subset of a realcompact space is not necessarily
realcompact.

Solution. The space o1 is an open subspace of o1 þ 1. Every f 2 C(o1) is bounded

because o1 is countably compact (Problem 314). Since o1 þ 1 ¼ bo1 (Problem

314), every continuous f : o1! R extends to a continuous g : (o1 þ 1)! R which

shows that o1 is not realcompact (Problem 401).

S.405. Let X be an arbitrary space. Suppose that Xt is a realcompact subspace of X
for any t 2 T. Prove that

T
{Xt : t 2 T} is a realcompact subspace of X.

Solution. The space Y¼T{Xt : t 2 T} is homeomorphic to a closed subspace of the

product P{Xt : t 2 T} (Fact 7 of S.271) so realcompactness of Y follows from

Problems 402 and 403.

S.406. Prove that any Lindel€of space is a realcompact space.

Solution. Let X be a Lindel€of space. It suffices to prove that, for any z 2 bX \X,
there is a Gd-set H in bX such that z 2 H� bX \X (Problem 401). For any x 2 X take

Ux 2 t(x, bX) such that z =2 Ux (the bar denotes the closure in bX). The open cover

{Ux : x 2 X} of the Lindel€of space X has a countable subcover; let A � X be a

countable set such that X� S {Ux : x 2 A}. The set H¼ bX \ (
_

S
{Ux : x 2 A}) is a

Gd in bX and z 2 H � bX \X. This proves that X is realcompact.
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S.407. Prove that any pseudocompact realcompact space is compact.

Solution. Let X be a pseudocompact realcompact space. We can consider that X is a

closed subset of Rk for some k (Problem 401). We need the map pa : Rk! R which

is the natural projection onto the ath factor for all a < k. The set Xa ¼ pa(X) is a
pseudocompact subset of R for each a; thus Xa is compact. It is evident that we have

X � P{Xa : a < k}; besides, X is a closed subset of the space Rk which contains

P{Xa : a< k}. Therefore X is also closed in the compact spaceP{Xa : a< k} so X is

compact.

S.408. Let X be a realcompact space. Suppose that Y � X can be represented as a
union of Gd-subsets of X. Prove that X \ Y is realcompact. In particular, any Fs-
subspace of a realcompact space is realcompact.

Solution. Call a set U � X functionally open in X if there exists a function f 2 C(X)
and V 2 t(R) such that U ¼ f�1(V).

Fact 1. Let R be a realcompact space. Suppose that Z is an arbitrary space and f :
R! Z is a continuous map. Then f�1(B) is realcompact for any realcompact B� Z.

Proof. The graph G( f ) ¼ {(y, f(y)) : y 2 R} of the mapping f is closed in the space

R� Z (see Fact 4 of S.390). If fB¼ f jB : f�1(B)! B then, for the graphG( fB)¼ {(y,
f(y)) : y 2 f�1(B)} of the function fB we have G( fB) ¼ G( f ) \ (R � B). Since G( f )
is closed in R � Z, the set G( fB) is closed in a realcompact space R � B (402) so

G( fB) is realcompact. Applying Fact 4 of S.390 again we observe that G( fB) is
homeomorphic to f �1(B) so f�1(B) is realcompact and Fact 1 is proved.

Fact 2. Any Fs-subset P of any space Z is the intersection of functionally open

subsets of Z.

Proof. It suffices to show that, for any y 2 Z \ P there exists a functionally open

U � Z such that P � U and y =2 U. We have P ¼ S
{Fn : n 2 o}, where each Fn

is closed in Z. Since y =2 Fn, there exists fn 2 C(Z, [0, 2�n]) such that f(y) ¼ 0 and

f(Fn) � {2�n} for all n 2 o. If gn ¼ f0 þ � � � þ fn for all n 2 o then the sequence

{gn : n 2 o} converges uniformly to a function g 2 C(Z). It is evident that g(z) r 0

for any z 2 Z; besides, g(y) ¼ 0 and g(z) r fn(z) ¼ 2�n > 0 for any z 2 Fn, n 2 o.
Thus g(y) =2 V¼ (0,þ1) and therefore y =2U¼ g�1(V). Since g(y)> 0 for all y 2 P,
we have P � U so Fact 2 is proved.

Returning to our solution observe that any V � R is realcompact because V is

second countable and hence Lindel€of (Problem 406). It follows from Fact 1 and this

observation that any functionally open subset of X is realcompact. This, together

with Fact 2, proves that any Fs-subset of X is realcompact (see Problem 405). Since

X \ Y is the intersection of Fs-subsets of X, we can apply Problem 405 again to

conclude that X \ Y is realcompact.

S.409. Prove that Cp(X) is a realcompact space if and only if it is a locally
realcompact space.

Solution. It is evident that any realcompact space is locally realcompact, so let us

prove the converse for Cp(X). Denote by u the function which is identically zero
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on X. Given any g 2 Cp(X), let Tg( f ) ¼ f � g for all f 2 Cp(X). The map Tg is

a homeomorphism (Problem 079). Suppose that P � Cp(X) is realcompact and

Int(P) 6¼ ; (this is what we get from local realcompactness). Take any g 2 Int(P);
then P0 ¼ Tg(P) is a realcompact subspace of Cp(X) with u 2 Int(P0). Thus there
are x1, . . . , xn 2 X and e > 0 such that O(x1, . . . , xn, e)¼ {f 2 Cp(X) : jf(xi)j < e for all
i b n} � P0. Consequently, the space F ¼ {f 2 Cp(X) : f(xi) ¼ 0 for all i b n} is

realcompact being a closed subset of Cp(X) and hence of P0.

Fact 1. Take an arbitrary space Z and m 2 N; denote by om the point of Rm

with all coordinates equal to zero. Given a non-empty finite K � Z consider the

set HK ¼ {f 2 Cp(Z, Rm) : f(z) ¼ om for any z 2 K}. Then the space Cp(Z, Rm) is

linearly homeomorphic to HK � (Rm)K.

Proof. For every z 2 Z the natural projection pz : (Rm)Z! Rm of (Rm)Z onto the

factor determined by z is continuous; clearly,pz( f )¼ f(z) for any f2 (Rm)Z.Wewill also

need the map ez¼ pzjCp(Z, Rm) for every z 2 Z. Let K¼ {z1, . . . , zl}; fix Ui 2 t(zi, Z),
i¼ 1, . . . , l such that the family {U1, . . . ,Ul} is disjoint. There exists ui2C(Z) such that
ui(zi)¼ 1 and uij(X\Ui)� 0 for all ib l.Given a function f2Cp(Z,Rm), let r( f )¼ f(z1) ·
u1þ � � � þ f(zl) · ul and ’ ( f )¼ ( f� r( f ), f jK). It is immediate that r( f ) : Z! Rm is a

continuous map and r( f )(zi) ¼ f(zi) for all i b m so f � r( f ) 2 HK. As a consequence

’( f ) 2 HK� (Rm)K for each f 2 Cp(Z, Rm), i.e., ’ : Cp(Z, Rm)! HK � (Rm)K.

Given any i b m, the map ezi is linear and continuous. It is easy to deduce from

this fact that the map f 7! f(zi) · ui ¼ ezi( f ) · ui is also linear and continuous for any

i b m. This shows that the map r is linear and continuous and hence so is the map

f 7! f � r( f ); an immediate consequence is that the map ’ is linear and continuous.

Now, if g 2 HK and h 2 (Rm)K then letting f ¼ dðg; hÞ ¼ gþPl
i¼1 hðziÞ � ui we

obtain a function f 2 Cp(Z, Rm) such that ’( f )¼ (g, h), i.e., the map ’ is onto. Now,

suppose that f, f 0 2 Cp(Z, Rm) and f 6¼ f 0. If fjK 6¼ f 0jK then ’( f ) 6¼ ’( f 0) because the
second coordinates of ’( f ) and ’( f 0) are distinct. If fjK¼ f 0jK then r( f )¼ r( f 0) and
therefore f � r( f ) 6¼ f 0 � r( f 0) so again ’( f ) 6¼ ’( f 0).

Thus the map ’ is a bijection and d :HK� (Rm)K!Cp(Z,Rm) is the inverse of’.
To see that d is continuous, observe that it maps HK� (Rm)K into a product, namely

(Rm)Z, so it suffices to verify that, for any z 2 Z, the map dz ¼ pz 	 d is continuous.

Note first that the map (g, h)! g! g(z) ¼ pz(g) is continuous being the composi-

tion of two natural projections. Since ui(z) is a constant, every map h! h(zi)·ui(z) is
a natural projection multiplied by a constant; hence the map d is continuous being

the composition of arithmetical operations with natural projections. This shows that

’ : Cp(Z, Rm)! HK � (Rm)K is a linear homeomorphism so Fact 1 is proved.

Returning to our solution apply Fact 1 tom¼ 1 and the set K¼ {x1, . . . , xn}; then
HK ¼ F and hence Cp(X) is homeomorphic to the product F � RK. We saw that the

first factor is realcompact; the second one is also realcompact because it is second

countable and hence Lindel€of (Problem 406). Now apply Problem 402 to conclude

that Cp(X) is realcompact.

S.410. Prove that Cp(X) is a realcompact space if and only if Cp(X, I) is realcom-
pact.
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Solution. If Cp(X) is realcompact then Cp(X, I) is also realcompact because it is a

closed subspace Cp(X) (Problem 403). Now, suppose that Cp(X, I) is realcom-

pact. Observe that Cp(X) is homeomorphic to Cp(X,(�1,1)) (Fact 1 of S.295).

Given any x 2 X, let ex( f ) ¼ f(x) for all f 2 Cp(X). The map ex : Cp(X) ! R
is continuous (Problem 166) and therefore the set Ux ¼ f 2 CpðX; IÞ :

�
jf ðxÞj< 1g ¼ e�1x ðð�1; 1ÞÞ \ CpðX; IÞ is an Fs-set in Cp(X, I); it follows from

Problem 408 that Ux is realcompact for every x 2 X. Finally, apply Problem 405

to conclude that Cp(X,(�1, 1)) ¼
T
{Ux : x 2 X} is realcompact and hence so is

Cp(X).

S.411. Give an example of a locally realcompact non-realcompact space.

Solution. The space o1 is even locally compact being an open subspace of a

compact space o1 þ 1 (Problem 314). However, o1 is not realcompact because it

is a countably compact non-compact space (see Problems 314 and 407).

S.412. Let X be any space. Prove that, for any realcompact space Y and
any continuous map ’ : X ! Y, there exists a continuous map F : uX ! Y such
that FjX ¼ f.

Solution. By Problem 401, there is a set B such that Y embeds as a closed

subspace in RB and hence we can assume that Y � RB. For the set A ¼ C(X) we
can identify X with the subset ~X ¼ {bx : x 2 X} � RA, where bx( f ) ¼ f(x) for
any x 2 X and f 2 A (Problem 167). By definition, uX is the closure of ~X in the

space RA, so we consider that X � uX ¼ X � RA. Given a coordinate b 2 B,
denote by pb : RB ! R the natural projection onto the bth factor. Analogously,

the map qf : RA! R is the natural projection to the fth factor. Observe that qfjX
¼ f for any f 2 A ¼ C(X).

For any b 2 B, the map pb 	 ’ belongs to C(X)¼ A so fix fb 2 A with pb 	 ’¼ fb.
It is clear that qfbjX ¼ fb and therefore qfbjvX : uX! R is an extension of the map fb
to uX. For any x 2 uX let F(x)(b) ¼ qfb(x) 2 R; this defines a point F(x) 2 RB so we

have a map F : uX ! RB. We claim that the map F is continuous, FjX ¼ ’ and

F(uX) � Y, i.e., F : uX! Y is a continuous extension of the map ’.
The map F is continuous because pb 	 F ¼ qfb is continuous for any b 2 B (see

Problem 102). If x 2 X then F(x)(b) ¼ qfb(x) ¼ fb(x) ¼ pb 	 ’ (x) ¼ ’ (x)(b) for
every b 2 B; this shows that FjX ¼ ’. Finally, X is dense in uX implies that ’ (X) is
dense in F(uX) so FðvXÞ � ’ðXÞ � Y ¼ Y (the closure is taken in RB and the last

equality holds because Y is closed in RB). We proved that the map F : bX! Y is an

extension of ’ so our solution is complete.

S.413. Let rX be a realcompact extension of a space X. Prove that the following
properties are equivalent:

(i) For any realcompact space Y and any continuous map f : X! Y, there exists a
continuous map F : rX! Y such that FjX ¼ f.

(ii) For any realcompact extension sX of the space X, there exists a continuous
map p : rX! sX such that p(x) ¼ x for all x 2 X.
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(iii) There is a homeomorphism ’ : rX! uX such that ’ (x) ¼ x for any x 2 X, i.e.,
rX is canonically homeomorphic to uX.

Solution. Take Y ¼ sX and f : X! Y defined by f(x) ¼ x for any x 2 X. If F : rX! Y
is the extension of f whose existence is guaranteed by (i), then p¼ F satisfies (ii) so

(i) ) (ii) is established.

(ii) ) (iii). Fix a continuous map p : rX! uX such that p(x) ¼ x for any x 2 X.
It suffices to prove that ’ ¼ p is the required homeomorphism. The map f : X! rX
defined by f(x)¼ x for all x 2 X, has a continuous extension F : uX! rX by Problem

412. Let i : uX! uX be the identity, i.e., i(z) ¼ z for all z 2 uX. For the continuous
maps p 	 F : uX! uX and i : uX! uX, we have ijX¼ (p 	 f )jX for a dense subset X
of the space uX. This makes it possible to apply Fact 0 of S.351 to conclude that we

have p 	 F ¼ i.
Analogously, if j : rX! rX is the identity defined by j(x) ¼ x for all x 2 rX then

the continuous maps F 	 p and j coincide of a dense set X of the space rX. Applying
Fact 0 of S.351 again, we can conclude that F 	 p ¼ j. This shows that F and p are

bijections and themap p�1¼ F is continuous, i.e., p is the promised homeomorphism.

(iii) ) (i). Let f : X! Y be a continuous map of X to a realcompact space Y. By
Problem 412 there exists a continuous F1 : uX! Y such that F1jX¼ f. Then F¼ F1 	
’ maps rX continuously into Y and if x 2 X then F(x)¼ F1(’ (x))¼ F1(x)¼ f(x) and
therefore FjX ¼ f.

S.414. Let X be an arbitrary space and suppose that X � Y � uX. Prove that uY is
canonically homeomorphic to uX.

Solution. It is clear that uX is a realcompact extension of the space Y; take any

continuous map f : Y! Z of Y to a realcompact space Z. The mapping f1 ¼ f jX : X
! Z is also continuous so there exists a continuous map F : uX! Z such that FjX¼ f1.
We have two continuous maps F1¼ FjY : Y! Z and f : Y! Z such that F1jX¼ FjX¼
f1 ¼ f jX. As a consequence, F1 ¼ f (Fact 0 of S.351), i.e., F is a continuous

extension of the map f. Now apply Problem 413 to conclude that vY is canonically

homeomorphic to uX.

S.415. Prove that Y is a bounded subset of X if and only if cluX(Y) is compact.

Solution. Let Y be a bounded subset of X; denote the set cluX(Y) by Z. Given any

function f : uX! R the function f jX is bounded on Y and hence f is bounded on Y.
Thus Y is bounded in uX and therefore Z is also bounded in uX (Fact 2 of S.398).

Fact 1. Any closed and bounded subset of a realcompact space is compact.

Proof. Let F be a closed and bounded subset of a realcompact space T. We can

consider that T is a closed subset of Rk for some k (Problem 401). Then F is also a

closed subspace of Rk. Let pa : Rk! R be the natural projection onto the ath factor
for all a< k. Since the function pajT is bounded on F, the function pa is bounded on
F for all a < k. This means pa( f ) � Ka where Ka is a compact subset of R for each

a< k. As a consequence, F� K¼Q{Ka : a< k}. Since F is closed in Rk, it is also

closed in a smaller space K which shows that F is compact. Fact 1 is proved.
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Returning to our solution, observe that uX is realcompact and Z is closed and

bounded in uX; thus Z is compact and we proved necessity.

Now, assume that Z¼ cluX(Y) is compact and take any continuous map f : X!R.
There exists a continuous map F : uX!R such that FjX¼ f (Problem 412). Since Z
is compact, the set F(Z) is bounded in R. Therefore f(Y) ¼ F(Y) � F(Z) is bounded
in R; this shows that Y is bounded in X so our solution is complete.

S.416. Prove that X is s-bounded if and only if uX is s-compact.

Solution. Assume that X ¼ S {Xn : n 2 o} where Xn is bounded in X. The set Yn ¼
Xn is a compact subspace of uX (the bar denotes the closure in uX) by Problem 415.

Let Y ¼ S {Yn : n 2 o} and suppose that there exists y 2 uX \ Y. Since X � Y � uX,
we can apply Problem 414 to conclude that uY is canonically homeomorphic to

uX. In particular, every f 2 C(Y) is extendable continuously to uX. However, the
space Y is s-compact and hence realcompact (Problem 406); since uX is an

extension of Y and uX 6¼ Y, there exists f 2 C(Y) which does not extend to uX
continuously (Problem 401). This contradiction shows that uX ¼ Y, i.e., uX is

s-compact.

To prove sufficiency, assume that uX ¼ S {Kn : n 2 o} where Kn is compact for

each n 2 o. Then X ¼ S {Xn : n 2 o} where Xn ¼ Kn \ X for all n 2 o. Observe
that Xn � Kn and hence Xn is compact for all n 2 o. Finally, apply Problem 415 to

convince ourselves that each Xn is bounded in X and hence X is s-bounded.

S.417. Prove that, for any space X, the space uX is canonically homeomorphic to
the space {x 2 bX : H \ X 6¼ ; for every Gd-set H � bX with x 2 H}.

Solution. It is clear that the space rX ¼ {y 2 bX : H \ X 6¼ ; for any non-empty

Gd-set H � bX} is an extension of X. The space bX is realcompact and bX \ rX is a

union of Gd-subsets of bX. Indeed, if z 2 bX \ rX then there is a non-empty H � bX
such that H is a Gd-set in bX and H \ X ¼ ;. It is evident that z 2 H � bX \ rX
which proves that bX \ rX is a union of Gd-subsets of bX. Now apply Problem 408

to conclude that rX is a realcompact extension of the space X.

Take any realcompact space Y and any continuous map f : X! Y. There exists a
continuous map F : bX! bY such that F jX ¼ f (Problem 258). Suppose that y 2 rX
and F(y) =2 Y.Apply Problem 401 to find aGd-setP in bY such that F(y)2 P� bY \ Y.
Then H¼ F�1(P) is a Gd-set in bX and y 2 H� bX \X which is a contradiction with

y 2 rX. Thus F(y) 2 Y for any y 2 rX and therefore F jrX : rX! Y is a continuous

extension of f. Now apply Problem 413 to conclude that rX is canonically homeo-

morphic to uX.

S.418. Prove that tm(X) b t0(X) b d(X) for any space X. In particular, functional
tightness of a separable space is countable.

Solution. Assume that t0(X) b k, i.e., that every k-continuous function on X is

continuous on X. Every strictly k-continuous function f on X is k-continuous on X so

f is continuous. This proves that tm(X) b t0(X).
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Fix any dense set D� X with jDj ¼ k¼ d(X) and take any k-continuous function
f : X! R. If f is not continuous then there is x 2 X and A � X such that x 2 A and

f(x) =2 cl( f(A)) (the bar denotes the closure in X and cl(P) stands for the closure of
the set P in R). There exist disjointU, V 2 t(R) such that f(x) 2 U and cl( f(A))� V.
Evidently, A � V0 ¼ f�1(V); besides, A � V0 \ D. Indeed, if a 2 AnðV 0 \ DÞ then
a 2 DnV0 because D is dense in X. The function f is continuous on the set

af g [ ðDnV0Þ so f(a) 2 cl( f(DnV0 )) � cl(R \ V) ¼ R \ V while f(a) 2 f(A) � V
which is a contradiction.

Therefore x 2 A � V0 \ D ; the function f is continuous on xf g [ ðV0 \ DÞ so
f ðxÞ 2 clðf ðV 0 \ DÞÞ � clðVÞ � clðRnUÞ ¼ RnU while f(x) 2 U. This contradiction
proves that f is continuous and hence t0(X) b k. We established that t0(X) b d(X) so
our solution is complete.

S.419. Prove that htm(X) ¼ ht0(X) ¼ t(X) and hence t0(X) b t(X) for any space X.
Give an example of a space X for which t0(X) < t(X).

Solution. Assume first that t(X) b k. If f : X! R is a k-continuous function, then
take any A� X and any x 2 A. There exists B�Awith x 2 B and jBjb k. Since f is
continuous on the set xf g [ B, we have f(x) 2 cl( f(B)) � cl( f(A)) which shows that

f is continuous (the bar denotes the closure in X and cl(P) stands for the closure of
the set P in R). Thus t0(X) b k and therefore t0(X) b t(X). Since tightness is a

hereditary cardinal function, we have ht0(X) b t(X). Applying Problem 418, we can

see that htm(X)b ht0(X)b t(X) so, to establish the equality htm(X)¼ ht0(X)¼ t(X), it
suffices to prove that t(X) b htm(X).

Fact 1. For an arbitrary space Z with tm(Z)b k, if z 2 Z is not an isolated point of Z
then there is A � Z \ {z} such that jAj b k and z 2 A.

Proof. Suppose that this is not true and fix a point z 2 Zn zf g such that z =2A for any

A� Z \ {z} with jAjb k. The function f : Z!R defined by f(z)¼ 1 and fj(Z \ {z})�
0, is discontinuous. However, if B � X and jBj b k then we have fjB 2 pB(C(Z)).
Indeed, if z =2 B then f jB is the restriction of g� 0 which is continuous on Z. If z 2 B
then z =2Bn zf g so there is g 2 C(Z) such that g(z) ¼ 1 and gjBnfzg � 0: It is clear
that gjB ¼ f jB so f is strictly k-continuous discontinuous function. This contradic-
tion shows that such a point z cannot exist so Fact 1 is proved.

Returning to our solution assume that htm(X) b k. If t(X) > k then there exists

A � X and x 2 A such that x =2B for any B � A with jBj b k. For the space Z ¼ A [
{x} we have tm(Z)b k so, by Fact 1, there must exist B�A¼ Z \ {x} such that jBjb
k and x 2 clZ(B). Then x 2 B which is a contradiction. Thus t(X) b tm(Z) b htm(X),
so we proved that htm(X) ¼ ht0(X) ¼ t(X).

Now let X ¼ {0, 1}; then t0(X) b d(X) ¼ o (see Problems 418 and 108).

However, t(X) > o (Problem 359). Therefore X is a compact space with t0(X) < t
(X) so our solution is complete.

S.420. Let Y be an R-quotient image of X. Prove that tm(Y) b tm(X).

Solution. Let ’ : X ! Y be an R-quotient map. For k ¼ tm(X), take any strictly

k-continuous function f : Y ! R. We claim that the function f 	 ’ is strictly
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k-continuous on X. Indeed, if A�X and jAj b k then B ¼ ’(A) has cardinality b k
and therefore there is g 2 C(Y) such that gjB ¼ f jB. It is evident that h ¼
g 	 ’ 2 CðXÞ and hjA ¼ ( f 	 ’)jA so the function f 	 ’ is k-continuous on X.
Since tm(X) b k, the function f 	 ’ is continuous, and hence f is continuous by the

definition of R-quotient map. This proves that tm(Y) b k ¼ tm(X).

S.421. Prove that, for any infinite cardinal k, every k-continuous function on a
normal space is strictly k-continuous. As a consequence, t0(X) ¼ tm(X) for any
normal space X.

Solution. Assume that a space X is normal and take any k-continuous function

f : X ! R. Given any A � X with jAj b k, we have t0ðAÞbdðAÞbk. Since f is
k-continuous on A, it is continuous on A. By normality of X, there exists g 2 CðXÞ
such that gjA ¼ f jA and therefore gjA¼ f jA. This shows that the function f is strictly
k-continuous, i.e., every k-continuous function on X is strictly k-continuous.

To show that t0(X) ¼ tm(X), it suffices to prove that t0ðXÞbtmðXÞ (Problem 418).

Assume that tm(X) ¼ k and take any k-continuous function f : X ! R. Since X is

normal, the function f is strictly k-continuous and hence continuous. Thus,

t0ðXÞbk ¼ tmðXÞ whence t0(X) ¼ tm(X).

S.422. Prove that, for an arbitrary space X and any closed Y � X, we have
q(Y) b q(X).

Solution. Let k¼ q(X). The set cY¼ clbX(Y) is a compact extension of Y. There exists
a continuous map f : bY ! cY such that f(y) ¼ y for all y 2 Y (Problem 258). It is

evident that f is onto; besides, f(bY \Y) � cY \ Y � bX \X (Fact 1 of S.259). Given

any z 2 bY \ Y, the point y ¼ f(z) belongs to bX \X. Since X is k-placed in bX, there
exists and Gk-set H of bX such that y 2 H � bXnX. Then H0 ¼ f�1(H) is a Gk-set in

bY and z 2 H0 � bYnY. Therefore, Y is k-placed in bY and hence q(Y) b k ¼ q(X).

S.423. Prove that a dense subspace of a Moscow space is a Moscow space.

Solution. Let Y be a dense subspace of a Moscow space X. Given an arbitrary set U
2 t�(Y), fix any V 2 t (X) with V \ Y¼U. It is straightforward that clX(U)¼ clX(V)
and therefore clY (U) ¼ clX(V)\ Y. Given any y 2 clY (U), we have y 2 clX(V) so
there is a Gd-set H in the space X such that y 2 H � clX(V). It is obvious that H

0 ¼
H \ Y is a Gd-set in Y and y 2 H0� clX(V) \ Y ¼ clY (U). We proved that, for any

U 2 t�(Y) and any point y 2 clY (U) there exists aGd-set H
0 in the space Y such that y

2 H0 � clY (U); hence Y is a Moscow space.

S.424. Prove that Cp(X) is a Moscow space for any space X.

Solution. Given any A � X, let pA : RX ! RA be the natural projection onto the

face RA. If we have points x1, . . . , xn 2 X and sets O1, . . . , On 2 t�(R) then the set

[x1, . . . , xn;O1, . . . ,On]¼ {f 2RX : f(xi) 2Oi for all ib n} is called a standard open
subset of RX. The family B of standard open subsets is a base in RX by definition of

the pointwise convergence topology. If V¼ [x1, . . . , O1, . . . , On] 2 B then supp(V)¼
{x1, . . . , xn}.
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Take any U 2 t�(RX). Denote by U a maximal disjoint family of standard open

sets contained in U. Since c(RX) ¼ o (Problem 109), the family U is countable; by

maximality of U the set U0 ¼ SU is dense in U. Let A¼S{supp(V) : V 2 U }; then

A is a countable subset of X. The set P ¼ cl(pA(U)) (the closure is taken in RA) is a

Gd-set in RA because RA is second countable. We claim that U ¼ p�1A ðPÞ (the bar
denotes the closure in RX).

Fact 1. Let Y and Z be any spaces; given an open continuous onto map f : Y! Z, we
have clY ( f

�1(A)) ¼ f�1(clZ(A)) for each A � Z.

Proof. The inclusion clY ( f�1(A)) � f�1(clZ(A)) is an immediate consequence

of continuity of f. The set W ¼ Y \ clY ( f�1(A)) is open in Y so f(W) is open in Z
and does not intersect A. Therefore, clZðAÞ \ f ðWÞ ¼ ;. This shows that f�1(clZ(A))
� Y \W ¼ clY ( f

�1(A)); hence clY ( f
�1(A)) ¼ f�1(clZ(A)) and Fact 1 is proved.

Observe that U ¼ U
0
and cl(pA(U0)) ¼ cl(pA(U)) ¼ P because U0 is dense in U.

Since supp(V) � A for each V 2 U, we have p�1A ðpAðVÞÞ ¼ V for all V 2 U. An
immediate consequence is that p�1A ðpAðU0ÞÞ ¼ U0. The map pA is open so U

0 ¼ p�1A

ðclðpAðU0ÞÞÞ ¼ p�1A ðPÞ by Fact 1. Therefore, U ¼ U0 ¼ p�1A ðPÞ is a Gd-set in RX

because the inverse image of any Gd-set is, trivially, a Gd-set. Of course, this

implies that RX is a Moscow space and hence Cp(X) is also a Moscow space

being dense in RX (Problem 423) so our solution is complete.

S.425. Let Y be any space with m(Y) b k. Suppose that X � Y ¼ X and q(X) b k.
Prove that X is k-placed in Y.

Solution. The space bY is a compact extension of X so there is a continuous map f :
bX! bY such that f(x) ¼ x for any x 2 X (Problem 258). Take any y 2 Y \ X; we
have f(bX \ X) � bY \ X (Fact 1 of S.259). Since f (X)¼ X and f (bX)¼ bY, we have
f(bX \ X) ¼ bY \ Y so f�1(y) � bX \ X.

If jf�1(y)j ¼ 1, i.e., f�1(y) ¼ {z} for some z 2 bX \X, then there exists a Gk-set H
in bX such that z 2 H � bX \X because X is k-placed in bX. Take any family

U � tðbXÞ with jUjbk and
TU ¼ H. The map f is closed and, for each U 2 U, we

have U � f�1(y) so there is OU 2 t(y, bY) such that f�1(OU) � U (Fact 2 of S.271).

If V ¼ fOU : U 2 Ug and G ¼ TV then y 2 G and f�1ðGÞ ¼ Tff�1ðOUÞ :
U 2 Ug � T U ¼ H � bXnX so G \ X ¼ ;, i.e., y 2 G � bY \X. It is evident

that G0 ¼ G \ Y is a Gk-set in Y such that y 2 G0 � Y \X.
Now, suppose that there exist distinct points z, t 2 f�1(y) and choose sets Uz 2t

(z, bX) and Ut 2 t (t, bX) such that clbXðUzÞ \ clbXðUtÞ ¼ ; ; consider the sets Vz ¼
Uz \ X, Vt ¼ Ut \ X. We will also need the sets Fz ¼ clY (Vz) and Ft ¼ clY (Vt).

There exist Wz,Wt 2 t (Y) such that Wz \ X ¼ Vz and Wt \ X ¼ Vt; it is clear that

Fz ¼ clY (Vz) ¼ clY(Wz) and Ft ¼ clY (Vt) ¼ clY(Wt). Observe also that Fz \ Ft \
X ¼ clX(Vz) \ clX(Vt) � clbX(Uz) \ clbX(Ut) ¼ ; and therefore Fz \ Ft � Y \X.
Since z 2 clbX(Vz), t 2 clbX(Vt) and f(z) ¼ f(t) ¼ y, we have

y 2 clbYð f ðVzÞÞ \ clbYð f ðVtÞÞ \ Y ¼ clYð f ðVzÞÞ \ clYð f ðVtÞÞ ¼ Fz \ Ft;

because f(Vz) ¼ Vz and f(Vt) ¼ Vt.
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Wesaw that both setsFz andFt are closures of open subsets ofY so there areGk-sets

Pz andPt of the spaceY such that y2 Pz� Fz and y2 Pt� Ft. Of course,P¼Pz \ Pt is

a Gk-subset of Y and y 2 P � Fz \ Ft � Y \X so our solution is complete.

S.426. Prove that tm(X) b k if and only if Cp(X) is k-placed in RX.

Solution. If Z is an arbitrary space, then a set W 2 t (Cp(Z)) is called a standard
open subset of Cp(Z) if there are z1, . . . , zn 2 Z and O1, . . . , On 2 t (R) such that

W ¼ [z1, . . . , zn; O1, . . . , On] ¼ {f 2 Cp(Z) : f(zi) 2 Oi for all i b n}. Standard open

sets form a base B in the space Cp(Z). IfW ¼ [z1, . . . , zn; O1, . . . , On] 2B then supp

(W) ¼ {z1, . . . , zn}.

Fact 1. Let Z be an arbitrary space; given a cardinal k, call a set H � Cp(Z)
a standard Gk-set in the space Cp(Z) if there exist A � Z and f 2 Cp(Z) such that

jAj b k and H ¼ G( f, A) ¼ {g 2 Cp(Z) : gjA ¼ f jA}. Then
(1) Every standard Gk-set is a Gk-set in Cp(Z).
(2) For any f 2 Cp(Z), the family {G( f, A) : A � Z and jAj b k} forms a base at f in

the family of all Gk-sets in Cp(X) in the sense that, for any Gk-set H 3 f there is
A � Z such that jAj b k and f 2 G( f, A) � H.

Proof. For any point z 2 Z and any function f 2 Cp(Z), it is immediate that

G( f, {z}) ¼ T{[z; ( f(z) –1n, f(z) þ 1
n )] : n 2 N} is a Gd-set in Cp(Z) so the set

G( f, A) ¼ T{G( f, {z}) : z 2 A} is the intersection b k of Gd-subsets of Cp(Z).
Therefore, G( f, A) is a Gk-set whenever jAjb k so (1) is proved.

To prove (2), assume that we have f 2 H ¼ T U where U � tðCpðZÞÞ and
jUjb k. For each U 2 U fix a standard open OU 2 t ( f,Cp(Z)) and consider the

set A ¼ SfsuppðOUÞ : U 2 Ug. It is evident that jAjb k; if g 2 G( f, A), U 2 U and

OU¼ [z1, . . . , zn;O1, . . . ,On] then g(zi)¼ f(zi) 2 Oi for all ib n because supp(U)� A
and gjA ¼ f jA. Thus, g 2 OU � U for all U 2 U, i.e., g 2 H which shows that

G( f, A) � H so Fact 1 is proved.

Returning to our solution, let pA : RX ! RA be the natural projection onto the

face RA. Evidently, pAjCp(X) coincides with the relevant restriction map. Let Z be

the set X with the discrete topology; then the standard Gk-sets in Cp(Z) coincide
with the Gk-sets in RX which have the form G( f, A) ¼ {g 2 RX : gjA ¼ f jA} for

some f 2 RX and A � X with j A j b k.
Assume that tm (X) b k; given any f 2 RX \Cp (X), the discontinuous function f

cannot be strictly k-continuous because tm (X) b k. Therefore, there is a set A � X
such that j A j b k and f j A =2 pA (Cp(X)). This, evidently, implies that f 2 G ( f, A)
� RX \Cp (X); since G ( f, A) is a Gk-set in RX (Fact 1), this proves that Cp (X) is
k-placed in RX.

Now, if Cp(X) is k-placed inRX, take any strictly k-continuous discontinuous f 2 RX.

since Cp(X) is k-placed in RX, there exists a Gk-set H in RX such that f 2 H �
RX \Cp(X). Apply Fact 1 to find a set A � X such that j A j b k and G ( f, A) � H.
Then G ( f, A) � RX \ Cp(X) which implies f jA =2pA (Cp(X)), i.e., f is not strictly
k-continuous, a contradiction. Therefore, every strictly k-continuous function on X
is continuous, i.e., tm (X) b k so our solution us complete.
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S.427. Prove that Cp(X) is realcompact if and only if it is o-placed in RX.

Solution. Assume that Cp(X) is o-placed in RX. This means that RX \Cp(X) is a

union of Gd-subsets of RX. Since the space RX is realcompact, we can apply

Problem 408 to conclude that Cp(X) is also realcompact.

On the other hand, if Cp(X) is realcompact then q (Cp(X))¼o (Problem 401) and

RX is a Moscow space (424). Since Cp(X) is dense in RX, we can apply Problem 425

to convince ourselves that Cp(X) is o-placed in RX.

S.428. Suppose that there exists a non-empty Gd-subspace H� Cp (X) such that H is
realcompact. Prove that Cp(X) is realcompact.

Solution. Take any f0 2 H; the map Tf0 : CpðXÞ ! CpðXÞ defined by the formula

Tf0ðf Þ ¼ f � f0 for all f 2 Cp(X), is a homeomorphism (Problem 079). Therefore

H0 ¼ Tf0ðHÞ is also a realcompact Gd-subset of Cp(X) such that the function u � 0

belongs to H0. Apply Fact 1 of S.426 conclude that there is a countable A � X
such that I(A) ¼ { f 2 Cp(X) : f j A � 0 } � H0. The set I(A) is closed in the

whole of Cp(X) and hence in H0 so I(A) is realcompact. It is evident that

IðAÞ ¼ IðAÞ ¼ ff 2 CpðXÞ : f jA � 0g. For the set Y ¼ XnA, we have (�) the map

p ¼ pYjI(A) : I(A)! pY (I(A)) � Cp(Y) is a homeomorphism.

The map pY is continuous (Problem 152) so continuity of p is clear. If f, g 2 I(A)
and f 6¼ g then there is x 2 X such that f(x) 6¼ g(x); since f jA ¼ gjA, the point x
has to belong to Y and hence p( f ) ¼ pY( f ) 6¼ pY(g) ¼ p(g), i.e., the map p is

a condensation.

To see that the map p–1 is continuous, take any g 2 Z¼ pY (I(A)) and let p
–1 (g)¼ f.

Given x1, . . . , xn 2 X and e > 0, assume, without loss of generality, that x1, . . . ,

xk 2 A and xkþ1, . . . , xn 2 Y. Let W ¼ {h 2 Z : j h(xi) – g(xi) j < e for all i ¼ k þ
1, . . . , n}. Then W 2 t(g, Z); if h 2 W and h0 ¼ p–1(h) then h0(xi) ¼ h(xi) and hence

j h0(xi) – f(xi) j ¼ j h0(xi) – g(xi) j < e for all indices i ¼ k þ 1, . . . , n. Besides, h0 2
I(A) and therefore h0(xi) ¼ 0 ¼ f(xi) for all i b k. As a consequence, j h0(xi) – f(xi)
j < e for all i b n which shows that we have p–1 (W) � O ( f, x1, . . . , xn, e) ¼ {f 0 2
Cp(X) : j f 0(xi) – f(xi) j < e for all i b n}. Since the sets O ( f, x1, . . . , xn, e) from a

local base at f in Cp(X), we proved that p
–1 is a continuous map at every g 2 Z so (�)

is settled.

By (�), the set Z is realcompact being homeomorphic to a realcompact space I(A);
observe that Z is dense in Cp(Y). Indeed, if g 2 Cp(Y) and y1, . . . , yn 2 Y then

there are functions fi 2 C(X), i ¼ 1, . . . , n, such that fi(yi) ¼ 1 and fijðA[
ðfy1; . . . ; yngnfyigÞÞ � 0. Then f ¼Pn

i¼1 gðyiÞ. fi belongs to I(A) and we have

pY( f ) (yi) ¼ g (yi) for all i b n. Since pY( f ) 2 Z, this shows that Z intersects every

basic neighbourhood of g, i.e., g is in the closure of Z.
The space RY is a Moscow space (Problem 424) and Z is a realcompact dense

subspace of Cp(Y) and hence of RY ; this implies, by Problem 425, that Z is

o-placed in RY. Now suppose that Cp(X) is not realcompact. Then, it is not o-placed
inRX (Problem 427) and hence there is f 2RX \Cp(X) such that f j B 2 pB (Cp(X)) for
every countable B� X. In particular, there is g 2 Cp(X) such that gjA¼ fjA.Observe
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that f is o-continuous on A and hence f jA is continuous (see Problem 418). The

function h ¼ f – g is still discontinuous and strictly o-continuous; besides, hjA � 0

because h is continuous on A and hjA � 0 (see Fact 0 of S.351).

Our next step is to observe that pY(h) 2 RY \Z. Indeed, if not, then there is w 2 I(A)
such that wjY ¼ hjY; since wjA ¼ hjA � 0, we have h ¼ w is a continuous function

which is a contradication. Since Z is o -placed in RY , there is a countable B � Y
such that hjB =2 pB(Z) ¼ pB(I(A)). However, h is strictly o-continuous so there is

u 2 Cp(X) such that u j (A [ B)¼ h j (A [ B). As a consequence, u j A� 0 so ujA � 0

by continuity of u. Hence u 2 I(A) and hjB ¼ n j B 2 pB(I(A)) ¼ pB(Z) which is

a contradiction showing that Cp(X) is realcompact.

S.429. Prove that tm(X) ¼ q(Cp(X)) for any space X. In particular, Cp(X) is
realcompact if any only if tm(X) ¼ o.

Solution. Assume first that tm(X) b k for some cardinal k. Then the space Cp(X) is
k-placed in RX (Problem 426). The space K ¼ b(RX) is a compact extension of

Cp(X); given any z 2 K \Cp(X), we have two cases:

(1) z 2RX; then z 2RX \Cp(X) and therefore we can find a Gk-set H in the space RX

such that z 2 H � RX \Cp(X) because Cp(X) is k-placed in RX. It is easy to see

that there exists a Gk-set H
0 in the space K such that H0 \ RX ¼ H; evidently,

z 2 H0 � K \Cp(X).
(2) z 2 K \RX. The set RX is o-placed in K because RX is realcompact so there

exists a Gd-set H in the space K such that z 2 H � K \RX � K \Cp(X).

This shows that Cp(X) is k-placed in K; take a map ’ : b(Cp(X)) ! K such

that ’( f ) ¼ f for any f 2 Cp(X). Given any point z 2 b(Cp(X)) \Cp(X), we have

’( f ) 2 K \Cp(X). (Fact 1 of S.259) and therefore there is a Gk-set H in the space K
such that ’(z) 2 H� K \Cp(X). Then H

0 ¼ ’–1(H) is a Gk-set in b(Cp(X)) and z 2 H0

� b(Cp(X)) \Cp(X) which proves thatCp(X) is k-placed in b(Cp(X)), i.e., q(Cp(X))b k.
Thus, we proved that q(Cp(X)) b tm(X).

Finally, observe that if q(Cp(X)) b k then Cp(X) is k-placed in RX by Problem

425. As a consequence, tm(X) b k (Problem 426) which shows that tm(X) b
q(Cp(X)) so tm(X) ¼ q(Cp(X)) and our solution is complete.

S.430. Prove that tm(bo \o) > o. As a consequence, the space Cp(bo \o) is not
realcompact.

Solution. Let B be the family of all non-empty clopen subsets of o� ¼ bo \o. By
Facts 1 and 2 of S.370, the family B is a base ino�. TakeU0 2 B arbitrarily; assume

that a is a countable ordinal and we have a family fUb : b< ag � B such that

Ub0 � Ub (the inclusion is strict) for all b < b0 < a.

Since Ub is compact for each b < a, the set U0a ¼
TfUb : b<ag is a non-empty

Gd-subset of o
�. Therefore IntðU0aÞ 6¼ ; by Problem 370 and hence there exists

Ua 2 B with Ua � V0a (the inclusion is strict). This concludes our inductive con-

struction giving us a family fUb : b<o1g � B such that Ub0 � Ub (the inclusion

is strict) for all b< b0 <o1. Since the setUb is compact for each ordinal b<o1, we

have P ¼ TfUb : b<o1g 6¼ ;.
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Let f(x) ¼ 1 for all x 2 P and f(x) ¼ 0 if x 2 o� \ P. Observe that the set P is not

open in o� because otherwise K¼ o� \ P is compact while {o� \ Ua : a< o1} is an

open cover of K which has no finite subcover. Thus P ¼ f�1ðð�1
2
; 1
2
ÞÞ is not open in

o� whence f is a discontinuous function.
However, f is strictly o-continuous. To see it, take any countable A � o�. There

exists a < o1 such that Ua \ A ¼ P \ A; the function g : X! {0, 1} defined by

g(x)¼ 0 if x 2 Ua and g(x)¼ 1 for all x 2 o� \ Ua, is continuous and gjA¼ fjA. This
proves that there exists a strictly o-continuous discontinuous function on bo \o
and hence tm(bo \o) > o. Applying Problem 429, we conclude that Cp(bo \o) is
not realcompact.

S.431. Give an example of a space X for which Cp(X) is realcompact while Cp(Y) is
not realcompact for some closed Y � X.

Solution. If X ¼ bo then tm(X) b d(X) ¼ o (Problem 418), so the space Cp(X) is
realcompact (Problem 429). However, Y ¼ bo \o is a closed subset of X such that

Cp(Y) is not realcompact (Problem 430).

S.432. Prove that an open continuous image of a realcompact space is not neces-
sarily realcompact.

Solution. If X ¼ bo then tm(X) b d(X) ¼ o (Problem 418), so the space Cp(X) is
realcompact (Problem 429). However, Y ¼ bo \o is a closed subset of X such that

Cp(Y) is not realcompact (Problem 430). The space X is compact and hence normal,

so pY(Cp(X))¼ Cp(Y) (Problem 152). The map pY is open (Problem 152) so Cp(Y) is
not realcompact while being an open continuous image of a realcompact space

Cp(X).

S.433. Give an example of a space X with t0(X) 6¼ tm(X).

Solution.Given an arbitrary space Z, let Z� ¼S{clbZ(A) : A is a countable subset of

Z}. If B is a compact extension of Z, canonically homeomorphic to bZ then Z� ¼S
{clB(A) : A is a countable subset of Z}.

Fact 1. Let Z be a pseudocompact space. Then, for every strictly o-continuous
function f : Z! R, there exists a strictly o-continuous function f� : Z� ! R such

that f�jZ ¼ f.

Proof. Take any x 2 Z� and any countable A � Z such that x 2 A (the bar denotes

the closure in bZ). Since f is strictly o-continuous, there is g 2 C(Z) such that gjA¼
fjA. The space Z being pseudocompact, the function g is bounded so there exists h 2
C(bZ) such that hjZ ¼ g; we let f �(x) ¼ h(x). Of course, we must prove that the

choice of f �(x) does not depend on the choice of the set A � Z and the function g
(note that g determines a unique h by Fact 0 of S.351).

So, assume that we have some countable B � Z such that x 2 B and some

function g0 2 C(Z) such that g0jB ¼ f jB; let h0 2 C(bZ) be the extension of g0 to
bZ. The set A [ B is countable so there is g00 2 C(Z) such that g00 j(A [ B)¼ f j(A [ B);
if h00 is the extension of g00 to bZ then h00jA ¼ g00jA ¼ f jA ¼ gjA ¼ hjA implies
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h00jA¼ hjA (Fact 0 of S.351); analogously, h00jB¼ g00jB¼ f jB¼ g0jB¼ h0jB implies

h00jB¼ h0jB. Since x 2 A \ B, we have h(x)¼ h00(x)¼ h0(x), i.e., h0(x)¼ h(x) so the
definition of f� is consistent.

To see that f� is strictly o-continuous, take any countable C � Z�. For any c 2 C
there is a countable Ac � Z with c 2 Ac ; the set A¼

S
{Ac : c 2 C} is countable and

C � A. Choose any g 2 C(Z) such that gjA ¼ fjA; there is h 2 C(bZ) with hjZ ¼ g.
By definition of f�, we have f�(x)¼ h(x) for any x 2 A ; therefore f�jC¼ hjC so Fact

1 is proved.

Fact 2. Suppose thatMt is a second countable compact space for each t 2 T.A dense

set D of the product M ¼ QfMt : t 2 Tg is pseudocompact if and only if

pSðDÞ ¼ MS ¼
Q

t2S Mt for any countable S � T. Here pS : M! MS is the natural

projection onto the face MS.

Proof. If D is pseudocompact then, given any countable S � T, the set pS(D) is a
dense pseudocompact subspace of the second countable space MS. Any second

countable pseudocompact space is compact (Problem 138) so pS(D) ¼ MS and we

proved necessity. Now, assume that pS(D)¼MS for any countable S� T.Given any
continuous function f : D ! R, we can apply Problem 299 to conclude that there

exists a countable S � T and a continuous map h : pS(D)! R such that h 	 pS ¼ f.
But pS(D) ¼ MS is a compact space. Hence f(D) ¼ h(MS) is a compact and hence

bounded subset of R. It turns out that every f 2 C(D) is bounded so D is pseudo-

compact and Fact 2 is proved.

We denote by I the closed interval [0, 1] with the natural topology. Let A be any

set with jAj ¼ c. Fix any disjoint family {Aa : a< c} � exp(A) such that
S
{Aa : a<

c} ¼ A and jAaj ¼ c for each a < c. Let u 2 IA be defined by u(a) ¼ 0 for all a 2 A.
Given any B � A, we let uB ¼ ujB 2 IB. We will also need the sets S(B) ¼ {x 2 IB :
j{b2 B : x(b) 6¼ 0}j b o} � IB and R(B) ¼ IB \ S(B) for each B � A. The map pB :

IA! IB is the natural projection onto the face IB.

Fact 3. The set R(B) is pseudocompact for any uncountable B � A; therefore IB

is canonically homeomorphic to b(R(B)). If we identify b(R(B)) and IB then

R(B)� ¼ IB.

Proof. Take any countable B0 � B and any x 2 IB
0
. Letting q(b) ¼ x(b) for all b 2 B0

and q(b) ¼ 1 for all b 2 B \B0, we obtain a point q 2 R(B) such that qjB0 ¼ x.
This proves that pB0(R(B)) ¼ IB

0
for any countable B0 � B. Applying Fact 2 of

S.309 and Fact 2 of this solution, we can see that IB is canonically homeomorphic to

b(R(B)).

To show that R(B)� ¼ IB, take any x 2 IB. It is easy to find uncountable sets Ln� B,
n 2 o such that the family {Ln : n 2 o} is disjoint; let yn(b) ¼ 1 for all b 2 Ln and
yn(b)¼ x(b) for all b 2 B \ Ln. Then E¼ {yn : n 2 o}� R(B) and x 2 E ; to see this,

take any finite K� B. There is n 2o such that Ln \ K ¼ ; and therefore ynjK¼ xjK.
This proves that, for any finite K � B there is n 2 o such that ynjK ¼ xjK; an easy

consequence is that x 2 E. Since x 2 IB has been chosen arbitrarily and E is

countable, we showed that R(B)� ¼ IB so Fact 3 is proved.
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We will need the sets Sa ¼ S(A \Aa) for each a < cc and the set S ¼ S(A). The
set Q ¼S{IB : B is a countable subset of A} has cardinality cc so we can choose an
enumeration Q¼ {qa : a< c}; for each a< c, we have qa 2 IBa for some countable

Ba � A.
We first construct, by transfinite induction, an injective map g : c ! c such that

Ba \ AgðaÞ ¼ ; for all a< c. Observe that countability ofB0 implies that there are only

countably many a< c such that Aa \ B0 6¼ ;. Therefore we can choose g(0)< c such
thatAgð0Þ \ B0 ¼ ;. Assume that a< c and we have a set Sa¼ {g(b) : b< a}� c such
that AgðbÞ \ Bb ¼ ; and g(b) 6¼ g(b0) for any distinct b, b0 < a. The set

Ta ¼ Sa [ fb : Ab \ Ba 6¼ ;g has cardinality < c because jSaj < c and the set

fb : Ab \ Ba 6¼ ;g is countable. Taking any g(a) 2 c \Ta, we obtain a set Saþ1 ¼
{g(b) : bb a}� c such thatAgðbÞ \ Bb ¼ ; and g(b) 6¼ g(b0) for any distinct b, b0 b a.

Consequently, our inductive construction can be carried on for all a < c giving

us a set {g(b) : b < c} such that b 6¼ b0 implies g(b) 6¼ g(b0) for all b, b0 < c and,

besides, AgðbÞ \ Bb ¼ ; for all b < c.
For any a < c, let hg(a)(a) ¼ qa(a) for all a 2 Ba; if a 2 c \ (Ag(a) [ Ba) then

hg(a)(a) ¼ 0. This gives us hg(a) 2 Sg(a) for each a < c. For any b 2 c \ g(c), let
hb ¼ uAnAb . It is straightforward that hg(b)jBb¼ qb for all b< c so we have obtained

a set {ha : a < c} such that

(�) ha 2 Sa for any a < c; besides, for any countable B � A and any q 2 IB, there
exists a < c such that Aa \ B ¼ ; and hajB ¼ q.

Indeed, there is b < c such that B ¼ Bb and q ¼ qb. For a ¼ g(b), we have

Aa \ B ¼ Aa \ Bb ¼ ; and hajB ¼ qb ¼ q so (�) is proved.
For each a < c, let Xa ¼ {ha} � R(Aa) � IA. Now, let X ¼ S{Xa : a < c}. The

topology on X is induced from the cube IA.
Let us prove that tm(X)¼o. It follows from (�) that pB(X)¼ IB for any countable

B� A; therefore X is pseudocompact (Fact 2) and bX is canonically homeomorphic

to IA (Fact 2 of S.309), so we will identify IA with bX. Take any strictly

o-continuous function f : X ! R. There exists a strictly o-continuous function

f � : X�!R such that f �jX¼ f (Fact 1).We next prove thatS� X�. To see this, take any
x 2 S; the set B¼ x�1((0, 1]) is countable so we can find a sequence {an : n 2 o}� c
with the following properties:

(1) an 6¼ bm for all m, n 2 o, m 6¼ n.
(2) hgðanÞ ¼ xjBan for all n 2 o.
(3) Ban � B for all n 2 o.

Take any xn 2 XgðanÞ for all n 2 o. Then P ¼ {xn : n 2 o} � X and x 2 P (the

closure is taken in IA). Indeed, take any finite K � A; since the family

fAgð/nÞ : n 2 og is disjoint, there is n 2 o such that AgðanÞ \ K ¼ ;. This

implies that xnjK ¼ hgðanÞjK ¼ xjK because xjðK \ BanÞ ¼ hgðanÞjðK \ BanÞ and

hgðanÞðaÞ ¼ 0 ¼ xðaÞ for all a 2 KnBan . We proved that, for any finite K � A there

is n 2 o such that xnjK ¼ xjK; an evident consequence is that x 2 P.
Since S � X�, the function f � is defined at all points of S. Therefore, a strictly

o-continuous function f �jS is continuous because the space S is Fréchet–Urysohn
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(it is a subspace of a Fréchet–Urysohn space defined in Problem 135 and also

denoted there by S) and hence has countable tightness (Problem 419). It is easy to

see that pB(S) ¼ IB for any countable B � A. Therefore the space S is pseudocom-

pact (Fact 2) and hence IA is canonically homeomorphic to b(S) (Fact 2 of S.309).

Thus, there exists a continuous function k : IA!R such that kjS¼ f�jS. If we prove
that kjX ¼ f, then we will prove continuity of the function f.

Take any a < cc. It is clear that Xa � Za ¼ fhag � IAa . Observe that the map

p ¼ pAa jZa : Za ! IAa is a homeomorphism such that p(Xa)¼ R(Aa). Applying Fact 3
we can consider that Za¼ bXa; since Za is compact, the closure in Za coincides with
the closure in IA so X�a ¼ Za and hence Za � X�. Therefore the function f � is also
defined on Za which is separable being homeomorphic to Ic. As a consequence,

f �jZa is continuous on Za (Problem 418); besides, ka ¼ kjZa is also continuous and

coincides with f�jZa on a dense set S \ Za which implies f �jXa ¼ fjXa ¼ kjXa (Fact 0

of S.351), i.e., kjXa ¼ fjXa. The ordinal a has been chosen arbitrarily so kjX ¼ f and
hence f is continuous which proves that tm(X) b o.

To show that t0(X) > o, we will produce an o-continuous discontinuous

function g : X! R. Let g(x) ¼ 1 if x 2 X0 and g(x) ¼ 0 for all x 2 X \X0. It follows

from (�) that X \ X0 is dense in X, so the set X \ X0 ¼ g�1(0) is not closed in X
whence the function g is not continuous.

Now take any countable M � X; then M ¼ M0 [ M1 where M0 ¼ M \ X0 and

M1¼M \ (X \ X0). The function gjM is continuous if and only ifMi is closed inM
for each i ¼ 0, 1; thus it suffices to show that M0 \M1 ¼ ; and M1 \M0 ¼ ; (the
bar denotes the closure in X). The first equality holds because X0 is closed in X and

hence M0 \M1 � X0 \M1 ¼ ;.
Observe that pA0

ðXnX0Þ � SðA0Þ and hence pA0
ðM1Þ � SðA0Þ. Since the closure

in IA0 of any countable subset of S(A0) is contained in S(A0) (Fact 3 of S.307), we

have pA0
ðM1Þ � ½pA0

ðM1Þ
 �
PðA0Þ (the brackets denote the closure in the space

IA0 ) while pA0
ðM0Þ � pA0

ðX0Þ ¼ RðA0Þ � IA0nSðA0Þ. It follows from pA0
ðM1Þ \

pA0
ðM0Þ ¼ ; thatM1 \M0 ¼ ; and therefore the function gjM is continuous. Since

there exists an o-continuous discontinuous function on X, we have t0(X) > o ¼
tm(X) so our solution is complete.

S.434. (Uspenskij’s theorem) Prove that q(X)¼ t0(Cp(X))¼ tm(Cp(X)) for any space
X. In particular, X is a realcompact space if and only if functional tightness of Cp(X)
is countable.

Solution.Assume that tmðCpðXÞÞ � k ; then q(Cp(Cp(X)))¼ tm(Cp(X))b k (Problem

429). Since X embeds in Cp(Cp(X)) as a closed subspace (Problem 167), we have q
(X) b q(Cp(Cp(X))) b k (Problem 422) which proves that q(X) b tm(Cp(X)).

Given a space Z, a cardinal k and a set A � Z, let ½Ak
 ¼
SfB : B � A and

jBj � kg. The set [A]k is called the k-closure of A in Z.

Fact 1. Let’ : Y! Z be a continuous onto map. Suppose that Y has a baseB such that,

for any U 2 B, there exists V � t(Z) such that ’(U) � V � [’(U)]k. Then t0(Y) b k
implies t0(Z) b k.
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Proof. Take any k-continuous function f : Z ! R. It is evident that f 	 ’ is

k-continuous on Y; since t0(Y) b k, the function f 	 ’ is continuous. Fix any

point z 2 Z and any e > 0; there is y 2 Y such that ’(y) ¼ z. The function f 	 ’
being continuous, there isU0 2 t(y, Y) such that jf ð’ðy0ÞÞ � f ð’ðyÞÞj < e

2
for all y0 2

U0. Pick any U 2 B such that y 2 U� U0.

There exists a set V 2 t(Z) such that f(U) � V � [f(U)]k. Since z 2 f(U),
we have V 2 t(z, Z). Observe that f ð’ðUÞÞ ¼ ðf 	 ’ÞðUÞ � ðf ðzÞ � e

2
; f ðzÞ þ e

2
Þ.

Since V� [f(U)]k, for any z
0 2 V there is B� f(U) such that jB0jb k and z0 2 B

0
. The

set B ¼ B0[{z0} has cardinality b k so f jB is continuous. As a consequence,

f ðz0Þ 2 f ðBÞ � ðf ðzÞ � e
2
; f ðzÞ þ e

2
Þ ¼ f ðzÞ � e

2
; f ðzÞ þ e

2

	 
 � ðf ðzÞ � e; f ðzÞ þ eÞ.
This shows that jf(z0) � f(z)j < e for all z0 2 V, i.e., V witnesses continuity of f at the
point z. Since z has been chosen arbitrarily, we proved that any k-continuous
function on Z is continuous, i.e., t0(Z) b k. Fact 1 is proved.

Returning to our solution suppose that q(X) b k. The space Cp(X) is homeomor-

phic to Cp(X, (�1, 1)) � Cp(X, I). (Fact 1 of S.295). The restriction map p :

Cp(bX, I) ! Cp(X, I) is a condensation (it is continuous and injective because it

is a restriction of a continuous injective map pX : Cp(bX)! Cp(X) (Problem 152)

and it is onto because every f 2 C(X, I) extends to a continuous function over the

whole bX (Problem 257)). Let T¼Cp(X, (�1, 1)) and S¼ p�1(Z)�Cp(bX, I). Then
’ ¼ pjS : S ! T is a condensation. We claim that S has a base with the property

introduced in Fact 1.

Given points y1, . . . , yn 2 bX and sets O1, . . . , On 2 t� (I), let W(y1, . . . , yn;
O1, . . . , On)¼ {f 2 S : f(yi) 2 Oi for all ib n}. If x1, . . . , xk 2 X, and G1, . . . , Gk 2 t�

((�1, 1)), let B(x1, . . . , xk; G1, . . . , Gk) ¼ {f 2 T : f(xi) 2 Gi for all i b k}. It is clear
that the family B ¼ fWðy1; . . . ; yn;O1; . . . ;OnÞ : n 2 N; yi 2 bX and Oi 2 t�ðIÞ
for all ib ng is a base in S. To prove that B is as in Fact 1, it suffices to show

that ’(U) � V � [’(U)]k for any U ¼ W(y1, . . . , yn; O1, . . . ,On) 2 B and

V ¼ Bðyk1 ; . . . ; ykm ; O0k1 ; . . . ;O
0
km
), where fyk1 ; . . . ; ykmg ¼ fy1; . . . ; yng \ X and

O0ki ¼ Oki \ ð�1; 1Þ for all i b m.

Since it is evident that ’(U) � V, let us prove that V � [’(U)]k. Take any f 2 V.
To avoid heavy indexing, we assume, without loss of generality, that U¼W(y1, . . . ,
ym, z1, . . . , zp;O1, . . . ,Om,Q1, . . . ,Qp) where y1, . . . , ym 2 X and z1, . . . , zp 2 bX \ X;
then V ¼ B(y1, . . . , ym; O1, . . . ,Om). Since q(X) b k, there exists a family

H ¼ fHa : a< kg � tðbXÞ with the following properties:

(1) K ¼ {z1, . . . , zp}�
TH.

(2) For any finite F � X, there is a < k such that F \ Ha ¼ ;.
(3) L ¼ fy1; . . . ; ymg � XnHa ¼ ; for all a < k.

Given n 2 N and a < k, let Pn; a ¼ x 2 XnHa : f ðxÞ 2 In ¼ �1þ 1
n; 1� 1

n

	 
� �
.

The set Pn, a is closed in X and K \ Pn;a ¼ ; for all n 2N, a < k (the bar denotes

the closure in bX). The inclusion f(X) � (�1, 1) implies that, for each point x 2 X,
there is n2N such that f(x)2 In. Recalling that

TH � bXnX, we convince ourselves
that

S
{Pn, a : n2N, a< k}¼ X. Take a function g2 Cp(bX) such that gjX¼ f. Choose

ri 2 Qi \ (�1, 1) for all ib p. There exists l 2 N, such that {r1, . . . , rp} [ f(L) � Il.
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It is evident that gðPn; aÞ � In for all a < k. By normality of bX, for each a < k
and n > l there exists gn,a 2 C(bX, In), such that gn,a (zi) ¼ ri for all i b p and

gn;ajPn; a ¼ gjPn; a. In particular, gn. a(zi)¼ ri 2 Qi for all ib p and gn, a (yj)¼ g(yj)¼
f(yj) 2 Oj for all j bm; besides, we have gn, a(bX) � In� (�1, 1) so gn, a 2 S for all
n > l and a < k. Therefore gn, a 2 U for all n > l and a < k.

We have L� Pn, a for all n> l and a< k. If fn, a¼ gn, ajX¼ ’(gn, a) 2 ’(U) then
the set B¼ {fn, a : a< k, n> l} is contained in ’(U) and jBjb k. By the property (2),
given any finite F � X, there exists a < k such that F \ Ha ¼ ;. We can find n > l
such that f(F) � In; then fn, ajF ¼ fjF. This shows that, for any finite F � X there is

h 2 B such that hjF ¼ fjF; thus f 2 B � ½’ðUÞ
k. Since the function f 2 V has been

chosen arbitrarily, we proved that V� [’(U)]k. Thus the base B is as in Fact 1; since
t0(S) b t(S) b t(Cp(bX)) ¼ o (Problem 419), we have t0(Cp(X)) ¼ t0(T) b k. This
shows that t0(Cp(X)) b q(X) and we finally have tm(Cp(X)) b t0(Cp(X)) b q(X) b
tm(Cp(X)). An immediate consequence is the equality q(X)¼ tm(Cp(X))¼ t0(Cp(X)).
To finish our solution observe that X is realcompact if and only if q(X) b o
(Problem 401) which is equivalent to tm(Cp(X)) ¼ o.

S.435. Prove that q(X) ¼ q(Cp(Cp(X))) for any space X. In particular, X is
realcompact if and only if so is Cp(Cp(X)).

Solution. We have q(X) ¼ tm(Cp(X)) ¼ q(Cp(Cp(X))) by Problems 429 and 434.

Now, X is realcompact if and only if q(X) ¼ q(Cp(Cp(X))) ¼ o (Problem 401).

S.436. For any space X, consider the restriction map p : Cp(uX)! Cp(X) defined by
p( f )¼ f jX. Prove that p is a condensation and pjA : A! p(A) is a homeomorphism
for any countable A � Cp(uX).

Solution. Given any g 2 Cp(uX), a set {u1, . . . , un} � uX and e > 0, we let

O(g, u1, . . . , yn, e) ¼ {h 2 Cp(uX) : jg(ui) � h(ui)j < e for all i b n}. The sets

O(g, u1, . . . , yn, e) form a local base at the point g in the space Cp(uX).

The map p is injective because X is dense in uX (Problem 152). Since R is a

realcompact space, for any f 2 C(X) there exists g 2 C(uX) such that gjX ¼ f
(Problem 412). Therefore p is onto so it is a condensation.

Now fix any countable A � Cp(uX); let B ¼ p(A) and ’ ¼ (pjA)�1. To prove that
’ : B! A is continuous, take any C� B and any f 2 (the closure is taken in Cp(X)).
Assume that the function ’( f ) is not in the closure of ’(C) in the space Cp(uX).
Then there are y1, . . . , ym 2 X, z1, . . . , zk 2 uX \ X and e> 0, such thatW \ ’(C)¼ ;
where W ¼ O(’( f ), y1, . . . , ym, z1, . . . , zk, e).

For every g 2 A [ {’( f )} the setHi(g)¼ g�1(g(zi)) is aGd -set in uX for all ib k;
therefore Pi ¼

T
{Hi(g) : g 2 A [ {’( f )}} is also a Gd -subset of uX. It follows

easily from Problem 417 that Pi \ X 6¼ ;; fix a point xi 2 Pi \ X for each ib k. It is
straightforward that g(xi) ¼ g(zi) for each g 2 A [ {’( f )} and i b k.

Since f 2 , we have W0 \C 6¼ ; where W0 ¼ O(’( f ), y1, . . . , ym, x1, . . . , xk, e);
pick any g0 2 W0 \ C. Observe that g ¼ ’(g0) is an extension of g to uX; hence
g(xi) ¼ g0(xi) for each i b k and g(yi) ¼ g0(yi) for all i b m. Since ’( f )(yi) ¼ f(yi)
for all i b m, we have jg(yi) � ’( f )(yi)j ¼jg0(yi) � f(yi)j < e for all i b m. Besides,
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jg(zi) � ’( f )(zi)j ¼ jg(xi) � f(xi)j ¼ jg0(xi) � f(xi) < e for all i b k; therefore we

have g 2 W \ ’(C) which is a contradiction. The function f 2 C has been chosen

arbitrarily, so we proved that ’(clB(C)) � clA(’(C)) for each C � B. Thus ’ ¼
(pjA)�1 is continuous so pjA is a homeomorphism.

S.437. Let X be an arbitrary space. Let II: Cp(uX)! Cp(X) be the restriction map.
Prove that the topology of Cp(uX) is the strongest one on C(uX) such that pjA : A!
p(A) is a homeomorphism for each countable A � Cp(uX).

Solution. Given a topology t on C(uX) and A � C(uX), let tA {U \ A : U 2 t}, i.e.,
tA is the topology of a subspace of the space (C(uX),t) induced on A. We will also

need the map pA¼ pjA : A! p(A)� Cp(X) and the topology rA induced on p(A) by
the topology of Cp(X).

LetA be the family of all topologies m on the set C(uX) such that the mapping pA
: (A, mA)! (p(A), uA) is a homeomorphism for any countable set A� C(uX). Denote
by t the topology of Cp(uX) and take some m 2 A. Our aim is to prove that m � t.
We know that t 2 A (Problem 436) and hence pA : (A,tA) ! (p(A),nA) is also

a homeomorphism; an immediate consequence is that ta ¼ ma for any countable

A � C(uX).

Fact 1. In any space Z the family B(Z)¼ {f�1(O) : O 2 t(R), f 2 C(Z)} is a base of
the space Z.

Proof. Indeed, if z 2 U 2 t(Z) then there is a function f 2 C(Z) such that f(z) ¼ 1 and

fj(Z \U) ¼ 0. If O ¼ R \{0} 2 t(R) then f�1(O) 2 B(Z) and z 2 f�1(O) � U which

proves that B(Z) is a base in Z so Fact 1 is proved.

Let D be the space (C(uX),m); the family B(D) is a base inD (Fact 1) so B(D)� t
implies m � t because m consists of all possible unions of the elements of B(D) and
these unions belong to t because t is a topology.

Now suppose that m is not contained in t; then the family B(D) is not contained
in t and hence there is f 2 C(D) such that f is not continuous on Cp(uX). Since
t0(Cp(uX))¼ q(uX)¼ o (Problem 434), there is a countable A� C(uX) such that fjA
is discontinuous on (A, tA). However, tA ¼ mA and fjA is continuous on (A, mA)
which is a contradiction. This proves that any topology m 2 A is contained in t.
Since t 2 A, the topology t is precisely the strongest one in the family A so our

solution is complete.

S.438. Prove that, for any X, the space u(Cp(X)) is canonically homeomorphic to the
subspace SX ¼ {f 2 RX : f is strictly o-continuous} of the space RX.

Solution.Given any set Z and any A� Z, we denote by pA :RZ!RA the restriction

map which coincides with the natural projection of RA onto the face RA. Observe

that, when we use for RZ some results proved for Cp-spaces, we are thinking of RA

as of Cp(D) where D is the set Z with the discrete topology.

If g 2RX \ SX then g is not a strictly o-continuous function so there is a countable
set A � X such that pA(g) =2 pA(Cp(X)). An immediate consequence is that the set
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H¼ {h 2RX : pA(h)¼ pA(g)} is aGd-subset ofRX (Fact 1 of S.426) such that h 2H
� RX \ SX. This shows that RX \ SX is a union of Gd-subsets of RX. The space RX is

realcompact so we can apply Problem 408 to conclude that Sx is a realcompact

extension of the space Cp(X).

Fact 1. Let Y be any space; if rY is a realcompact extension of Y such that, for

any function f 2 C(Y) there is g 2 C(rY) such that gY ¼ f then rY is canonically

homeomorphic to uY.

Proof. Take any realcompact space P and any continuous map ’ : Y! P. We can

consider that P is a closed subset of Rk for some cardinal k (Problem 401); let pa :
Rk ! R be the natural projection of Rk to its ath factor. Then the map pa 	 ’ is

continuous so we can find ga 2 C(rY) such that gajY¼ pa j’ for all a< k. The map

F ¼ D {ga : a < k}: rY! Rk is continuous; if y 2 Y then

FðyÞðaÞ ¼ paðFðyÞÞ ¼ gaðyÞ ¼ pað’ðyÞÞ ¼ ’ðyÞðaÞ for each a< k

and therefore F(y) ¼ ’(y) for all y 2 Y. The set F(Y) ¼ ’(Y) � P is dense in F(rY)
so F(rY) � ’ðYÞ � P because P is closed in Rk Thus any continuous map ’ of the

space Y to a realcompact space P can be extended to a continuous map F : rY! P
so we can apply Problem 413 to conclude that rY is canonically homeomorphic to

uY. Fact 1 is proved.

Now take any function ’ 2 C(Cp(X)); there exists a countable set A � X and a

continuous map d : pA(Cp(X))! R such that d 	 pA ¼ ’ (Problem 300). Observe

that pA(SX) � pA(Cp(X)) and hence the map F ¼ d 	 pA : SX!R is well defined on

SX. It is evident that F 2 C(SX) and FjCp(X)¼ ’ so we can apply Fact 1 to conclude

that SX is canonically homeomorphic to u(Cp(X)).

S.439. Prove that, for any normal space X, there exists a space Y such that Cp(Y) is
homeomorphic to u(Cp(X)).

Solution. If m is a topology on X and A � X, let mA ¼ {U \ A : U 2 m}. In other

words mA is the topology of subspace of (X, m) induced on A. We denote the

topology t(X) by t. The set u(Cp(X)) consists of all strictly o-continuous functions
on X (Problem 438). For any f 2 u(Cp(X)), let t ( f ) ¼ {f�1(O) : O 2 t(R)}. The
family t( f ) is a completely regular (but, maybe, not T1-) topology on X for each

function f 2 u(Cp(X)) (see Problem 098). It is easy to see that N ¼ Sftðf Þ :
f 2 uðCpðXÞÞg generates a topology m on X as a subbase (see Problem 008); apply

Problem 099 to see that m is a Tychonoff topology on X and let Y ¼ (X, m). The
familyN 0 ¼ Sftðf Þ : f 2 CðXÞg is a base of t(Fact 1 of S.437) and therefore t � m.

Given any countable A � X, and any f 2 u(Cp(X)), the function fjA is continuous

on A; an easy consequence is that t( f )A � tA and hence mA � tA so mA ¼ tA. Since
Cp(Y)¼ {f : X!R : f is continuous with respect to m}� RX, it suffices to show that

Cp(Y) coincides with u(Cp(X)). If f 2 u(Cp(X)) then t( f )�N so f�1 (O) 2N � m for

each O 2 t(R), i.e., f is continuous on Y. Thus u(Cp(X)) � Cp(Y).
On the other hand, if f 2 C(Y) then f jA is continuous on (A, mA) for each

countable A � X. Since mA ¼ tA, the map f jA is continuous on (A, tA) which
shows that f is o-continuous on X. Now apply Problem 421 to conclude that f is
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strictly o-continuous on X, i.e., f 2 u(Cp(X)) (Problem 438) and hence Cp(Y)
coincides with u(Cp(X)).

S.440. Give an example of a (non-normal) space X such that there is no space Y for
which u(Cp(X)) is homeomorphic to Cp(Y).

Solution. There exists an infinite pseudocompact non-compact space X such that

Cp(X) is s-pseudocompact and hence s-bounded (see Problem 400). Then the space

u(Cp(X)) is s-compact (Problem 416), so if Cp(Y) is homeomorphic to u(Cp(X)) then
Y is finite (Problem 186). Therefore Cp(Y) is metrizable as well as Cp(X) � Cp(Y).
This shows that X is countable (Problem 210) and hence compact (Problem 138)

which is a contradiction. Thus there is no space Y such that Cp(Y) is homeomorphic

to u(Cp(X)).

S.441. Suppose that Cp(X) is a normal space. Prove that u(Cp(Cp(X))) is homeo-
morphic to Cp(Cp(uX)).

Solution. Let p : Cp(uX)! Cp(X) be the restriction map, i.e., p( f ) ¼ fjX for every

f 2 Cp(uX). Since X is dense and C-embedded in uX (Problem 413), the map p is a

condensation (Problem 152). Observe that any bijection b : P ! Q generates a

homeomorphism b� : RQ!RP defined by b�( f ) ¼ f 	 b for any f 2 RQ. In fact, b�

coincides with the dual map for the map b if we consider P and Q as discrete spaces

(Problem 163) for then RP ¼ Cp(P), RQ ¼ Cp(Q) and b : P ! Q is a homeomor-

phism. We saw already that p�1 : Cp(X) ! Cp(uX) is a bijection so (p�1)∗ :

RCpðuXÞ ! RCpðXÞ is a homeomorphism; let G ¼ (p�1)�jCp(Cp(uX)).

Given any function ’ 2 Cp(Cp(uX)), the map G(’) ¼ ’ 	 p�1 : Cp(X) ! R is

o-continuous. Indeed, if A � Cp(X) is countable then pjp�1(A) : p�1(A) ! A is a

homeomorphism (Problem 436). Therefore the map G(’)jA is continuous being

a composition of continuous maps p�1jA and ’jp�1(A). Any o-continuous function
on a normal space is strictly o-continuous (Problem 421), so G(’) is strictly

o-continuous, i.e., G(’) 2 u(Cp(Cp(X)) for every ’ 2 Cp(Cp(uX)) (Problem 438).

Since the map (p�1)� is a homeomorphism, the map G :Cp(Cp(uX))! G(Cp(Cp(uX)))
is also a homeomorphism; we showed that G(Cp(Cp(uX))) � u(Cp(Cp(X))).

Given any d 2 Cp(Cp(X)), let ’ ¼ d 	 p. Then ’ 2 Cp(Cp(uX)) and G(’) ¼ ’ 	
p�1 ¼ d 	 p 	 p�1 ¼ d. Thus CpCp(X) � G(Cp(Cp(uX))) � u(Cp(Cp(X))); since
CpCp(uX) is a realcompact space (Problem 435), an easy application of 414

shows that G(Cp(Cp(uX))) ¼ u(Cp(Cp(X))) and therefore G is a homeomorphism

between Cp(Cp(uX)) and u(Cp(Cp(X))).

S.442. Give an example of a realcompact space which is not hereditarily realcom-
pact.

Solution. The space o1 is not realcompact because it is a countably compact non-

compact space (see Problem 407). Besides, w(o1) ¼ o1 and hence o1 can be

considered a subspace of Io1 (Problem 209). The space Io1 is compact and hence

realcompact. However, it is not hereditarily realcompact because it has a subspace

homeomorphic to o1 which is not realcompact.
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S.443. Prove that a space X is hereditarily realcompact if and only if X \ {x} is
realcompact for any x 2 X.

Solution. Of course, if X is hereditarily realcompact then X \ {x} is realcompact

for all x 2 X. On the other hand, if X \ {x} is realcompact for all x 2 X then, for any

Y � X, we have Y ¼ T Xnfxg : x 2 XnYf g. Therefore, Y is realcompact being the

intersection of realcompact subspaces of X (Problem 405).

S.444. Prove that any realcompact space of countable pseudocharacter is heredi-
tarily realcompact.

Solution. Let X be a realcompact space with c(X)b o. Every x 2 X is a Gd-set in X
so X \ {x} is an Fs-subset of X; apply Problem 408 to conclude that X \ {x} is

realcompact for all x 2 X.As a consequence, the space X is hereditarily realcompact

by Problem 443.

S.445. Give an example of a hereditarily realcompact space X with c(X) > o.

Solution. The space A(o1) has uncountable pseudocharacter at its unique non-

isolated point a. To prove that it is hereditarily realcompact take any point x 2 A
(o1). If x 6¼ a then A(o1) \ {x} is compact and hence realcompact. If x¼ a then D¼
A(o1) \ {x} is a discrete space of cardinality o1. We proved that extðRo1Þ ¼ o1

(Fact 3 of S.215) and this means exactly that D embeds in Ro1 as a closed subspace.

Hence the space D is also realcompact (Problem 401); we established that the space

A(o1) \ {x} is realcompact for every x 2 A(o1). Therefore, A(o1) is hereditarily

realcompact by Problem 443.

S.446. Prove that a space which condenses onto a second countable one is
hereditarily realcompact.

Solution. It follows from iw(X)b o that c(X)bo (Problem 156); observe also that

d(Cp(X)) ¼ iw(X) b o (Problem 174). It is an immediate consequence of Problem

418 that tm(Cp(X))b d(Cp(X))b o; now Problem 434 yields q(X)¼ tm(Cp(X))b o,
i.e., X is a realcompact space of countable pseudocharacter. Finally, apply Problem

444 to conclude that X is hereditarily realcompact.

S.447. Prove that Cp(X) is hereditarily realcompact if and only if X is separable
(and hence c(Cp(X)) ¼ iw(Cp(X)) ¼ o).

Solution. Suppose that Cp(X) is hereditarily realcompact. Given any f 2 Cp(X) the
space Z ¼ Cp(X) \ {f} is dense in Cp(X) and realcompact by our hypothesis. Since

Cp(X) is a Moscow space (Problem 424), the set Z is o-placed in Cp(X) (Problem
425). This means, there is a Gd-set H in the space Cp(X) such that f 2 H � Cp(X) \ Z
¼ {f}. Thus H¼ {f} so {f} is a Gd-set in Cp(X). This proves that d(X)¼ c(Cp(X))¼
iw(Cp(X)) ¼ o (Problem 173).

On the other hand, if X is separable then iw(Cp(X)) ¼ o (Problem 173) so Cp(X)
is hereditarily realcompact by Problem 446.

S.448. Let D be a discrete space. Prove that D is realcompact if and only if every
o1-complete ultrafilter on the set D has a non-empty intersection.
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Solution. Suppose that D is realcompact and x is an o1-complete ultrafilter on

D with
T
x ¼ ;. Since bD is compact, there is z 2 TfA : A 2 xg (the bar denotes

the closure in bD). Since every A 2 x is closed in D, we have A \ D ¼ A for

each A 2 x. This shows that z =2 D for otherwise z =2A \ D ¼ A for each A 2 x
and therefore z 2 TfA : A 2 xg ¼ ; which is contradiction. Thus, z 2 bD \D; the
space D being realcompact, there is a Gd-set H in the space bD such that z 2 H �
bD \D. Fix a sequence S ¼ {Un : n 2 o} � t(bD) such that H ¼ TS: Let Vn ¼ Un

\ D for all n 2 o. Suppose that Vn =2 x for some n 2 o. Then A ¼ D \Vn 2 x
(Problem 117), so A \ Un ¼ A \ Un \ D ¼ A \ Vn ¼ ; which is a

contradiction because Un 2 t(z, bZ) and z 2 A. As a consequence, Vn 2 x for all

n 2 o and we have
TfVn : n 2 og ¼ TfUn \ D : n 2 og ¼ H \ D ¼ ;, a con-

tradiction with the fact that x is o1-complete. This contradiction shows that for

any realcompact discrete space D, any o1-complete ultrafilter on D has a non-

empty intersection.

Fact 1. An ultrafilter x on a set D is o1-complete if and only if
T
g 6¼ ; for any

countable g � x.

Proof. Necessity is trivial. To prove sufficiency, take any ultrafilter x on the set D
such that

T
g 6¼ ; for any countable g � x. If g � x is countable and A ¼ T g =2 x

then B ¼ D \A 2 x (Problem 117) and hence g0 ¼ g [ fBg is a countable subfamily

of x with
T
g0 ¼ ; which is a contradiction. Fact 1 is proved.

Now assume that any o1-complete ultrafilter on D has a non-empty intersection.

Given any z 2 bD \D, let us show that x ¼ {U \ D : U 2 t(z, bZ)} is an ultrafilter

on D. Since any finite intersection of neighbourhoods of z is a neighbourhood of

z andD is dense in bD, the family x is centered. Take any A�D such that A =2 x. For
B¼ D \A we have A \ B ¼ ; (Fact 1 of S.382) and bD ¼ A [ B: Therefore A and B
are complementary closed sets and hence they are both open. If z 2 A then

A ¼ A \ D 2 x which is a contradiction. Thus z 2 B and therefore DnA ¼ B ¼
B \ D 2 x: We proved that x is a centered family of subsets of D such that A 2 x
or D \A 2 x for every A � D. Thus x is an ultrafilter by Problem 117. By our

hypothesis, x cannot be o1-complete so there is a sequence {Un : n 2 o} � t(z, bZ)
such that

TfUn \ D : n 2 og ¼ ; (Fact 1). Thus H ¼ TfUn : n 2 og is a Gd-

subset of bD and z 2 H � bD \D. This proves that D is o-placed in bD and

hence D is realcompact by Problem 401.

S.449. Prove that any o1-complete ultrafilter on a set D has a non-empty intersec-
tion if and only if tm(RD) ¼ o.

Solution. Every o1-complete ultrafilter on D has a non-empty intersection if and

only if D is realcompact (Problem 448). The space D is realcompact if and only if

tm(Cp(D)) ¼ o (Problem 434). Since D is discrete, Cp(D) ¼ RD so tm(RD) ¼ o if

and only if every o1-complete ultrafilter on D has a non-empty intersection.

S.450. Let D be a set of cardinality b cc. Prove that every o1-complete ultrafilter
on the set D has a non-empty intersection.
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Solution. There exists a bijection of D onto a subset of R. Since the properties of
ultrafilters on a set are preserved by bijections, we can consider D to be a subset

of R. Give it the topology of a subspace of R; then D is a second countable and

hence Lindel€of space. Let x be an o1-complete ultrafilter on the set D. It is

immediate that any countable subfamily of the family F ¼ fA : A 2 xg has a non-
empty intersection (the bar denotes the closure in D).

If
TF ¼ ; then the family U ¼ fDnA : A 2 xg is an open cover of the Lindel€of

space D. Consequently, there is a sequence {An : n 2 o} � x such thatSfDnAn : n 2 og ¼ D and hence
TfAn : n 2 og � TfAn : n 2 og ¼ ; which

contradicts o1-completeness of x. Thus, we can choose x 2 T F ; let {Wn : n 2 o}
be a local base at x (we can find one because D is even second countable).

IfWn =2 x for some n2o thenA¼ X\Wn2 x (Problem 117) and hence x =2Awhich is

a contradiction. Thus, Wn 2 x for all n 2 o and therefore {x} ¼ T {Wn : n 2 o} 2 x.
As a consequence, x 2 A for any A 2 x because otherwise fxg \ A ¼ ; so x is not

even a centered family. This shows that x 2 \ x and makes our solution complete.

S.451. Suppose that a non-empty space Xt is realcompact for any t 2 T. Prove that
the space X ¼ L{Xt : t 2 T} is realcompact if and only if every o1-complete
ultrafilter on the set T has a non-empty intersection.

Solution. If X is realcompact choose a point xt 2 Xt for every t 2 T. The setD¼ {xt :
t 2 T} is realcompact being closed in X (Problem 403). Since D is discrete, every

o1-complete ultrafilter on D has a non-empty intersection (Problem 448). Since

t 7!xt is a bijection between D and T, every o1-complete ultrafilter on T also has a

non-empty intersection. This settles necessity.

Fact 1. If Zt is an arbitrary space for any t 2 T, let Z ¼L{Zt : t 2 T}. We consider

that each Zt is a clopen subset of Z (see Problem 113). For an arbitrary A� T, let ZA
¼ S {Zt : t 2 A}. Suppose that A, B � T and A \ B ¼ ;. Then clbZ(ZA) \ clbZ(ZB)

¼ ;. As a consequence, clbZ(ZA) is open in bZ for any A � T.

Proof. Let f(x)¼ 1 for all x 2 ZA and f(x)¼ 0 if x 2 Z \ ZA. It is clear that the function
f : Z! {0, 1} is continuous, and hence there is g 2 C(bZ, {0, 1}) with gjZ ¼ f. The
sets g–1(0) and g–1(1) are closed in bZ and disjoint; since ZA � f�1(1) and ZB �
f�1(0), we have

clbZðZAÞ \ clbZðZBÞ � clbZðf�1ð1ÞÞ \ clbZðf�1ð0ÞÞ � g�1ð1Þ \ g�1ð0Þ ¼ ;:
Finally, bZ ¼ clbZ(ZA) [ clbZ(ZT \ A) so bZ \ clbZ(ZA) ¼ clbZ(ZT \ A) is a closed

set whence clbZ(ZA) 2 t(bZ). Fact 1 is proved.

Fact 2. Let Z be an arbitrary space. If F is C�-embedded in Z then the space clbZ( F )

is canonically homeomorphic to bF. In particular, if Z is a normal space and F is a

closed subset of Z then the space clbZ( F ) is canonically homeomorphic to bF,
which we will write as clbZ( F ) ¼ bF.

Proof. Take any f 2 C(F, I); since F is C�-embedded in Z, there exists a function

g 2 C(Z, I) such that gjF ¼ f. There is h 2 C(bZ, I) such that hjZ ¼ g. It is evident
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that f1¼ hjclbZ( F ) is a continuous extension of f over clbZ( F ). Therefore clbZ( F ) is

a compact extension of F such that every function f 2 C( F, I) extends to f1
2 C(clbZ( F ), I). Applying Fact 1 of S.309, we conclude that clbZ( F ) ¼ bF.
Now, if Z is normal then every closed F � Z is even C-embedded in Z so again

clbZ( F ) ¼ bF and Fact 2 is proved.

Now assume that every o1-complete ultrafilter on T has a non-empty intersec-

tion and take an arbitrary point z 2 bX \X. For each index t 2 T, we identify the set
Xtwith the respective open subspace of X (Problem 113). Given any A� T, let XA¼S

{Xt : t 2 A}. We claim that the family x ¼ {A � T : z 2 XA} is an ultrafilter on T
(the bar denotes the closure in bX). To see that x is centered, take A1, . . . , An 2 x and
let A ¼ A1\ � � � \An. Clearly, z 2 X ¼ XA

S
XT \ A so if z =2 X A then z 2 X T \ A.

However, XTnA ¼ XT nA1
[ � � � [ XTnAn

which implies z 2 XTnAi
for some i b n. It

turns out that z 2 XT nAi
\ XAi

which contradicts Fact 1. This shows that z 2 XA so

A 6¼ ; and hence x is a centered family.

Given any A � T, we have bX ¼ X ¼ XA [ XTnA so if z =2XA then z 2 XT nA. This
proves that, for any A � T, we have A 2 x or T \A 2 x. Thus x is an ultrafilter on T
(Problem 117). Suppose first that t0 2

T
x; if {t0} =2 x, then A ¼ T \ {t0} 2 x

(Problem 117) and therefore t0 =2 A 2 x which is a contradiction. Thus {t0} 2 x, i.e.,
z 2 Xt0 and z =2XT nft0g (Fact 1). Note that every clopen subspace of any space is

C-embedded in that space, so, in particular, Xt0 is C-embedded in X. Thus Fact 2 is

applicable to conclude that bXt0 ¼ Xt0 .

The space Xt0 is realcompact, so there is a Gd-set H in the space bXt0 ¼ Xt0 such

that z 2 H � Xt0nXt0 (Problem 401). It is immediate that any Gd-set in a clopen

subspace Xt0 (Fact 1) is aGd-set in the whole space bX soH isGd-set in bX such that

z 2 H � bX \X.
Now if

T
x ¼ ;, then x cannot be o1-complete by our hypothesis so there is a

sequence {An : n 2 o} � x such that
TfAn : n 2 og ¼ ; (Fact 1 of S.448) which

implies
TfXAn

: n 2 og ¼ ; and hence
SfXTnAn

: n 2 og ¼ X. Since z 2 XAn
,

we have z =2XTnAn
for each n 2 o (Fact 1). Thus Un ¼ bXnXTnAn

2 tðz; bZÞ for
each n and

H ¼
\

n2o Un ¼ bXn
[
fXTnAn

: n 2 og
� �

� bXn
[
fXTnAn

: n 2 og
� �

¼ bXnX:

Thus for any z 2 bX \X, we found a Gd-subset H of the space bX such that z 2 H
� bX \X. Therefore X is realcompact by 401 so our solution is complete.

S.452. Prove that a paracompact space X is realcompact if and only if every
discrete closed subspace of X is realcompact. In particular, a metrizable space M
is realcompact if and only if every closed discrete subspace of M is realcompact.

Solution. If X is realcompact then any closed (not necessarily discrete) subspace of

X is realcompact (Problem 403) so necessity is clear.

Now assume that all closed discrete subspaces of X are realcompact. Fix a point

z 2 bX \X and consider the family U ¼ {U 2 t(X) : z =2 clbX(U )}. It is clear that U is
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an open cover of X so take any s-discrete open refinement V of the cover U
(Problem 230). Then V ¼ SfVn : n 2 og, where Vn is a discrete family for all

numbers n 2 o. For each n 2 o, the family F n ¼ fU : U 2 Vng is also discrete (the
bar denotes the closure in X) and z =2 clbX( F ) for any F 2 Fn.

Observe that Fn ¼
S

n is closed in X and homeomorphic to
L

{F : F 2 Fn} for
each n 2 o because every F 2 F n is clopen in Fn (see Problem 113). Choose

some faithful indexing Fn
t : t 2 Tn

� �
of the family Fn; we lose no generality assum-

ing that Fn
t 6¼ ; for each t 2 Tn. If we take x

n
t 2 Fn

t for all t 2 Tn, then we obtain a

bijection t 7! xnt between the set Tn and a closed discrete subset Dn ¼ xnt : t 2 Tn
� �

of the space X. By our hypothesis, the spaceDn is realcompact so everyo1-complete

ultrafilter onDn has a non-empty intersection (Problem 448); since ultrafilter proper-

ties of a set are preserved by bijections, everyo1-complete ultrafilter on Tn also has a
non-empty intersection. Given any A � Tn, let F

A
n ¼

S
Fn
t : t 2 A

� �
.

Any paracompact space is normal (Problem 231) so we can apply Fact 2 of S.451

to conclude that we have clbX(Fn) ¼ b(Fn) for all n 2 o. If z =2 clbX(Fn) then let Hn

¼ bX \ clbX(Fn); then Hn is an open set (and hence a Gd-set) of the space bX such

that z 2 Hn � bX \Fn.

There is more job to do if z 2 clbX(Fn) ¼ b(Fn); we claim that, in this case,

the family x ¼ A � Tn : z 2 clbXðFA
n Þ

� �
is an ultrafilter on Tn. To establish first

that x is centered, take any A1, . . . , Ak 2 x and let A ¼ A1\ � � � \Ak. Clearly,

z 2 clbXðFnÞ ¼ clbXðFA
n Þ [ clbXðFTnnA

n Þ so if z =2 clbXðFA
n Þ then z 2 clbXðFTnnA

n Þ.
However, FTnnA

n ¼ FTnnA1
n [ � � � [ F

TnnAk
n which implies z 2 clbXðFTnnAi

n Þ for some

i b k. It turns out that z 2 clbXðFTnnAi
n Þ \ clbXðFAi

n Þ which contradicts Fact 1 of

S.451. This shows that z 2 clbXðFA
n Þ so A 6¼ ; and hence x is a centered family.

Given any A � Tn, we have bðFnÞ ¼ clbXðFnÞ ¼ clbXðFA
n Þ [ clbXðFTnnA

n Þ so if

z =2 clbXðFA
n Þ then z 2 clbXðFTnnA

n Þ. This proves that, for any A � Tn, we have A 2 x
or Tn \ A 2 x. Thus x is an ultrafilter on Tn (Problem 117). Since z =2 clbXðFn

t Þ for any
t 2 Tn, we have

T
x ¼ ; and therefore the ultrafilter x cannot be o1-complete.

Hence there is a sequence {Ak : k 2 o} � x such that
T
{Ak : k 2 o} ¼ ; (Fact 1 of

S.448) which implies \ FAk
n : k 2o� �¼ ; and hence

S
FTnnAk

n : k 2o� �¼Fn.

Since z 2 clbX ðFAk
n Þ, we have z =2 clbXðFTnnAk

n Þ for each k 2 o (Fact 1 of S.451).

As a consequence, Uk ¼ bðFnÞnclbXðFTnnAk
n Þ 2 tðz;bZÞ for each k 2 o and, for the

set H0n ¼
TfUk : k 2og, we have

H0n ¼ bðFnÞnð
[
k2o

clbXðFTnnAk
n ÞÞ � bðFnÞnð

[
k2o

FTnnAk
n Þ ¼ bðFnÞnFn:

Thus, we found a Gd-subset H
0
n of the space b(Fn) such that z 2H0n � b(Fn) \Fn.

It is an easy exercise that there exists a Gd-set Hn in the space bX such that

Hn \ clbXðFnÞ ¼ H0n ; thus z 2 Hn � bX \Fn.

Having constructed the setsHn for all n 2o, let H¼
T

{Hn : n 2o}. It is clear that
H is aGd-set in the space bX; besides, z2H andH \ Fn ¼ ; for all numbers n2o.An
immediate consequence is thatH \ ðSn2o FnÞ ¼ ; ; since

S
n2o Fn ¼ X, we have z2

H � bX \ X.
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Summing up, we constructed, for an arbitrary z 2 bX \X, a Gd-set H in the space

bX such that z 2H� bX \ X. Therefore, X is realcompact by Problem 401 and hence

sufficiency is proved. Finally observe that every metrizable space is paracompact

(Problem 218) so our solution is complete.

S.453. Let X be a realcompact space. Suppose that Y is a paracompact space and f :
X! Y is a continuous onto map. Prove that Y is realcompact.

Solution. Take any closed discrete D � Y; for each d 2 D pick a point xd 2 f–1(d).

It is immediate that the set D0 is closed and discrete in X and f jD0 : D0 ! D is a

bijection. The space D0 is realcompact because it is closed in X (Problem 403).

Therefore, every o1-complete ultrafilter on the set D0 has a non-empty intersection

(see Problem 448). The ultrafilter properties on a set are preserved by bijections so

every o1-complete ultrafilter on D also has a non-empty intersection. Applying

Problem 448 again, we convince ourselves that D is realcompact. The set D has

been chosen arbitrarily, so we proved that all closed discrete subspaces of Y are

realcompact. By Problem 452 the space Y is realcompact.

S.454. Observe that any realcompact space is Dieudonné complete. Prove that a
Dieudonné complete space X is realcompact if and only if all closed discrete
subspaces of X are realcompact.

Solution. Any realcompact space X is homeomorphic to a closed subspace of a

product of real lines (Problem 401); since every factor of this product is metrizable,

the space X is Dieudonné complete. Now assume that X is Dieudonné complete and

all closed discrete subspaces of X are realcompact.

We can consider that X is a closed subspace of a spaceM¼P{Mt : t 2 T} where
each Mt is a metrizable space. Let pt :M! Mt be the natural projection; denote by

Yt the set pt(X) for all t 2 T. Fix any t 2 T and take any closed discrete D � Yt; for
each d 2 D pick a point xd 2 p�1t ðdÞ \ X. It is immediate that the set D0 is closed
and discrete in X and pt jD0 : D0 ! D is a bijection. The space D0 is realcompact by

our hypothesis and therefore every o1-complete ultrafilter on the set D0 has a non-
empty intersection (see Problem 448). The ultrafilter properties on a set are pre-

served by bijections so every o1-complete ultrafilter on D also has a non-empty

intersection. Applying Problem 448 again, we convince ourselves that D is real-

compact. The setD has been chosen arbitrarily, so we proved that all closed discrete

subspaces of a metrizable space Yt are realcompact. By Problem 452 the space Yt is
realcompact for all t 2 T. Evidently, X is a closed subspace of P{Yt : t 2 T} so X is

realcompact by Problems 402 and 403.

S.455. Prove that any pseudocompact Dieudonné complete space is compact.

Solution. Let X be a pseudocompact Dieudonné complete space. We can consider

that X is a closed subspace of a space M ¼ P{Mt : t 2 T} where each Mt is a

metrizable space. Given any t 2 T, let pt :M!Mt be the natural projection; denote

by Yt the set pt(X). The space Yt is compact for all t 2 T (Problem 212) and X is a

closed subspace of a compact space Y ¼ P{Yt : t 2 T}. Thus X is compact.
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S.456. Observe that any closed subspace of a Dieudonné complete space is a
Dieudonné complete space; prove that any product of Dieudonné complete spaces
is a Dieudonné complete space. Show that an open subspace of a Dieudonné
complete space may fail to be Dieudonné complete.

Solution. If X is Dieudonné complete space then X is a closed subspace of a space

M ¼ P{Mt : t 2 T} where each Mt is a metrizable space. Of course, any closed

subspace X is a closed subspace of the same product so every closed subspace of a

Dieudonné complete space is Dieudonné complete.

Now assume that Xa is a Dieudonné complete space for reach a < k. This means

that Xa is a closed subset of a product Ma ¼
QfMa

t : t 2 Tag where Ma
t is metriz-

able for all t 2 Ta. We lose no generality if we assume that Ta \ Tb¼ ;when a 6¼ b.
The space

Q
a<k Ma ¼

QfMa
t : a< k; t 2 Tag (Problem 103) is also a product of

metrizable spaces and X ¼Q{Xa : a< k} is a closed subspace ofM. Thus X is also

Dieudonné complete. This proves that any product of Dieudonné complete spaces is

Dieudonné complete.

Finally, observe that o1 is an open subspace of a compact (and hence Dieudonné

complete) space o1 þ 1. However, o1 is not Dieudonné complete being a pseudo-

compact non-compact space (Problem 455).

S.457. Let X be an arbitrary space. Suppose that Xt is a Dieudonné complete
subspace of X for any t 2 T. Prove that \ {Xt : t 2 T} is a Dieudonné complete
subspace of X.

Solution. The space Y ¼ \ {Xt : t 2 T} embeds in
Q
{Xt : t 2 T} as a closed

subspace (Fact 7 of S.271) so the Dieudonné completeness of Y follows from

Problem 456.

S.458. Let Y be a Dieudonné complete space with the Souslin property. Prove that Y
is realcompact. Deduce from this fact that Cp(X) is Dieudonné complete if and only
if it is realcompact.

Solution. Let Y be a Dieudonné complete space with c(Y) ¼ o. We can consider

that Y is a closed subspace of a space M ¼ Q{Mt : t 2 T} where each Mt is a

metrizable space. Given any t 2 T, let pt : M ! Mt be the natural projection;

denote by Yt the set pt(Y). We have c(Yt) ¼ o for all t 2 T; thus the space Yt
is second countable (Problem 214) and hence realcompact (Problem 406). The

space Y is a closed subspace of a realcompact space Z ¼ Q{Yt : t 2 T} (Problem

402). As a consequence, Y is realcompact (Problem 403). Finally observe that

Cp(X) has the Souslin property for any space X (Problem 111) so it is realcompact

if and only if it is Dieudonné complete by Problem 454 and the preceding

argument.

S.459. Prove that X is Dieudonné complete if and only if it embeds as a closed
subspace into a product of completely metrizable spaces.

Solution. If X embeds as a closed subspace into a product of complete metric

spaces, then it is trivially Dieudonné complete. Now assume that X is Dieudonné
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complete. We can consider that X is a closed subspace ofM¼Q{Mt : t 2 T} where
each Mt is a metrizable space.

For any t 2 T we can assume thatMt is a subspace of a complete metric space Nt

(Problem 237); then Mt ¼ \ {Nt \ {z} : z 2 Nt \Mt}. The space Nt \ {z} is open in Nt

and hence completely metrizable for all z 2 Nt \Mt (see Problems 269 and 260).

Apply Fact 7 of S.271 to conclude thatMt is homeomorphic to a closed subspace of

the space M0t ¼
QfNtnfzg : z 2 NtnMtg. As a consequence, the space M is homeo-

morphic to a closed subspace of the space M0 ¼QfM0t : t 2 Tg which in turn is a

product of complete metric spaces. Since X is closed inM andM is closed inM0, the
set X is also closed in M0 which shows that any Dieudonné complete space is

homeomorphic to a closed subspace of a product of complete metric spaces.

S.460. Let X be a Dieudonné complete space. Prove that any Fs-subspace of X is
also Dieudonné complete.

Solution. Call a set U � X functionally open in X, if there exists f 2 C(X) and V 2 t
(R) such that U ¼ f �1(V).

Fact 1. Let R be a Dieudonné complete space. Suppose that Z is an arbitrary space

and f : R ! Z is a continuous map. Then f�1(B) is Dieudonné complete for any

Dieudonné complete B � Z.

Proof. Recall that the graph G( f )¼ {(y, f (y)) : y 2 R} of the mapping f is closed in
the space R � Z (see Fact 4 of S.390). If fB ¼ f jB : f�1(B)! B then, for the graph G

( fB) ¼ {(y, f (y)) : y 2 f�1(B)} of the function fB we have the equality G( fB) ¼ G( f )
\ (R � B). Since G( f ) is closed in R � Z, the set G( fB) is closed in a Dieudonné

complete space R � B (Problem 456) so G( fB) is Dieudonné complete. Applying

Fact 4 of S.390 again we observe thatG( fB) is homeomorphic to f �1(B) so f �1(B) is
Dieudonné complete and Fact 1 is proved.

Returning to our solution observe that any V � R is realcompact and hence

Dieudonné complete. It follows from Fact 1 and this observation that any

functionally open subset of X is Dieudonné complete. Finally observe that any

Fs-subspace of X is an intersection of functionally open subsets of X (Fact 2 of

S.408) and apply Problem 457 to conclude that any Fs-subspace of X is Dieu-

donné complete.

S.461. Suppose that a space X can be condensed onto a first countable Dieudonné
complete space. Prove that X is Dieudonné complete.

Solution. Suppose that f : X! Y is a condensation onto a first countable Dieudonné

complete space Y. Fix a continuous map g : bX ! bY such that gjX ¼ f (Problem
258). The space bX is Dieudonné complete, so we can apply Fact 1 of S.460 to

conclude that the set Y0 ¼ g�1(Y) is Dieudonné complete. It is evident that X � Y0;
given any z 2 Y0 \ X, consider the set Fz ¼ g�1(g(z)) � Y0. The set {g(z)} is a Gd-set

in Y because w(Y) b o. Therefore, Fz is a Gd-set in Y0. Since f is a condensation,

Fz \ X consists of exactly one point xz. As a consequence, Hz ¼ Fz \ {xz} � Y0 \ X
is also a Gd-set in Y0 so the set Gz ¼ Y0 \ Hz is Dieudonné complete (Problem 460).
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Since z 62 Gz and X � Gz, we proved that, for any z 2 Y0 there exists a Dieudonné
complete space Gz such that X � Gz � Y0 \ {z}. Therefore X ¼\ {Gz : z 2 Y0 \ X}
so X is Dieudonné complete by Problem 457.

S.462. Prove that every paracompact space is Dieudonné complete.

Solution. Given spaces X and Y and a continuous map f : X ! Y, denote by f̂ the
unique continuous map from bX to bY such that f̂ jX ¼ f (the existence of f̂ follows
from Problem 257 and the uniqueness from Fact 0 of S.351).

Fact 1. For any paracompact space X and any p 2 bX \X there exists a metrizable

space M and a continuous map ’ : X! M such that f̂ðpÞ 2 bMnM.

Proof. Let U ¼ {U 2 t (X) : p 62 clbX(U)}; it is evident that U is an open cover of

X so there is a s-discrete open refinement V of the cover U. We have

V ¼ SfVn : n 2 og where Vn is discrete for all n 2 o. For each n 2 o, the family

F n ¼ fV : V 2 Vng is also discrete and p 62 clbXðFÞ for any F 2 F n (the bar denotes

the closure in X).

For every n 2 o, choose any faithful enumeration {Ft : t 2 Tn} of the family Fn.
We can assume, without loss of generality, that Tn \ Tm ¼ ; if n 6¼ m. Any
paracompact space is collectionwise normal (Problem 231) so, for each n 2 o,
there exists a discrete family on ¼ {Ot : t 2 Tn} � t(X) such that Ft � Ot for each

index t 2 Tn. Making each set Ot smaller if necessary, we can consider that p =2
clbX(Ot) for all t 2 Tn.

Apply normality of X to find ft 2 C(X, [0, 1]) such that ft( Ft) � {1} and ft(X \Ot)

� {0} for each t 2 T ¼ SfTn : n 2 og.
We consider each Tn a space with the discrete topology. Given f, g 2 C�(Tn) let

dn( f, g)¼ sup{j f(t)� g(t)j : t 2 Tn}; then dn is a metric on C�(Tn) (see Problem 248)

so we will consider C� (Tn) to be a metric space with the metric dn. For any function
f 2 C�(Tn) and r > 0, let Bn ( f, r) ¼ {g 2 C�(Tn) : dn( f, g) < r}.

Denote by un the function which is identically zero on Tn. Define a map ’n : X!
C�(Tn) as follows: ’n(x) ¼ un if x 2 X \ ðSWnÞ ; if x 2 Os for some s 2 Tn then let

’n(x)(s) ¼ fs(x) and ’n(x)(t) ¼ 0 for all t 6¼ s.
To see that ’n is continuous, take any x 2 X and number e > 0. Assume first that

x 2 X\ ðSWnÞ and hence ’n(x) ¼ un. There exists U 2 t(x, X) such that U meets at

most one element of on, say Os. Since the map fs is continuous, the set Ps ¼ {y 2 X :

fs(y) r e} is closed in X and contained in Os whence V ¼ X \Ps is an open

neighbourhood of the point x. The set W ¼ U \ V can only meet Os so, for any

z 2 W, we have ’n(z)(t) ¼ 0 ¼ un(t) for all t 6¼ s. Since z =2 Ps, we have ’n(z)
(s) < e; thus dn(’n(z), un) ¼ j fs(z)j ¼ fs(z) < e which shows that ’n(W) � Bn(un,
e), i.e., W witnesses continuity of ’n at the point x.

Now if x 2 Os for some s 2 T then, by continuity of fs, there is U 2 t(x, X) such
that j fs(z) � fs(x)j < e for all z 2 U. Let W ¼ U \ Os; then for any z 2 W we have

’n(z)(t) ¼ 0 if t 6¼ s and ’n(z)(s) ¼ fs(z) so dn(’n(z), ’n(x)) ¼ j fs(x) � fs(z)j < e
which shows that ’n(W)� Bn(’n(x), e) so again the setWwitnesses continuity of ’n

at the point x.
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We proved that the map ’n is continuous for each n 2 o and therefore the map

’ ¼ Dn2o’n : X! C ¼ Pn2o C�(Tn) is also continuous. We claim that the space

M ¼ ’ (X) and the map ’: X! M are as promised. Note first that M is metrizable

because any countable product of metrizable spaces is a metrizable space (Problem

207) and any subspace of a metrizable space is also metrizable (Problem 203). Let

pn : C! C�(Tn) be the natural projection for each n 2 o.
Denote by u 2Pn2o C�(Tn) the function with u(n) ¼ un for each n 2 o; our first

observation is that u =2 M. Indeed, if x 2 X then there is n 2 o such that x 2 SF n

because
SfF n : n 2 wg is a cover of the space X. This means that x 2 Ft for some

t 2 Tn and therefore ft(x) ¼ 1. As a consequence, ’(x)(n) 6¼ un because ’(x)(n)(t) ¼
1 6¼ un(t) ¼ 0. Thus ’(x) 6¼ u for all x 2 X, i.e., u =2 ’(X) ¼ M.

To show that ’̂ðpÞ 2 bMnM suppose not. Then there is x 2 X such that

’̂ðpÞ ¼ ’ðxÞ. As a consequence ’0 ¼ ’̂jðX [ fpg : X [ fpg ! M is a continuous

map. Take any n 2 o with x 2 SF n; then x 2 Ft for some t 2 Tn. We have

pnð’̂ðpÞÞ ¼ pnð’ðxÞÞ ¼ ’nðxÞ so the map ’n : X ! Mn ¼ ’n (X) extends to a

continuous map ’0 : X [ fpg ! Mn in such a way that ’0ðpÞðtÞ ¼ 1 and

’0ðpÞðsÞ ¼ 0 for all s 6¼ t.
Let H ¼ ff 2 Mn : f ðtÞ ¼ 0g; it is immediate that dn( f, ’

0(p)) ¼ 1 for any

function f 2 H and therefore ’0 (p) =2 clMn(H). However, p =2 clbX(Ot) which implies

that p 2 clbX(X \Ot); by continuity of ’0, we have ’0 (p) 2 clMn
(’0(X \Ot)). It is

evident that ’0 (X \Ot)¼ ’n(X \Ot)� H so ’0(p) 2 clMn
(H) which is a contradiction.

Thus, ’̂ðpÞ =2M and Fact 1 is proved.

Returning to our solution take any paracompact space X; there exists a set A such

that bX embeds in IA (Problem 209) so we consider bX to be a subspace of IA. For
every p 2 bX \X fix a metrizable spaceMp and a continuous map ’p : X! Mp such

that ’̂pðpÞ 2 bMpnMp (see Fact 1). Then ’ ¼ D{’p : p 2 bX \X} maps X continu-

ously to the space M ¼Q{Mp : p 2 bX \X}. It is clear that the space K ¼Q{bMp :

p 2 bX \X} is a compact extension ofM and we have a continuous map F : bX! K
defined by F ¼ Df’̂p : p 2 bXnXg ; it is immediate that FjX ¼ ’. For any point

p 2 bX \X, denote by pp : M! Mp the natural projection.

The graph G(F) ¼ {(z, F(z)) : z 2 bX} is a closed subspace of bX � K (Fact 4

of S.390) so G(F) is compact. Therefore G(F) is closed in IA � K. We claim that

G(F) \ (IA � M) ¼ G(’) ¼ {(x, ’(x)) : x 2 X}. Indeed, G(’) � G(F) and G(j)
� X � M � IA � M which implies G(’) � G(F) \ (IA � M). On the

other hand, if p 2 bX \ X then ’̂pðpÞ 2 bMpnMp; as a consequence, ppðFðpÞÞ ¼
’̂pðpÞ 2 bMpnMp which shows that F(p) =2 M so the point (p, F(p)) does not

belong to IA � M. Therefore, (p, F(p)) =2 G(F) \ (IA � M) for all p 2 bX \ X
and hence G(F) \ (IA � M) � G(’), i.e., G(F) \ (IA � M) ¼ G(’). Thus, G(’)
is a closed subspace of IA � M which is a product of metric spaces. Observe

finally that G(’) is homeomorphic to X (Fact 4 of S.390) and hence X is

embeddable in IA � M which is a product of metric spaces. Our solution is

complete.

S.463. Prove that X is Dieudonné complete if and only if, for any z 2 bX \ X, there
exists a paracompact Y � bX such that X � Y � bX \ {z}.
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Solution. Assume that, for every z 2 bX \ X there exists a paracompact Yz such that
X � Yz � bX \ X. It is evident that X ¼ \ {Yz : z 2 bX \X}; each Yz is Dieudonné
complete (Problem 462) so we can apply Problem 457 to conclude that X is

Dieudonné complete. This proves sufficiency.

Fact 1. Let f :X! Y be a perfect map. IfY is paracompact, thenX is also paracompact.

Proof. Take any open cover U of the space X. Given any y 2 Y, the set f�1(y) is
compact so there is a finite UðyÞ � U such that f�1ðyÞ � SUðyÞ: By Fact 1 of S.226
there is Vy 2 t(y, Y ) such that f�1ðVyÞ �

SUðyÞ: The family {Vy : y 2 Y} is an open
cover of Y so there exists a s-discrete refinement V � tðYÞ of the cover {Vy : y 2 Y}
(Problem 230). We have V ¼ SfVn : n 2 og where each Vn is discrete in Y. It is
clear that the family Wn ¼ ff�1ðVÞ : V 2 Vng is s-discrete in X and

W ¼ SfWn : n 2 og is an open cover of the space X. Let Wn
t : t 2 Tn

� �
be a

faithful enumeration of the familyWn for all n 2 o. For each t 2 Tn there is yt 2 Y
such that Wn

t �
SUðytÞ; letW0n ¼ Wt

n \ U : t 2 Tn;U 2 UðytÞ
� �

.

Given any point x 2 X there is U 2 t(x, X) such that Umeets at most one element

ofWn, sayW
n
t : Since the family UðytÞ is finite, the set Umeets at most the elements

of the familyWðn; tÞ ¼ Wn
t \ U : U 2 UðytÞ

� �
which is finite. This shows that the

familyW0n is locally finite for every n 2 o. SinceWn
t ¼

SWðn; tÞ for all t 2 Tn, we
have

SWn ¼
SW0n and hence the family W0 ¼ S W0n : n 2 o

� �
is a s-locally

finite refinement of the cover U:Applying Problem 230 once more we conclude that

X is paracompact. Fact 1 is proved.

Returning to our solution, assume that X is Dieudonné complete and take any point

z 2 bX \X. We can consider that the space X is a closed subspace of a product M ¼
P{Mt : t 2 T} where eachMt is a metric space. We will need the space K¼P{bMt :

t 2 T} which is compact and contains M; given any t 2 T, let pt : K ! bMt be the

natural projection. Evidently, cX ¼ clK(X) is a compact extension of the space X.
There exists a continuous map f : bX! cX such that f(x) ¼ x for all x 2 X (Problem

258). Then f(bX \ X)� cX \ X (Fact 1 of S.259) and, in particular, f(z) 2 cX \ X. Since
clM(X)¼X¼ clK(X) \ M the point f(z) cannot belong toM for otherwise f(z)2 clM(X)
\ X which is a contradiction. Thus there exists t 2 T such that pt( f(z)) 2 bMt \ Mt. We

have h ¼ pt 	 f : bX! bMt and h(z) 2 bMt \ Mt. The map h is perfect (see Problem

122) and therefore the map h1 ¼ hjh�1(Mt) : h
�1(Mt)! Mt is also perfect (Fact 2 of

S.261). The space Mt is metric and hence paracompact; thus Y ¼ h�1(Mt) is also

paracompact by Fact 1. Finally observe that h(X)�Mt and h(z) 2 bMt \ Mt whence X
� Y � bX \{z}. This proves necessity and makes our solution complete.

S.464. Prove that any pseudocomplete space has the Baire property.

Solution. Let X be a pseudocomplete space and fix a pseudocomplete sequence

fBn : n 2 og of p-bases in X. Suppose that some U 2 t� (X) is of first category, i.e.,
there is a family {Pn : n 2 o} of closed nowhere dense subsets of X such that

U � Sn2o Pn: Since P0 is nowhere dense, the open set U \P0 is non-empty, so there

is W0 2 B0 such that W0 � U \P0. Assume that we have sets Wi, i b n with the

following properties:
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(1) Wiþ1 � Wi for all i ¼ 0, . . . n – 1.

(2) Wi � U and Wi 2 Bi for all i b n.
(3) Wi \ Pi ¼ ; for every i b n.

The open setWn \ Pnþ1�Wn� U is non-empty because Pnþ1 is nowhere dense;
it follows easily from regularity of the space X and from the fact that Bnþ1 is a

p-base in X that there existsWnþ1 2 Bnþ1 such thatWnþ1 � WnnPnþ1. It is straight-
forward that the sets W0, . . ., Wn,Wnþ1 have the properties (1)–(3).

Thus, our inductive construction can be continued giving us a sequence {Wi : i 2o}
with the properties (1)–(3). Since our sequence of p-bases is pseudocomplete, we

have F ¼ TfWi : i 2 og 6¼ ;: If x 2 F then x 2 U by (2); the property (3) implies x
=2 Pi for all i 2 o. Thus, x 2 UnSi2o Pi which is a contradiction. Therefore, every

non-empty open U � X is of second category, i.e., X has the Baire property.

S.465. Prove that any Čech-complete space is pseudocomplete.

Solution. Call a space Z strongly pseudocomplete if it has a pseudocomplete

sequence of bases. We are going to prove the following fact for future references.

Fact 1. Any Čech-complete space is strongly pseudocomplete.

Proof. Take a Čech-complete space X; we can choose {On : n 2 o} � t(bX) such
that X ¼ TfOn : n 2 og: Observe that Bn ¼ fU 2 t�ðXÞ : clbXðUÞ � Ong is a base
in X for each n 2 o. Indeed, if x 2 X and V 2 t(x, X) then take any W 2 t(bX) with
W \ X ¼ V and observe that x 2 W \ On 2 t(x, bX). Choose any W0 2 tðx; bXÞ
with clbXðW 0Þ � W \ On; then W0 \ X 2 Bn and x 2 W 0 \ X � V.

Therefore, each Bn is a base in X so it suffices to prove that the sequence {Bn :
n2o} is pseudocomplete. Take any family {Ui : i2o} such thatUi 2 Bi andUiþ1�
Ui for all i 2 o (the bar denotes the closure in X). Since bX is compact, there is

z 2 TfclbXðUiÞ : i 2 og. Since clbX(Ui)�Oi, the point z belongs toOi for each i 2o
and therefore z 2 TfOi : i 2 og ¼ X. As a consequence, z 2 clbXðUiÞ \ X ¼ Ui for

all i 2 o. Thus z 2 TfUi : i 2 og ¼ \fUi : i 2 og and hence
TfUi : i 2 og 6¼ ;:

The pseudocompleteness of the sequence fBn : n 2 og being established, we proved
that X is strongly pseudocomplete so Fact 1 is proved.

Now, to finish our solution it suffices to apply Fact 1 and observe that any

strongly pseudocomplete space is pseudocomplete.

S.466. Prove that any non-empty open subspace of a pseudocomplete space is
pseudocomplete.

Solution. Let X be a pseudocomplete space; fix a sequence fBn : n 2 og of p-bases
of X witnessing this. Given any U 2 t� (X), let B0n ¼ fV \ U : V 2 Bng for each
number n 2 o. It is immediate that the family B0n : n 2 o

� �
is a pseudocomplete

sequence of p-bases in U.

S.467. Suppose that X has a dense pseudocomplete subspace. Prove that X is
pseudocomplete. In particular, if X has a dense Čech-complete subspace then X
is pseudocomplete.
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Solution. Let Y be a dense pseudocomplete subspace of X; take any pseudocom-

plete sequence {Bn : n 2 o} of p-bases of Y. For any U 2 t� (Y) fix U0 2 tðXÞ such
that U0 \ Y ¼ U: Let B0n ¼ fU0 : U 2 Bng for each n 2 o.

Each B0n is a p-base in X; to see this, take anyW 2 t� (X). Pick any set V 2 t� (X)
with V � W; the family Bn being a p-base in Y, there isU 2 Bn such thatU� V \ Y.
Then U0 � U

0 ¼ U � V � W so U0 � W and U0 2 B0n which shows that B0n is a

p-base in X for all n 2o. Finally suppose thatUi 2 B0i andUiþ1 � Ui for each i 2o.
Then Vi ¼ Ui \ Y 2 Bi and clYðViþ1Þ ¼ Viþ1 \ Y ¼ Uiþ1 \ Y � Ui \ Y ¼ Vi

for each i 2 o. Since {Bi : i 2 o} is a pseudocomplete sequence, we

have
TfVi : i 2 og 6¼ ; and therefore

TfUi : i 2 og � TfVi : i 2 og 6¼ ; so X
is pseudocomplete.

Finally suppose that X has a dense Čech-complete subspace Y; then Y is

pseudocomplete (Problem 465). We proved that any space with a dense pseudo-

complete subspace is pseudocomplete so X is pseudocomplete.

S.468. Prove that a metrizable space is pseudocomplete if and only if it has a dense
Čech-complete subspace.

Solution. If any space has a dense Čech-complete subspace then it is pseudocom-

plete (Problem 467) so sufficiency is clear.

Fact 1. Let (X, d ) be a metric space. Suppose that we have a sequence fUn : n 2 og
of families of non-empty open subsets of X with the following properties:

(1) Un is disjoint and
SUn is dense in X for any n 2 o.

(2) diam ðUÞ b 1
nþ1 for all U 2 Un and all n 2 o.

(3) For any U 2 Unþ1 there is V 2 Un such that U � V.
(4) The sequence fUn : n 2 og is pseudocomplete.

Then D ¼ TfSUn : n 2 og is a dense Čech-complete subspace of X.

Proof. To see that D is dense, take any O 2 t�(X); fix any x 2 O and r > 0 such that

B(x, r) � O. Pick any n 2 o with 1
n < r=2 and observe that, by density of

SUn,

there is U 2 Un such that U \ B(x,1/n) 6¼ ;. Choose any z 2 U \ B(x, 1/n) and
note that if y 2 U then

dðy; xÞ b dðy; zÞ þ dðz; xÞb diamðUÞ þ 1=n b 1=n þ 1=n ¼ 2=n < r:

This shows that U� B(x, 2/n)� B(x, r)�O. Apply (3) to find Ui 2 U i; ibn such
that U0 � � � � � Un ¼ U.

By (1), there existsUnþ1 2 Unþ1 such thatUnþ1 \ Un 6¼ ;; the properties (1) and
(3) imply Unþ1 � Un. This construction can be continued inductively giving us a

sequence {Ui : i 2 o} such that Ui 2 U i;Un ¼ U and Uiþ1 � Ui for all i 2 o. The
property (4) says that there exists x 2 TfUi : i 2 og; it is clear that x 2 D \ U�D
\ O so D \ O 6¼ ; which proves that D is dense in X.

To see that D is Čech-complete, let Vn ¼ fU \ D : U 2 Ung for all n 2 o.
Since D � SUn; we have D ¼

SVn; i.e., Vn is an open cover of the space D for

each n 2 o.
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Assume that F is a filter on D dominated by the sequence fVn : n 2 og; i.e., for
any n 2 o there is Vn 2 Vn such that Fn � Vn for some Fn 2 F : Take Un 2 Un such

thatUn \ D¼ Vn for all n 2o.We haveUnþ1 \ Un� Vnþ1 \ Vn� Fnþ1 \ Fn 6¼ ;
because F is a filter. Thus, Unþ1 \ Un 6¼ ; whence Unþ1 � Un for all n 2 o by (1)

and (3). The property (4) implies that there is x 2 TfUn : n 2 og: Clearly, x 2 D;
we claim that x 2 TfF : F 2 Fg. Indeed, suppose that there is F 2 F such that

x =2 F. There is a number r> 0 such that B(x, r) \ F¼ ;; choose any number n 2 o
with 1

n< r: Pick any y 2 Un; then d(y, x) b diam (Un) b 1/n < r (note that x, y 2 Un

so d(x, y) b diam(Un)). Thus, Un � B(x, r) and therefore Un \ F ¼ ;. However,
there is Fn 2 F with Fn � Vn � Un and hence Fn \ F ¼ ; which is a contradiction
because F is a filter. An easy consequence is that x 2 TfclDðFÞ : F 2 Fg:

We proved that, for every filter F dominated by the sequence fVn : n 2 og, we
have

TfclDðFÞ : F 2 Fg 6¼ ;:Applying Problem 268, we conclude thatD is Čech-

complete so Fact 1 is proved.

Returning to our solution, suppose that (X, d) is a pseudocomplete metric space;

fix a pseudocomplete sequence fBn : n 2 og of p-bases of X. For any n 2 o

consider the family B0n ¼ U 2 Bn : diamðUÞ< 1
nþ1

n o
. It is immediate that B0n is

also a p-base in X for all n 2 o and the sequence B0n : n 2 o
� �

is pseudocomplete.

Therefore we lose no generality if we assume that diamðUÞ< 1
nþ1 for every U 2 Bn

and n 2 o.
Let U0 be a maximal disjoint subfamily of B0 ; it is an easy exercise that

SU0 is

dense in X. Suppose that we have families U0; . . . ;Un with the following properties:

(a) U i is disjoint and U i � Bi for all i b n.
(b) For any i < n and U 2 U iþ1 there is V 2 U i such that U � V.
(c) The set

SU i is dense in X for all i b n.

For a fixed U 2 Un call a family C � Bnþ1 strongly inscribed in U if V � U for

any V 2 C: Let UU
nþ1 be a maximal disjoint subfamily of Bnþ1 strongly inscribed in

U. It is straightforward that
SUU

nþ1 is dense in U; let Unþ1 ¼
S UU

nþ1 : U 2 Un

� �
.

We skip an easy checking that the properties (a)–(c) are fulfilled for the families

U0; . . . ;Un;Unþ1. Thus our inductive construction can be continued to provide a

sequence fUn : n 2 og with the properties (a)–(c). Recalling that diamðUÞ< 1
nþ1

for any U 2 Un, we can convince ourselves that properties (1)–(4) from Fact 1 hold

for the sequence fUn : n 2 og. Thus Fact 1 is applicable to conclude that we have a
dense Čech-complete subspace D � X. This settles necessity so our solution is

complete.

S.469. Give an example

(a) Of a Baire space which is not pseudocomplete.
(b) Of a pseudocomplete space which has no dense Čech-complete subspace.

Observe that it is an immediate consequence of (b) that there exist pseudocom-
plete non-Čech- complete spaces.

Solution. (a) Let N be a countably infinite set. Take an arbitrary ultrafilter x on

N such that
T
x ¼ ;. Denote by Nx the set N [ fxg with the topology tx ¼ fA :
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A � Ng [ fB : x 2 B and NnB=2xg. Then tx is a Tychonoff topology on Nx and

Cp(Nx) is a Baire space (Problem 279). Assume that Cp(Nx) is pseudocomplete;

since it is metrizable (Problem 210), it has a dense Čech-complete subspace

(Problem 468) so Nx has to be discrete (Problem 265) which it is not. This

contradiction shows that Cp(Nx) is a Baire space that is not pseudocomplete.

(b) It is easy to see that any pseudocompact space Z is pseudocomplete (take

Bn ¼ t�(X) for all n 2 o) so it suffices to give an example of a pseudocompact

space that has no dense Čech-complete subspace. There exists an infinite pseudo-

compac space X such that Cp(X, I) is pseudocompact and hence pseudocomplete

(see Problems 398 and 400). If Cp(X, I) has a dense Čech-complete subspace then X
has to be discrete (Problem 287) which it is not. Therefore Cp(X, I) is an example of

a pseudocomplete space that has no dense Čech-complete subspace.

S.470. Prove that any product of pseudocomplete spaces is a pseudocomplete
space.

Solution.Given any space Z and any p-bases B and C in Z, let B½C
 ¼ {U 2 B : there

exists V 2 C such that U � Vg � B. It is straightforward that B[C] is a p-base in Z.
We write B < C if for any U 2 B there is V 2 C such that U � V. This relation is

clearly transitive, i.e., for any p-bases A;B; C in the space Z, if A < B and B < C,
thenA< C. Another trivial observation is thatA½B
< B for any p-basesA and B in

the space Z.

Fact 1. Let Z be a pseudocomplete space. Then there exists a pseudocomplete

sequence {Bn : n 2 o} of p-bases in Z such that

(1) Bnþ1 < Bn for each n 2 o.
(2) For each m 2 o, if we have a family {Ui : i r m} such that Ui 2 Bi and

Uiþ1 � Ui for all I r m then
TfUi : irmg 6¼ ;.

Proof. Let fCn : n 2 og be a pseudocomplete sequence of p-bases of Z. Note first
that if we take any p-base C0n � Cn for all n 2 o then the sequence fC0n : n 2 og is
also pseudocomplete. If we let B0 ¼ C0 and Bnþ1 ¼ Cnþ1[Bn] for each n 2 o then

we get a pseudocomplete sequence {Bn : n 2 o} of p-bases in Z such that Bnþ1< Bn
for all n 2 o so (1) is proved.

Suppose that {Ui : i r m} is a family as in (2). Since Bm < Bm–1, there exists

Um–1 2 Bm–1 such that Um � Um�1. Going “backwards” in this manner, we obtain

sets Um�1, . . . , U1, U0 such that Ui 2 Bi and Uiþ1 � Ui for all i < m. Since we have
the same property for all i r m, we have obtained a sequence {Bi : i 2 o} such that
Ui 2 Bi and Uiþ1 � Ui for all i 2 o. The sequence {Bi : i2o} being pseudocom-

plete, we have
TfUi : irmg ¼

TfUi : i 2 og 6¼ ; so Fact 1 is proved.

Returning to our solution let Xt be a pseudocomplete non-empty space for each

t 2 T; fix a pseudocomplete sequence fBtn : n 2 og of p-bases in Xt for each t 2 T.
Fact 1 shows that we can assume, without loss of generality, that the sequence

fBtn : n 2 og has the properties (1) and (2) for all t 2 T. If Ot2t(Xt) for all t 2 T, the
set Pt2T Ot is called standard if Ot 6¼ Xt for only finitely many t. The family of
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all standard sets is a base in the space X ¼ P{Xt : t 2 T} (see Problem 101).

If O ¼Qt2T Ot is a standard set then supp ðOÞ ¼ ft 2 T : Ot 6¼ Xtg. Let pt : X! Xt

be the natural projection for all t 2 T.
Let Bn ¼ fO ¼ Qt2T Ot 2 S : Ot 2 Btn for all t 2 suppðOÞg for each n 2 o.

We claim that Bn is a p-base in X for each n 2 o. Indeed, if U 2t�(X) then there

is O ¼Qt2T Ot 2 S with O� U. Since Btn is a p-base in Xt for all t 2 supp(O), there
is Vt 2 Btn with Vt� Ot for each t 2 supp(O). Let Vt¼ Xt for all t 2 T \ supp(O); then
V ¼QfVt : t 2 Tg 2 Bn and V � O � U which proves that each Bn is a p-base in
the space X.

We show next that the sequence {Bn : n 2 o} is pseudocomplete. Take any

family {Un : n 2 o} such that Un 2 Bn and Unþ1 � Un for all n 2 o We have

Un ¼
Q

t2T U
n
t where Un

t 2 Bt
n for all n 2 o and t 2 supp(Un). Fix any s 2 T; we

claim that
TfUn

s : n 2 og 6¼ ;. Indeed, if s=2SfsuppðUnÞ : n 2 og then Un
s ¼ Xs

for all n 2 o and hence
TfUn

s : n 2 og ¼ Xs 6¼ ;.
Observe that supp(Unþ1) � supp(Un) for all n 2 o. Indeed, Unþ1 � Un implies

that Unþ1
t ¼ ptðUnþ1Þ � ptðUnÞ ¼ Ut

n for all t 2 T. Consequently, if Un
t 6¼ Xt then

Unþ1
t 6¼ Xt, i.e., t 2 supp(Un) implies t 2 supp(Unþ1).
Now assume that s 2 supp(Un) for some n 2 o and let m 2 o be the smallest of

the numbers n 2o such that s 2 supp(Un). Thus,U
n
s ¼ Xs for all n<m and s 2 supp

(Un) for all n r m by our previous remark. Therefore Un
s 2 Bsn for all n r m. Given

any n r m, observe that Unþ1 ¼
QfUnþ1

t : t 2 Tg and therefore Unþ1
s ¼ psðUnþ1Þ

� psðUnÞ ¼ Un
s for all nr m (all closures are denoted by a bar; we hope there is no

confusion as to in which space the closure is taken). By property (2) for the

sequence fBsn : n 2 og, we have
TfUn

s : nrmg 6¼ ;. However, Un
s ¼ Xs for all

n < m so
TfUn

s : n 2 og ¼ TfUn
s : nrmg 6¼ ;.

We proved that there is xt 2
TfUn

t : n 2 og for each t 2 T. Letting x(t) ¼ xt for
all t 2 T we obtain a point x 2 X such that x 2 TfUn : n 2 og which shows that the
sequence fUn : n 2 og of p-bases in X is pseudocomplete.

S.471. Prove that an open metrizable image of a pseudocomplete space is a
pseudocomplete space.

Solution. Call a map f : Y! Z almost open if, for anyU 2 t�ðYÞ, there is V 2 t�ðZÞ
such that f ðUÞ � V � f ðUÞ. The map f is weakly open if for any U 2 t�ðYÞ there is
V 2 t�ðZÞ such that V ¼ f Uð Þ. It is evident that any almost open map is weakly

open. A family U of subsets of Y is called strongly disjoint if U \ V ¼ ; for any
distinct U;V 2 U. For further references, we will prove the following fact which

gives more than we need for this solution.

Fact 1. Let f : X!M be a weakly open continuous map of a pseudocomplete space

X onto a metrizable space M. Then M is pseudocomplete. As a consequence, an

almost open continuous metrizable image of a pseudocomplete space is pseudo-

complete.

Proof. Fix an arbitrary metric d on the space M such that t(d) ¼ t(M). For any

U 2 t�ðXÞ, let FðUÞ ¼ Intðf ðUÞÞ; this gives us a map F : t�ðXÞ ! t�ðMÞ. Since
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V ¼ f ðUÞ for some V 2 t�ðXÞ; we have V � Intð f ðUÞÞ and therefore

FðUÞ � f ðUÞ ¼ FðUÞ for any U 2 t�ðXÞ.
Let fBn : n 2 og be a pseudocomplete sequence of p-bases in X. It is

straightforward that the family Cn ¼ fFðUÞ : U 2 Bng is a p-base in M for all

n 2 o. Let U0 be a maximal strongly disjoint subfamily of the family

fV 2 C0 : diamðVÞ<1g. For each V 2 U0 take any U 2 B0 such that F(U) ¼ V
and let q0(V) ¼ U. Since q0ðVÞ � f�1ðVÞ for each V 2 U0, the family

B00 ¼ q0ðU0Þ is also strongly disjoint.

It is easy to check that the set
SU0 is dense inM and q0 : U0 ! B00 is a bijection.

Suppose that we have constructed strongly disjoint families U0; . . . ;Un;B00; . . . ;B0n
and bijections qi : U i ! B0i; i ¼ 0; . . . ; n with the following properties:

(1) U i � t�ðMÞ and [ U i is dense in M for all i b n.
(2) For every i b n, we have B0i � Bi and F(qi(V)) ¼ V for each V 2 U i.

(3) diam ðVÞ< 1
iþ1 for all V 2 U i and all i b n.

(4) For any i 2 {1,. . ., n} and any W 2 U i there is V 2 U i�1 such that W � V.
(5) For all i < n, if V 2 U i, W 2 U iþ1 and W � V then qiþ1ðWÞ � qiðVÞ.

For any V 2 Un consider the family Bnþ1ðVÞ ¼ fU 2 Bnþ1 : U � qnðVÞg;
then Bnþ1ðVÞ is a p-base in qn(V). Take a maximal strongly disjoint subfamily

Unþ1ðVÞ of the family fW 2 FðBnþ1ðVÞÞ : W � V and diam ðWÞ< 1
nþ2g. It is

straightforward that
SUnþ1ðVÞ is dense in V so if Unþ1 ¼

SfUnþ1ðVÞ : V 2 Ung
then Unþ1 is strongly disjoint and

SUnþ1 is dense in M. For each W 2 Unþ1ðVÞ
take any U 2 Bnþ1ðVÞ such that F(U) ¼ W and let qnþ1ðWÞ ¼ U. If B0nþ1 then the

map qnþ1 : Unþ1 ! B0nþ1 is a bijection; it is easy to see that the family B0nþ1 is also
strongly disjoint. It is immediate from our construction that the properties (1)–(4)

hold for the families U0; . . . ;Un;Unþ1;B00; . . . ;B0n;B0nþ1, and bijections

q0; . . . ; qn; qnþ1. To see that (5) also holds it suffices to check it for i ¼ n. Observe
that if V 2 Un;W 2 Unþ1 and W � V then W 2 Unþ1 Vð Þ and therefore

qnþ1 Wð Þ 2 Bnþ1 Vð Þ which implies qnþ1 Wð Þ� qn Vð Þ so (5) is verified.

Thus, we can inductively construct sequences fU i : i 2 og and fB0i : i 2 og as
well as a family fqi : i 2 og of bijections such that the properties (1)–(5) hold for

all n 2 o. Observe that it is immediate that the sequence fU i : i 2 og has the

properties (1)–(3) of Fact 1 of S.468. To see that (4) of the same Fact also holds,

i.e., the sequence fU i : i 2 og is pseudocomplete, take any family fVi : i 2 og
such that Viþ1 � Vi and Vi 2 U i for all i 2 o. If Ui ¼ qi Við Þ 2 Bi, then it follows

from (5) that Uiþ1 � Ui for all i 2 o. The sequence being fBi : i 2 og pseudo-
complete, there is x 2 TfUi : i 2 og. We have f Uið Þ � Vi for all i 2 o which

implies f ðxÞ 2 \fVi : i 2 og ¼ fVi : i 2 og so the sequence fU i : i 2 og is pseu-
docomplete. Therefore, the property (4) of Fact 1 of S.468 holds as well for the

sequence fU i : i 2 og and hence the conclusion of the same Fact can be applied

to this sequence to deduce that D ¼ TfSU i : i 2 og is a dense Čech-complete

subspace of M. Thus M is pseudocomplete by Problem 468 so Fact 1 is proved.
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To finish our solution observe that any open map is weakly open, so any open

metrizable image of a pseudocomplete space is pseudocomplete by Fact 1.

S.472. Prove that a space X is pseudocompact if and only if any continuous image of
X is pseudocomplete.

Solution. If a space X is pseudocompact then every continuous image of X is also

pseudocompact and hence pseudocomplete. Now assume that every continuous

image of X is pseudocomplete and X is not pseudocompact. Fix a discrete family

O ¼ fOn : n 2 og of non-empty open subsets of X (Problem 136) and take a point

xn 2 On for all n 2 o.

Fact 1. Given arbitrary spaces Y and Z, a map f : Y! Z is continuous if and only if,

for any y 2 Y, there is U2 t(y, Y) such that f jU : U! Y is continuous.

Proof. If f is continuous then U ¼ Y does for all y 2 Y. Now assume that the

hypothesis of our Fact holds and take any y 2 Y and any V 2 t ( f(y), Z). There is a
set U 2 t(y, Y) such that fjU is continuous and therefore there is W 2 t(y, U) such
that f(W) � V. It is clear that W is an open neighbourhood of y in Y so W witnesses

continuity of f at the point y. Fact 1 is proved.

Returning to our solution fix a dense set D¼ {fn : n 2 o}, Cp(I); define u 2 Cp(I)
by u(t)¼ 0 for all t 2 I and let In ¼ {tfn : t 2 [0, 1]} for all n 2 o. Then the map ’n :

[0, 1] ! In defined by ’n(t) ¼ tfn, is a homeomorphism such that ’n(0) ¼ u and

’n(1) ¼ fn for all n 2 o (Fact 1 of S.301). The Tychonoff property of X implies that

there is a continuous map pn : X! In such that p(xn)¼ fn and p(X \On)� {u} for all
n 2 o. We can consider that pn : X ! Cp(I); then pn is still continuous (Problem
023).

If x 2 X/
S O then let p(x) ¼ u; if x 2 On for some n 2 o then let p(x) ¼ pn(x).

This defines a map p : X! Cp(I). Given any x 2 X there is U 2 t(x, X) such that U
meets at most one element of O, say On. It is immediate that pjU ¼ pnjU is a

continuous map because pnjU is continuous. Applying Fact 1, we conclude that the

map p : X! Cp(I) is continuous. According to our hypothesis, the space Y¼ p(X) is
pseudocomplete. However, D � Y so Cp(I) contains a dense pseudocomplete

subspace Y. This implies that Cp(I) is pseudocomplete (Problem 467) and hence

Baire (Problem 464) which it is not by Problem 284. This contradiction shows that

X is pseudocompact so our solution is complete.

S.473. Prove that a dense Gd-subspace of a pseudocompact space is pseudocomplete.

Solution. Take an arbitrary pseudocompact space P and a dense Gd-set X of the

space P; fix any sequence {On : n 2 o} � t(P) such that X ¼ \ {On : n 2 o}.
Observe that the family Bn¼ {U 2 t�(X) : clP(U)�On} is a base in X for each n 2o.
Indeed, if x 2 X and V 2 t(x, X) then take any W 2 t(P) with W \ X ¼ V and

observe that x 2W \ On 2 t(x, P). Choose anyW0 2 t(x,P) with clP(W
0),W \ On;

then W0 \ X 2 Bn and x 2 W0 \ X, V.

Therefore each Bn is a base in X so it suffices to prove that the sequence

fBn : n 2 og is pseudocomplete. Take any family {Ui : i 2 o} such that Ui 2 Bi
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and Uiþ1 � Ui for all i 2 o (the bar denotes the closure in X). Choose any Vi 2 t(P)
such that Vi \ X ¼ Ui for all i 2 o; it is easy to check that the family {Vi : i 2 o} is
centered.

Since P is pseudocompact, there is z2TfclPðViÞ : i2og¼
TfclPðUiÞ : i2og

(Problem 136). Since clP(Ui) � Oi, the point z belongs to Oi for each i 2 o
and therefore z 2 T{Oi : i 2 o} ¼ X. As a consequence z2 clPðUiÞ\X¼Ui, for

all i 2 o. Thus, z2TfUi : i2og¼
TfUi : i2og and hence

TfUi : i2og 6¼;. The
pseudocompleteness of the sequence fBn :n2og being established, we proved that
X is pseudocomplete.

S.474. Prove that a dense Gd-subspace of a metrizable pseudocomplete space is
pseudocomplete.

Solution. Let M be a metrizable pseudocomplete space. Then there is a dense

Čech-complete D � M (Problem 468). Suppose that X is a dense Gd-subset of

the space M; fix a family O ¼ fOn : n 2 og � tðMÞ such that X ¼ TO. The
set Ui ¼ Oi \ D is dense and open in D for each i 2 o; therefore D0 ¼ T{Ui :

i 2 o} is a dense Gd-subset of D because D has the Baire property (Problem

274). Besides, D0 is Čech-complete (Problem 260). The set D0 is dense in D and

hence in M; since D0 ¼ Ti2o Ui �
T

i2oOi ¼ X, the set D0 is also dense in X. As
a consequence X has a dense Čech-complete subspace so X is pseudocomplete

by Problem 468.

S.475. Prove that, if Cp(X) is an open image of a pseudocomplete space then it is
pseudocomplete.

Solution. Call f : Y! Z almost open if, for any U 2 t�(Y), there is V 2 t�(Z) such
that f ðUÞ � V � f ðUÞ. Given points y1, . . . , yn 2 Y and sets O1, . . . , On 2 t (R), let
[y1, . . . , yn; O1, . . . , On] Y ¼ {f 2 Cp(Y) : f(yi) 2 Oi for all i b n}. All possible sets
[y1, . . . , yn; O1, . . . ,On] Y are called standard open subsets of Cp(Y); they form a

base in Cp(Y). If Z is a space and Y, Z then Cp(Y jZ) is the set pY(Cp(Z)) taken with

the topology of subspace it inherits from Cp(Y).

Fact 1. For any space Z and any Y, Z, the restriction map pY : Cp(Z)! Cp(Y jZ) is
almost open.

Proof. Take any standard open set U ¼ [z1, . . . , zn; O1, . . . , On] Z of the

space Cp(Z). Without loss of generality, we can assume that z1, . . . , zk 2 Y and

zkþ1, . . . , zn 2 Z \ Y. If V ¼ [z1, . . . , zk; O1, . . . , Ok]Y \ Cp(Y jZ) then V is open in

Cp(Y jZ) and pY(U), V. To see that pY(U) is dense in V take any f 2 V and any

points ri 2 Oi for all i ¼ k þ 1, . . . , n. Given any finite set K, Y, the set L ¼ K U
{z1, . . . , zk} is also finite so there exists g 2 Cp(Z) such that gjL ¼ f jL and g(zi) ¼ ri
for all i ¼ k þ 1, . . . , n (Problem 034). We have g(zi) 2 Oi for all i b n and hence

g 2 U; besides, pY(g)jK ¼ f jK. This shows that, for any finite K, Y, there is g0 ¼ pY
(g) 2 pY(U) such that g0jK ¼ f jK. An evident consequence is that f 2 pYðUÞ. The
function f has been chosen arbitrarily so pY(U) is dense in V. Therefore, for any
standard open U in Cp(Z) there is an open VU in the space Cp(Y jZ) such that pY(U)
� VU � pY(U).
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Now, take any W 2 t�(Cp(Z)); since the standard sets form a base in Cp(Z),
there exists a family U of standard sets such thatW ¼ SU. For any U 2 U fix a set

VU 2 t(Cp(Y jZ)) such that pYðUÞ � VU � pYðUÞ and let V ¼ SfVU : U 2 Ug.
Then pYðWÞ ¼

SfpYðUÞ : U 2 Ug � SfVU : U 2 Ug ¼ V. Since pY(U) is dense
in VU for each U 2 U, the set pY(W) is dense in V so Fact 1 is proved.

Fact 2. Suppose that f : Y! Z and g : Z! T are continuous almost open onto maps.

Then h¼ g 	 f : Y! T is almost open. In other words, a composition of almost open

maps is an almost open map.

Proof. Given any U 2 t�(Y) there is V 2 t(Z) such that f ðUÞ � V � f ðUÞ. Since g is
also almost open, there is W 2 t(T) such that gðVÞ � W � gðVÞ. It is evident that
hðUÞ � W � hðUÞ so Fact 2 is proved.

Fact 3. Suppose that every countable subset of a space Z is closed and C-embedded

in Z. Then Cp(Z) is pseudocomplete.

Proof. Let Q0 ¼ Q; suppose that we have countable disjoint subsets Q0, . . . , Qn

which are dense in R. Since Q0n ¼ Q0 [ � � � [ Qn is countable, the set RnQ0n is dense
in R so we can choose a countable dense subset Qnþ1 � RnQ0n. It is clear that this
inductive procedure gives us a family {Qn : n 2 o} of disjoint dense subsets of R.
Let On ¼ ða; bÞ : a; b 2 Qn and a<b<aþ 1

nþ1
n o

� tðRÞ.
Given an arbitrary n 2 o, a finite set K, C Z and any map u : K ! On, let [u, K]

¼ {f 2 Cp(Z) : f(z) 2 u(z) for all z 2 K}. It is easy to see that the family Bn ¼{[u, K] :
K is a finite subset of Z and u is a map from K toOn} is a base in Cp(Z) for all n 2 o
(see Problem 056). To prove that the sequence {Bn : n 2 o} is pseudocomplete we

will establish the following general property.

(�) Suppose thatU¼ [u, K] 2 Bn and V¼ [v, L] 2 Bm wherem 6¼ n. IfU� V then

L � K and uðzÞ � nðzÞ for every z 2 L.
Suppose that there is t 2 L \K; choose rz 2 u(z) for all z 2 K and any r 2 R \ n(t)

(this is possible because all intervals we consider are non-empty and not equal

to R). There exists f 2 Cp(Z) such that f(z) ¼ rz for all z 2 K and f(t) ¼ r (Problem
034). Then f 2 U \V ; this contradiction shows that L � K.

Now suppose that r 2 u(z) \ u(z) for some z 2 L; choose any ry 2 u(y) for all points
y 2 K \ {z}. There is a function g 2 Cp(Z) such that f(z) ¼ r and f(y) ¼ ry for all y 2
K \ {z}. It is clear that g 2 U \V which again gives us a contradiction. As a

consequence, u(z), u(z) for all z 2 L. Given any z 2 L, observe that u(z) is an open

interval with its endpoints lying in Qn while the endpoints of u(z) belong to Qm

which is disjoint from Qn. As a consequence, the endpoints of u(z) have to be inside
u(z) and hence uðzÞ � uðzÞ. The property (�) is proved.

Now take any family {Un : n 2o} such thatUn 2 Bn andUnþ1 � Un for all n 2o.
We haveUn¼ [un, Kn]; the property (�) implies thatKn� Knþ1 for all n 2 o. Fix any
point z 2 P ¼ S{Kn : n 2 o} and the minimal m 2 o such that z 2 Km; then z 2 Kn

for all n r m. Applying (�) again, we conclude that the family {un(z) : n r m}
consists of decreasing intervals whose lengths tend to zero. By completeness of R
we have

TfunðzÞ : nrmg ¼ TfunðzÞ : nrmg 6¼ ; (the last equality holds because

unþ1ðzÞ � unðzÞ for all n r m by (�).
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Note that, for any countable A, Z any subset of A is countable and hence closed

in Z. This shows that any subset of A is closed in A, i.e., A is discrete. Consequently,

any countable subset of Z is closed and discrete.

Take rz 2
T
{un(z) : n r m}; we have a function h : P! R defined by h(z) ¼ rz

for all z 2 P. Since P is discrete, the function h is continuous so there is g 2 Cp(Z)
such that gjP ¼ h. For any n 2 o and any z 2 Kn, we have g(z) ¼ h(z) ¼ rz 2 un(z)
and therefore g 2 [un, Kn] ¼ Un. This shows that g 2 T

{Un : n 2 o} soTfUn : n 2 og 6¼ ;. Fact 3 is proved.

Returning to our solution, suppose that Z is a pseudocomplete space and we have

an open continuous ontomap’ : Z! Cp(X). Given any countable A, C X the map pA :
Cp(X)! Cp(AjX) is almost open by Fact 1; hence the map pA 	 ’ is also almost open

by Fact 2. Since w(Cp(AjX)) b o, we can apply Fact 1 of S.471 to conclude that

Cp(AjX) is pseudocomplete and hence there is a Čech-complete D, Cp(AjX) that is
dense in Cp(AjX) and hence in Cp(A) (Problem 152). Thus A is discrete by Problem

265; this proves that every countable subset of X is discrete. As a consequence, every

countable subset of X is also closed for if A, C X is countable and x 2 A \A then the set

A [ {x} is also countable and hence discrete which is a contradiction.

Finally, assume thatCp(AjX) 6¼RA for some countableA, C X.We saw that there is

a dense Čech-complete D � Cp(AjX). Observe first that Cp(AjX) is an algebra and, in
particular, f – g 2 Cp(AjX) for any f, g 2 Cp(AjX). Take any h 2 RA \Cp(AjX); the map

Th : RA ! RA defined by Th(g) ¼ h þ g, is a homeomorphism (Problem 079) and

Th(Cp(AjX)) \ Cp(AjX)¼;. Indeed, if g2Cp(AjX) and f¼ hþ g2Cp(AjX) then h¼ f
– g 2 Cp(AjX) which is a contradiction. Therefore RA has two disjoint dense Čech-

complete subspacesD and Th(D) which contradicts Problem 264. Thus Cp(AjX)¼RA

for any countable A � X. This means that every countable A, X is closed and

C-embedded in X. Applying Fact 3, we conclude that Cp(X) is pseudocomplete.

S.476. Prove that, if Cp(X) is pseudocomplete then Cp(X, I) is pseudocomplete.
Solution. The space Cp(X) is homeomorphic to Cp(X, (–1, 1)) (Fact 1 of S.295)

which is dense in Cp(X, I). As a consequence, if Cp(X) is pseudocomplete then

the set Cp(X, (–1, 1)) is a dense pseudocomplete subspace of Cp(X, I). Therefore
Cp(X, I) is also pseudocomplete (Problem 467).

S.477.Give an example of a space X for which Cp(X, I) is pseudocomplete but Cp(X)
is not pseudocomplete.

Solution. In Fact 4 of S.286 it was proved that there exists a dense pseudocompact

subspace X of the space Ic such that Cp(X, I) is pseudocompact and hence pseudo-

complete. The space Cp(X) cannot be pseudocomplete because it does not have the

Baire property (see Problems 464 and 284).

S.478. Let X be a normal space. Prove that Cp(X, I) is pseudocomplete if and only if
it is pseudocompact.

Solution. Call a map f : Y! Z almost open if, for any U 2 t�(Y), there is V 2 t�(Z)
such that f(U) � V � f(U). Given y1, . . . , yn 2 Y and sets O1, . . . , On 2 t� (I),
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let [y1, . . . , yn; O1, . . . , On] Y ¼ {f 2 Cp(Y, I) : f(yi) 2 Oi for all i b n}. All possible
sets [y1, . . . , yn; O1, . . . , On] Y are called standard open subsets of Cp(Y, I); they
form a base in Cp(Y, I). If Z is a space and Y � Z then Cp(Y jZ, I) is the set pY(Cp(Z,
I)) taken with the topology of subspace it inherits from Cp(Y, I).
Fact 1. For an arbitrary space Z and any set Y, Z, the restriction mapping pY : Cp(Z, I)
! Cp(Y jZ, I) is almost open.

Proof. Take any standard open setU¼ [z1, . . . , zn;O1, . . . ,On]Z of the space Cp(Z, I).
Without loss of generality, we can assume that z1, . . . , zk 2 Y and we have

zkþ1, . . . , zn 2 Z \ Y. If V ¼ [z1, . . . , zk; O1, . . . , Ok]Y \ Cp(Y jZ, I), then V is open

in Cp(Y jZ, I) and pY(U) � V. To see that pY(U) is dense in V take any f 2 V and any

points ri 2 Oi for all i ¼ k þ 1, . . . , n. Given any finite set K � Y, the set L ¼ K [
{z1, . . . , zk} is also finite so there exists g

0 2 Cp(Z) such that g
0jL¼ f jL and g0(zi)¼ ri

for all i ¼ k þ 1, . . . , n (Problem 034).

Define a function w : R! I as follows: w(t) ¼ – 1 for all t < – 1; if t 2 I then w
(t)¼ t and if t> 1 then w(t)¼ 1. It is clear that w is continuous and hence g¼ w 	 g0,
is also continuous. It is immediate that g 2 Cp(Z, I); besides gjL ¼ g0jL ¼ f jL and

g(zi) ¼ ri for all i ¼ k þ 1, . . . , n.
We have g(zi) 2 Oi for all i b n and hence g 2 U; besides, pY(g)jK ¼ f jK.

This shows that, for any finite set K � Y, there is h ¼ pY(g) 2 pY(U) such that

hjK ¼ f jK. An evident consequence is that f 2 pYðUÞ. The function f has been

chosen arbitrarily so the set pY(U) is dense in V. Therefore, for any standard open U
in Cp(Z, I) there is an open VU in the space Cp(Y jZ, I) such that pYðUÞ � VU

� pYðUÞ.
Now take any W 2 t�(Cp(Z, I)); since the standard sets form a base in Cp(Z, I),

there exists a family U of standard sets such thatW ¼ SU. For any U 2 U fix a set

VU 2 t(Cp(Y jZ, I)) such that pYðUÞ � VU � pYðUÞ and let V ¼ SfVU : U 2 Ug.
Then pYðWÞ ¼

SfpYðUÞ : U 2 Ug � SfVU : U 2 Ug ¼ V. Since pY(U) is dense
in VU for each U 2 U, the set pY(W) is dense in V so Fact 1 is proved.

Returning to our solution, observe that if Cp(X, I) is pseudocompact then it

is pseudocomplete because every pseudocompact space is pseudocomplete. Now

assume that Cp(X, I) is pseudocomplete. Given any countable A � X, the restriction
map pA : Cp(X, I)! Cp(AjX, I) is almost open by Fact 1. The space Cp(AjX, I) being
second countable, it is pseudocomplete (Fact 1 of S.471); applying Problem 468 we

conclude that Cp(AjX, I) has a dense Čech-complete subspace D. Since Cp(AjX, I) is
dense in Cp(A, I), the space Cp(A, I) has a dense Čech-complete subspace so A is

discrete by S.287. This proves that every countable subspace of X is discrete. As a

consequence, every countable subset of X is also closed for if A � X is countable and

x 2 AnA then the set A< {x} is also countable and hence discrete which is a contradi-
ction. Therefore any countable subset of X is closed C-embedded in X by normality of

X. Thus Cp(X, I) is pseudocompact by Problem 398 so our solution is complete.

S.479. Prove that, if Cp(X, I) is countably compact then the space Cp(X) is
pseudocomplete.
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Solution. If Cp(X, I) is countably compact then any Gd-subset of X is open in X
(Problem 397), i.e., X is a P-space.

Fact 1. For any P-space Z, any countable D � Z is closed and C-embedded in Z.

Proof. Since the complement of any subset of D is a Gd-subset of Z, every subset

of D is closed in Z. This proves that every countable subset of Z is closed and

discrete in Z.

Again, let D ¼ {xn : n 2 o} be a countable subset of Z. We saw that D has to be

discrete; therefore there exists a disjoint family {Un : n 2o}� t(Z) with xn 2Un for

all n 2 o. By Fact 2 of S.328, for any n 2 o, there is a closed Gd-set Hn such that xn
2 Hn � Un. Each Hn is open in Z because Z is a P-space. It is clear that H ¼
Z \ (

S
{Hn : n 2 o}) is also open in Z being a Gd-subset of Z. As a consequence, the

family H ¼ fHn : n 2 og is discrete in Z.
Let fn : X ! {0, 1} be defined by fn(x) ¼ 1 for all x 2 Hn and fn(x) ¼ 0 for all

points x 2 X \ Hn. Since Hn is a clopen subset of Z, the function fn is continuous for
all n 2 o. Now take any function f : D ! R; we claim that g ¼Pn2o f ðxnÞ � fn is
continuous on Z. Indeed, if x 2 Z then there is U 2 t(x, Z) which meets at most one

element ofH, say, Hk. Then gjU¼ ( f(xk) · fk)jU is a continuous function. Therefore

g is continuous by Fact 1 of S.472; it is clear that gjD ¼ f, i.e., the function f can be
continuously extended over the space Z. The function f : D ! R has been chosen

arbitrarily, so we proved that any countable D � Z is closed and C-embedded in Z,
i.e., Fact 1 is proved.

Now apply Fact 1 of this solution and Fact 3 of S.475 to conclude that Cp(X) is
pseudocomplete.

S.480. Give an example of a space X such that Cp(X) is pseudocomplete but Cp(X, I)
is not countably compact.

Solution. A space X is called a P-space if every Gd-subset of X is open in X.
The space X is a P-space if and only if Cp(X, I) is countably compact (Problem 397).

Fact 1. There exists a disjoint family E ¼ fEa : a<cg of subsets of R such that

jEa \ Oj ¼ c for any O 2 t�(R) and any a < c.

Proof. Let Q0¼Q; assume that b< c and we have a family {Qa : a< b} of disjoint
countable dense subsets of R. The set Q0b ¼

SfQa : a<bg has cardinality strictly

less than c; since every O 2 t� (R) has cardinality c, we have Int Q0b
� �

¼ ; and
therefore RnQ0b is dense in R. The space RnQ0b being second countable, there exists
a countable dense Qb � RnQ0b. It is clear that the family fQa : abbg consists of
disjoint countable dense subsets of R. Thus, this inductive construction can be

carried out for all b < c giving us a disjoint family {Qa : a < c} of countable dense
subsets of R. It is easy to find a disjoint family {Pa : a < c} such that c ¼ S{Pa : a <
c} and jPaj ¼ c for each a < c. Letting Ea ¼

S
{Qb : b 2 Pa} for each a < c, we

obtain the promised family E ¼ fEa : a < cg. Fact 1 is proved.
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Fact 2. There exists a space X with the following properties:

(a) X can be condensed onto a P-space.
(b) X can be condensed onto R and any open subset of X has cardinality c. In

particular, X has no isolated points.

Proof. Take any set A of cardinality c; given an arbitrary point p 2 RA, we let

S(p) ¼ {x 2 RA : j{a 2 A : x(a) 6¼ p(a)} jb o}. Denote by CðAÞ the family of all

countable subsets of A. Given any x 2 S(p), let supp(x)¼ {a 2 A : x(a) 6¼ p(a)}; for
any B � A, denote by pB : RA!RB the natural projection onto the face RB. Given

any B 2 CðAÞ, consider the set SB(p) ¼ {x 2 S(p) : supp(x) � B}. It is straightfor-
ward that the map pBjSB(p) : SB(p)!RB is a bijection and hence jSB(p)j b jRBj ¼
c. Observing that SðpÞ ¼ SfSBðpÞ : B 2 CðAÞg, we obtain jSðpÞjb c � jCðAÞj ¼
c � c ¼ c. Thus, we have

(1) jS(p)j ¼ c for any p 2 RA.

Let t be a topology on RA generated by all Gd-subsets of RA. We omit a simple

verification of the fact that R ¼ (RA, t) is a Tychonoff P-space. Let us show that

(2) The set S(p) is dense in R for any p 2 RA.

The family G of all Gd-subsets ofRA is a base in R so it suffices to show that every

non-emptyH 2 G contains a point fromS(p). Recall that a setU ¼ Qa2A Ua is called

standard in RA if Ua 2 t (R) for all a 2 A and the set supp(U)¼ {a 2 A : Ua 6¼ R} is
finite. Standard sets form a base in RA (Problem 101).

Take any point x 2 H; it is easy to see that there are standard sets Un, n 2 o
such that x 2 G ¼ TfUn : n 2 og � H. If B ¼ S{supp(Un) : n 2 o} then B is a

countable subset of A and hence the point y 2 RA defined by yjB¼ xjB and y(a)¼ p
(a) for all a 2 A \B, belongs to S(p). It is immediate that y 2G�H so y 2 S(p) \ H
which proves that S(p) is dense in R, so (2) is established.

Our next important step is to prove that

(3) w(R) b c.
Given any B 2 CðAÞ and any z 2 RB, let O(z, B) ¼ {y 2 R : yjB ¼ z}. It is

straightforward that O(pB(x), B) 2 t(x, R) for any x 2 RA and any countable B � A.
If x 2 U 2 t(R), then there is H 2 G such that x 2 H� U. Find standard sets Un, n 2
o such that x 2G¼T{Un : n 2o}�H. If B¼S{supp(Un) : n 2o} then B 2 CðAÞ
and it is immediate that O(pB(x), B) � G � H � U which shows that the family

fOðpBðxÞ;BÞ : B 2 CðAÞg is a local base at x in the space R. As a consequence, the
family B ¼ fOðz;BÞ : B 2 CðAÞ; z 2 RBg is base in R. Since jBjbjCðAÞj � jRoj ¼ c,
we proved that w(R) b c, i.e., (3) holds.

Choose a family {Aa : a < c} of disjoint subsets of A such that jAaj ¼ c for any
a < c. Let qa(a) ¼ 1 if a 2 Aa and qa(a) ¼ 0 for all a 2 A \Aa. Then

(4) SðqaÞ \ SðqbÞ ¼ ; if a 6¼ b.
Indeed, if x 2 S(qa) then pAbðxÞ can take only countably many values distinct

from zero because pAbðqaÞ is identically zero on Ab. Since every y 2 S(qb) takes the
value 1 at all but countably many a 2 Ab, it is impossible that x¼ y. This settles (4).

Let Y ¼S{S(qa) : a < c} � R; it is immediate that jY j ¼ c. Choose an

enumeration {Ua : 0 < a < c} of the base U ¼ fU \ Y : U 2 Bg of the space Y.
It is easy to see that S(qa) \ U has cardinality c for any a < c and U 2 B. Thus the
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set Sa¼ S(qa) \ Ua has cardinality c for all a< c. The set Y0 ¼ Y \
S

0<a<c Sa also
has cardinality c; since the family {Sa : 0 < a < c} is disjoint, we can construct a

bijection ’ : Y! R such that ’(Y0) ¼ E0 and ’(Sa) ¼ Ea whenever 0 < a < c (see
Fact 1 for the definition of the sets Ea).

We finally have our space X ¼ {(y, ’(y)) : y 2 Y} � Y � R. Let p1 : X ! Y
and p2 : X !R be the restrictions of the respective natural projections. Since ’ is

a bijection, both maps p1 and p2 are condensations. Thus X condenses onto R and

onto a P-space Y. Take any W 2 t� (X) and any x ¼ (y, ’(y)) 2 W. There exist

U 2 t(y, Y) and V 2 t(’(y), R) such that (U � V) \ X � W. There is a < c such

that y 2 Ua � U. Observe that Sa � Ua and Ea ¼ ’(Sa); besides, the set Q ¼
Ea\V has cardinality continuum (Fact 1) and hence Q0 ¼ ’�1(Q) � Sa � Ua also

has cardinality c. We have {(y,’(y)) : y 2 Q0} � (U � V) \ X � W and therefore

jWj r jQ0j ¼ c so Fact 2 is proved.

Returning to our solution, let us show that the space X constructed in Fact 2 is as

promised. The space X condenses onto a P-space Y; since every countable subset of
Y is closed and C-embedded (Fact 1 of S.479), the space Cp(Y) is pseudocomplete

(Fact 3 of S.475). If p1 : X! Y is a condensation then the dual map p�1 embeds Cp(Y)
in Cp(X) as a dense subspace (Problem 163). Therefore Cp(X) is pseudocomplete

because it has a dense pseudocomplete subspace (Problem 467).

However, Cp(X, I) is not countably compact because X is not a P-space. Indeed,
the map p2 condenses X onto R so the set fxg ¼ p�12 ðp2ðxÞÞ is Gd for each x 2 X.
If X were a P-space, then all points of X would be isolated which is false by Fact 2.

This contradiction shows that Cp(X, I) is not countably compact (Problem 397) so

our solution is complete.

S.481. Prove that, if Cp(X, I) is pseudocompact then the space(Cp(X, I))k is
pseudocompact for any cardinal k.

Solution. Let Xa¼ X for all a< k; then Cp(Xa, I) is pseudocompact and hence every

countable subset of Xa is closed and C�-embedded in Xa (Problem 398). The space

(Cp(X, I))k is homeomorphic to CpðfXa : a < kg; IÞ by Problem 114. This shows

that pseudocompactness of (Cp(X, I))k is equivalent to pseudocompactness of

Cp(Y, I), where Y ¼ fXa : a < kg. By Problem 398, the space Cp(Y, I) is pseu-
docompact if and only if all countable subsets of Y are closed and C�-embedded in

Y. We identify each Xa with the respective clopen subspace of Y (Problem 113).

Take any countable A � Y ; the set Aa¼ A\Xa is countable and hence closed in

Xa for each a< k. By definition of the topology on Y, a set U is open in Y if and only

ifU \ Xa 2 t(Xa) for all a< k (Problem 113). This is equivalent to saying that a set

F is closed in Y if and only if every F \ Xa is closed in Xa. Since Aa ¼ A \ Xa is

indeed closed in Xa, the set A is closed in Y, i.e., every countable subset of Y is

closed in Y. This implies that all countable subsets of Y are discrete and hence every

function is continuous on any countable subset of Y.

To show that A is C�-embedded, take any bounded function f : A ! R. The
function fa ¼ f jAa can be extended to a continuous function ga : Xa !R for each

a < k such that Aa 6¼ ;. Now, if x 2 Xa and Aa 6¼ ; then let g(x) ¼ ga(x) and put

g(x) ¼ 0 for all x 2 YnðSfXa : Aa 6¼ ;gÞ.
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The function g is continuous on Y because, for each x 2 Y, we have x 2 Xa for

some a < k so Xa is an open neighbourhood of x on which g(x) is either constant or
coincides with a continuous function ga (see Fact 1 of S.472). We proved that every

countable subset of Y is closed and C�-embedded in Y so Cp(Y, I) is pseudocompact

(Problem 398). We already observed that Cp(Y, I) is homeomorphic to (Cp(X, I))k
so (Cp(X, I))k is also pseudocompact.

S.482. Prove that, if Cp(X, I) is countably compact then so is(Cp(X, I))k for any
cardinal k.

Solution. Call a space Z a P-space if everyGd-subset is open in Z. Let Xa¼ X for all

a< k; then the spaceCp(Xa, I) is countably compact and hence everyXa is a P-space.
(Problem 397). The space (Cp(X, I))k is homeomorphic to CpðfXa : a < kg; IÞ by
Problem 114. This shows that countable compactness of (Cp(X, I))k is equivalent to
countable compactness of Cp(Y, I), where Y ¼ fXa : a < kg. By Problem 397, the

spaceCp(Y, I) is countably compact if and only if Y is a P-space. We identify each Xa

with the respective clopen subspace of Y (Problem 113).

Take any Gd-set H is the space Y; then H \ Xa is a Gd-subset of Xa and hence

H \ Xa is open in Xa. By definition of the topology on Y, the set H is open in Y. It
turns out that every Gd-subset of Y is open in Y, i.e., Y is a P-space. Applying
Problem 397 again we conclude that Cp(Y, I) is countably compact; therefore the

space (Cp(X, I))k is also countably compact being homeomorphic to Cp(Y, I).
S.483. Give an example of a countably compact space X such that X � X is not
pseudocompact.

Solution. Given a set A, denote by CðAÞ the family of all countably infinite subsets

of A. We will construct our space using certain subspaces of bo.

Fact 1. If A is an infinite subset of bo then A ¼ 2c.

Proof. It is clear that A
�� ��b boj j ¼ 2c (Problem 368). There exists an infinite discrete

B � A (Fact 4 of S.382). The space K ¼ B is a compact extension of B such that

D \ E ¼ ; for allD, E� Bwith D \ E ¼ ; (Fact 2 of S.382). As a consequence, the
space K is homeomorphic to bo (Fact 2 of S.286) and therefore jKj ¼ 2c. Thus

A
�� ��r B

�� �� ¼ Kj j ¼ 2c so Fact 1 is proved.

Fact 2. There exist countably compact spaces Y and Z such that Y � Z is not

pseudocompact.

Proof. Given any A 2 CðboÞ, denote by p(A) some accumulation point of A (which

always exists because bo is compact). Let Y0 ¼ o � bo; if we have subsets {Ya :
a < b} of the space bo for some b < o1, let Y

0
b ¼

SfYa : a < bg and Yb ¼ Y
0
b[

fpðAÞ : A 2 CðY 0bÞg. This shows that we can define the sets Ya for all a < o1. The

space Y ¼ S
{Ya : a < o1} is countably compact. Indeed, if A is a countably

infinite subset of Y then A� Ya for some a< o1. Therefore p(A) is an accumulation

point of A which belongs to Yaþ1 � Y. Since every A 2 C(Y) has an accumulation

point in Y, the space Y is countably compact (Problem 132).
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Let us prove by transfinite induction that jYaj b c for all a < o1. First of all

jY0j ¼ o b c. If we assume that b < o1 and jYaj b c for each a < b then

Y
0
b

��� ��� ¼ SfYa : a<bgj jb c. As a consequence, Yb
�� ��b Y

0
b

��� ���þ CðY 0bÞ��� ���b cþ co ¼ c;

thus jY j b c · o1 ¼ c.
We claim that the space Z¼o [ (bo \Y) is also countably compact. Indeed, any

countably infinite A � Z has 2c accumulation points in bo by Fact 1; since we only

have c< 2c points in Y, some accumulation point of A belongs to bo \ Y � Z.
In the space Y � Z � bo � bo consider the set D ¼ {(n, n) : n 2 o}. Observe

that Y \ Z¼ o so if x 2 bo and (x, x) 2 Y�Z then x 2 Y \ Z¼ o. This shows that
D¼F \ (Y� Z) whereF¼ {(x, x) : x 2 bo}. The function f : bo! bo defined by

f(x) ¼ x for all x 2 bo, is continuous, so its graph F is closed in bo � bo (Fact 4

of S.390). Therefore the set D is closed in Y � Z. Each n 2 o is an isolated

point of bo, so every Un ¼ {(n, n)} is open in Y �Z; thus {Un : n 2 o} is a discrete
family of non-empty open subsets of Y � Z. Hence Y � Z is not pseudocompact

(Problem 136) so Fact 2 is proved.

To finish our proof, let X ¼ Y  Z, where Y and Z are the spaces constructed

in Fact 2. Any finite union of countably compact spaces is countably compact

so X is a countably compact space. If X � X is pseudocompact then Y � Z is a

non-pseudocompact clopen subspace of X � X which contradicts Observation

two of S.140. Therefore X � X is not pseudocompact so our solution is

complete.

S.484.Give an example of a space X such that Cp(X, I) is not countably compact but
has a dense countably compact subspace.

Solution. In Fact 2 of S.480 we constructed a space X without isolated points which

can be condensed onto a P-space and onto R. The space Cp(X, I) is not countably
compact because X is not a P-space. Indeed, if a map ’ condenses X ontoR then {x}
¼ ’ �1(’(x)) is a Gd-set for each x 2 X. If X were a P-space, then all points of X
would be isolated which is false. This contradiction shows that Cp(X, I) is not

countably compact (Problem 397).

Let Y be a P-space such that there exists a condensation p : X! Y. The dual map

p� embeds the space Cp(Y) into Cp(X) (Problem 163). It is evident that p�(Cp(Y, I))
� Cp(X, I); we claim that p�(Cp(Y, I)) is dense in Cp(X, I). To see this take any

function f 2 Cp(X, I) and any finite K � X; since p is a condensation, there exists

a function g 2 Cp(Y) such that gjp(K) ¼ ( f 	 p�1)jp(K) (Problem 034). Define a

function w : R! I as follows: w(t) ¼ �1 for all t < �1; if t 2 I then w(t) ¼ t and if
t > 1 then w(t) ¼ 1. It is clear that w is continuous; besides, h ¼ w 	 g 2 CpðY; IÞ
and hjpðKÞ ¼ gjpðKÞ ¼ ð f 	 p�1ÞjpðKÞ.

For the function h0 ¼ p�ðhÞ ¼ h 	 p 2 p�ðCpðY; IÞÞ, we have the equalities

h0(x) ¼ h(p(x)) ¼ f(p�1(p(x))) ¼ f(x) for any x 2 K. This shows that, for any finite

K � X, there is h0 2 p�(Cp(Y, I)) such that h0jK ¼ f jK. An evident consequence

is that f is in the closure of the set p�(Cp(Y, I)). The function f has been chosen

arbitrarily so p�(Cp(Y, I)) is dense in Cp(X, I). Finally observe that p�(Cp(Y, I)) is
countably compact being homeomorphic to a countably compact space Cp(Y, I).
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Thus Cp(X, I) has a dense countably compact subspace without being countably

compact.

S.485. Prove that the following are equivalent:

(i) The space Cp(X) is pseudocomplete.
(ii) n(Cp(X)) ¼ RX, i.e., RX is canonically homeomorphic to n(Cp(X)).
(iii) Any countable subset of X is closed and C-embedded in X.

Solution. Call a map f : Y! Z almost open if, for any U 2 t�(Y), there is V 2 t�(Z)
such that f ðUÞ � V � f ðUÞ. Assume that Cp(X) is pseudocomplete. Given a

countable A � X, the restriction map pA : Cp(X) ! pA(Cp(X)) � Cp(A) is almost

open (Fact 1 of S.475). Therefore, the second countable space pA(Cp(X)) is

pseudocomplete by Fact 1 of S.471. As a consequence, there is a dense

Čechcomplete D � pA(Cp(X)) (Problem 468). The set Cp(AjX) ¼ pA(Cp(X)) is

dense in Cp(A) and hence in RA (Problem 152). Assume that Cp(AjX) 6¼RA; we saw

that there is a dense Čech-complete D � Cp(AjX). Observe first that Cp(AjX) is an
algebra and, in particular, f � g 2 Cp(AjX) for any f, g 2 Cp(AjX). Take any

function h 2 RA \Cp(AjX); the map Th : RA ! RA defined by Th(g) ¼ h þ g, is a
homeomorphism (Problem 079) and ThðCðAnXÞÞ \ CpðAnXÞ ¼ ;. Indeed, if g 2
Cp(AjX) and f ¼ h þ g 2 Cp(AjX) then h ¼ f – g 2 Cp(AjX) which is a

contradiction. Therefore the space RA has two disjoint dense Čech-complete

subspaces D and Th(D) which contradicts Problem 264. Thus Cp(AjX) ¼ RA for

any countable A � X. This means that every countable A � X is closed and

C-embedded in X so we proved that (i)) (iii); since (iii)) (i) by Fact 3 of S.475,

we showed that (i) , (iii).

Now, if (iii) holds then, for any f 2 RX and any countable A � X, there is a

function g 2 Cp(X) such that gjA ¼ f jA. Therefore every f 2 RX is strictly

o-continuous on X; applying Problem 438 we conclude that RX is canonically

homeomorphic to u(Cp(X)). This settles (iii)) (ii).

Finally, assume that (ii) holds. The set S of strictly o-continuous functions on
X is contained in RX; since S is realcompact (Problem 438), we have S ¼ RX

(see Problem 414). Thus every f 2 RX is strictly o-continuous on X. Given any

countable A� X and any g : A! R, define g0 2 RX by g0jA¼ g and g0(x)¼ 0 for all

x2 X \A. Since g0 is strictlyo-continuous, there is h 2 Cp(X) such that hjA¼ g0jA¼ g.
This proves that every countable A � X is C-embedded in X. If x 2 AnA then let

f(x)¼ 1 and f(y)¼ 0 for all y 2 A. Since A [ {x} is C-embedded, there is g 2 Cp(X)

such that gj(A [ {x}) ¼ f. By continuity of g, we have 1 ¼ gðxÞ 2 gðAÞ ¼
f0g ¼ f0g which is a contradiction. This shows that every countable A � X is

closed in X. Therefore (ii)) (iii) is established so our solution is complete.

S.486. Prove that X is discrete if and only if Cp(X) is pseudocomplete and real-
compact.

Solution. If X is discrete then Cp(X) ¼ RX is realcompact by Problem 401 and

pseudocomplete by Problem 470.
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Now assume that Cp(X) is realcompact and pseudocomplete. Then tm(X) b o by

Problem 429. Suppose that some point x 2 X is not isolated in X; apply Fact 1 of

S.419 to find a countable set A � X \ {x} such that x 2 A. However, all countable
subsets of X are closed in X by Problem 485 which shows that x 2 A ¼ A which is a

contradiction. Hence all points of X are isolated, i.e., the space X is discrete.

S.487. Prove that, if Cp(X) is homeomorphic to Rk for some k then X is discrete.

Solution. Any Rk is realcompact by Problem 401 and pseudocomplete by Problem

470. Thus, if Cp(X) is homeomorphic to Rk then it is also realcompact and

pseudocomplete. As a consequence, X is discrete by Problem 486.

S.488. Suppose that there is an open subspace Y � Cp(X) homeomorphic to Rk for
some k. Is it true that X is discrete?

Solution. Yes, it is true; we will need a couple of facts to prove this.

Fact 1. Suppose that Zt is a pseudocomplete space for every t2 T.Then the space Z¼
 {Zt : t 2 T} is also pseudocomplete.

Proof. We identify each Zt with the respective clopen subspace of the space Z. Let

Bnt : n 2 o
� �

be a pseudocomplete sequence of p-bases in Zt for each t 2 T. It is

straightforward that Bn ¼ [ Bnt : t 2 T
� �

is a p-base in Z for each n 2o. To see that
the sequence fBn : n 2 og is pseudocomplete, take any family {Un : n 2 o} such

that Unþ1 � Un and Un 2 Bn for all n 2 o. There is t 2 T such that U0 2 Bnt ; we
claim thatUn̂ 2 Bnt for all n 2o. Indeed, ifUn 2 Bns for some s 6¼ t thenUn� Zs and
therefore Un \ Zt ¼ ; whence Un \ U0 ¼ ; which is a contradiction with Un � U0.

Since the sequence Bnt : n 2 o
� �

is pseudocomplete, we have
TfUn : n 2 og 6¼ ;

so Fact 1 is proved.

Fact 2. Any locally pseudocomplete space is pseudocomplete. In other words, if Z is a
space and each z 2 Z has a pseudocomplete neighbourhood then Z is pseudocomplete.

Proof. Since any open subspace of a pseudocomplete space is pseudocomplete

(Problem 466), any z 2 Z has an open pseudocomplete neighbourhood. Consider the

family U ¼ fU 2 t�ðZÞ : U is pseudocompleteg. We saw that
SU ¼ Z ; let V be a

maximal disjoint subfamily of U. It is easy to see that
SV is dense in Z; besides,

Y ¼ SV ¼ fV : V 2 Vg because each V 2 V is a clopen subspace of Y (see

Problem 113). Apply Fact 1 to conclude that Y is pseudocomplete. Since Z has a

dense pseudocomplete subspace, it is pseudocomplete by Problem 467 so Fact 2 is

proved.

Returning to our solution assume that some open U � Cp(X) is homeomorphic

toRk. ThenU is pseudocomplete by Problem 470 and realcompact by Problem 401.

Apply Problem 428 to see that Cp(X) is also realcompact. Given any f 2 Cp(X),
the map Tf : Cp(X) ! Cp(X) defined by Tf(g) ¼ f þ g for all g 2 Cp(X), is a

homeomorphism (Problem 079). Fix any h 2 U; if g 2 Cp(X) then V ¼ Tg�h(U) is
homeomorphic to U and g ¼ g – h þ h 2 V. Since U is pseudocomplete, so is V and

therefore every g 2 Cp(X) has a pseudocomplete open neighbourhood in Cp(X).
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Finally, apply Fact 2 to conclude that Cp(X) is pseudocomplete. Since Cp(X) is
realcompact and pseudocomplete, the space X is discrete by Problem 486.

S.489. Given an arbitrary space X, suppose that, for some cardinal k, there exists a
continuous onto map ’ :Rk! Cp(X) such that ’(afþ bg)¼ a’ ( f )þ b’(g) for all
f, g 2 Rk and a, b 2 R (such maps are called linear). Prove that X is discrete.

Solution. To avoid going into a general theory, let us define a linear space as a

subspace L of some RT such that f, g 2 L implies af þ bg 2 L for any a, b 2 R.
The set T will be always clear from the context; we will also consider L to be a

topological space with the topology inherited from RT. Elements of a linear space

will be often called vectors. Observe that any linear space contains the function 0

which is identically zero on T. Given a linear space L and vectors f1, . . . , fn 2 L, call
a vector f 2 L a linear combination of the vectors f1, . . . , fn if there exist a1, . . . ,
an 2 R such that f ¼ a1 f1 þ � � � þ an fn.

Call a set A � L linearly independent if, for any n 2 N, any distinct vectors

f1, . . . , fn 2 A and any a1, . . . , an 2 R, if a1 f1 þ � � � þ an fn ¼ 0 then ai ¼ 0 for all

i b n. A subspace L0 � L is called a linear subspace of L if af þ bg 2 L0 for any f,
g 2 L0 and a, b 2 R. Given an arbitrary set P in a linear space L, let Ph i be the set of
all linear combinations of elements of P. The set Ph i is called the linear hull of P; it
is easy to see that the linear hull of any set is a linear subspace.

For any linear space L, call a set B � L a Hamel basis of L if B is a linearly

independent set and hBi ¼ L. A function p : L !R is called a linear functional if
p(afþ bg)¼ ap( f )þ bp(g) for any f, g 2 L and a, b 2R. We denote by L� the set of
all continuous linear functionals on L with the topology and arithmetic operations

inherited from Cp(L). It is evident that L
� is also a linear space. For any linear spaces

L andM, a map u : L!M is called linear if u(afþ bg)¼ au( f )þ bu(g) for any f, g
2 L and a, b 2 R.
Fact 1. If L is a linear space then, for any linearly independent set A� L, there exists
a Hamel basis B of the space L such that A � B.

Proof. Since linear independence of a set is defined in terms of finite subsets of this

set, the union of any increasing chain of linearly independent sets is a linearly

independent set. This makes it possible to apply Zorn’s lemma to find a maximal

linearly independent set B such that A � B. Let us establish that hBi ¼ L.

To obtain contradiction suppose not and fix any vector f 2 L \ hBi. We claim that

the set B [ {f} is linearly independent. Indeed, take any distinct vectors f1, . . . , fn 2
L [ {f} and suppose that we have a1 f1 þ � � � þ an fn¼ 0 for some a1, . . . , an 2 R. If
{f1, . . . , fn}� B then ai¼ 0 for ib n because B is independent. If f 2 {f1, . . . , fn} we
can assume, without loss of generality, that f ¼ fn. If an ¼ 0 then a1 f1 þ � þ anfn ¼
a1 f1 þ � � � þ an�1 fn�1 ¼ 0 so a1, . . . , an�1 ¼ 0 because B is linearly independent

so again ai ¼ 0 for all i b n. Finally, if an 6¼ 0 then the equality f ¼
fn ¼ ð�a1

an
Þ f1 þ � � � þ ð�an�1

an
Þfn�1 shows that f 2 hBi which is again a contra-

diction. We proved that B [ {f} is linearly independent; since this contradicts
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maximality of B, we have L \ hBi ¼ ;, i.e., L ¼ hBi so B is a Hamel basis of L and

Fact 1 is proved.

Fact 2. Assume that L is a linear space and B is a Hamel basis in L. Fix any map

x : B ! R and let RðL;BÞ ¼ SfRn � Bn : n 2 Ng: If (a, f ) 2 R(L, B) where

a ¼ (a1, . . . , an) and f ¼ ( f1, . . . , fn), let s(a, f ) ¼ a1 f1 þ � � � þ an fn and X(a, f )
¼ a1x( f1) þ � � � þ anx( fn). Then s(a, f ) ¼ 0 implies X(a, f ) ¼ 0 for any (a, f ) 2
R(L, B).

Proof. We use induction on n. If n ¼ 1 then a1 f1 ¼ 0 for some f1 2 B so a1 ¼ 0

because B is linearly independent. Therefore X(a, f ) ¼ 0 � x( f1) ¼ 0. Now assume

that we proved our fact for all k b n and consider a ¼ (a1, . . . , anþ1) 2 Rnþ1 and
f ¼ ( f1, . . . , fnþ1) 2 Bnþ1 such that s(a, f ) ¼ a1 f1 þ � � � þ anþ1 fnþ1 ¼ 0. If the

functions f1, . . . , fnþ1 are distinct then a1 ¼ � � � ¼ anþ1 ¼ 0 by linear independence

of B so X(a, f ) ¼ 0. If fi ¼ fj for some i < j then 0 ¼ a1 f1 þ � � � þ
an fn ¼ a1 f1 þ � � � þ ai þ aj

� �
fi þ � � � þ aj�1fj�1 þ ajþ1fjþ1 þ � � � þ an fn so we can

apply the induction hypothesis to the (n � 1)-tuples b¼ða1; . . . ;ðaiþajÞ; . . . ;
aj�1;ajþ1; . . . ;anÞ and g¼ðf1; . . . ; fj�1; fjþ1; . . . ; fnÞ to conclude that X(a, f ) ¼
a1x( f1) þ ��� þanx( fn) ¼ a1x( f1) þ � þ(ai þaj)x( fi) þ ��� þ aj�1x( fj�1) þ
ajþ1x( fjþ1) þ ��� þ anx( fn) ¼ X(b, g) ¼ 0 so Fact 2 is proved.

Fact 3. Let L be a linear space. If B is a Hamel basis in L and x : B! R then there is

a unique linear functional X : L!R such that XjB ¼ x.

Proof. Given any g 2 L there exist f1, . . . , fn 2 B and a1, . . . , an 2 R such that g ¼
a1 f1 þ � � � þ an fn; let X(g) ¼ a1x( f1) þ � � � þanx( fn). Of course, we must prove

consistency of this definition, i.e., that we have the equality b1x(h1)þ � � � bkx(hk)¼
a1x( f1)þ � � � þ anx( fn) if g¼ b1h1þ � � � þ bkhk for some h1, . . . , hk 2 B and b1, . . . ,
bk 2 R. To do this, note that a1 f1þ � � �þan fnþ(�b1)h1þ � � � þ(�bk)hk ¼ 0, so we

have a1x( f1)þ � � � þanx( fn)�b1x(h1)� � � � �bkx(hk) ¼ 0 by Fact 2 applied to the

(n þ k)-tuples (a1, . . . , an,�b1, . . . , �bk) and ( f1, . . . , fn, g1, . . . , Gk). Therefore

a1x( f1) þ � � � þ anx( fn) ¼ b1x(h1) þ � � � þ bkx(hk), i.e., X is well defined. It is

immediate from the definition that X is a linear functional and XjB ¼ x.

To see the uniqueness, suppose that C : L!R is any linear functional such that

CjB¼ x. The linearity ofC implies that if g 2 L and g¼ a1 f1þ � � � þan fn for some

f1, . . . , fn 2 B and a1, . . . , an 2 R then C(g) ¼ a1x( f1) þ � � � þ anx( fn) ¼ X(g) so
C(g) ¼ X(g) for any g 2 L, i.e., C ¼ X and Fact 3 is proved.

Fact 4. Suppose that L andM are linear spaces and u : L!M is a continuous linear

onto map. Then the dual map u� : Cp(M) ! Cp(L) restricted to M� is a linear

embedding of M� in L�; in particular, u�(M�) is a linear subspace of L�.

Proof. It is evident that u� is a linear map and it follows from Problem 163 that u� is
an embedding. Given any p 2 M�, we have

u�ðpÞðaf þ bgÞ ¼ pðauðf Þ þ buðgÞÞ ¼ apðuðf Þ þ bpðuðgÞÞ ¼ au�ð f Þ þ bu�ðgÞ

2 Solutions of Problems 001–500 415



for any f, g 2 L and a, b 2 R which proves that u�(p) is a linear functional. The

fact that u�(M�) is a linear subspace of L� is an immediate consequence of linearity

of u� so Fact 4 is proved.

Given a space Z and z 2 Z, let ez( f ) ¼ f(z) for any f 2 Cp(Z). Then ez is a

continuous linear functional on Cp(Z) for any z 2 Z (Problem 196) and it follows

immediately from Problems 196 and 197 that (Cp(Z))
� ¼ Lp(Z) ¼ {l1ez1 þ � � � þ

lnezn : n 2 N, z1, . . . , zn 2 Z and li 2 R, for all i ¼ 1, . . . , n}. Observe also that the

space E(Z) ¼ {ez : z 2 Z} � Cp(Cp(Z)) is homeomorphic to Z (Problem 167).

Fact 5. For any space Z, the set E(Z) is a Hamel basis in Lp(Z).

Proof. It is immediate from the definition of Lp(Z) that hE(Z)i ¼ Lp(Z). To prove

that E(Z) is linearly independent, take any distinct z1, . . . , zn 2 Z such that w ¼
l1ez1 þ � � � þ lnezn ¼ 0 for some l1, . . . , ln 2 R. For each i b n fix a function

fi 2 C(Z) such that fi(zi) ¼ 1 and fi(zj) ¼ 0 for all i 6¼ j (034). Then 0 ¼ 0( fi) ¼
w( fi) ¼ li for each i b n so E(Z) is linearly independent. Fact 5 is proved.

Fact 6. If Z is any space and f : E(Z)!R is a continuous function then there exists a

unique continuous linear functional f̂ : LpðZÞ ! R such that f̂ jEðZÞ ¼ f :

Proof. Since E(Z) is a Hamel basis of Lp(Z) (Fact 5), there exists a unique linear

functional f̂ : LpðZÞ ! R such that f̂ jE Zð Þ ¼ f (Fact 3). Let us prove that f̂ is

continuous. It follows from linearity of f̂ that

f̂ ðwÞ ¼ f̂ l1ez1 þ � � � lneznð Þ ¼ l1f ðez1Þ þ � � � lnf ðeznÞ
for eachw ¼ l1ez1 þ � � � lnezn 2 Lp Zð Þ. The function e :Z!E(Z) defined by e(z)¼ ez
for all z 2 Z, is a homeomorphism (Problem 167) so the function g ¼ f 	 e is

continuous on Z and hence the map ig : Cp(Cp(Z))! R defined by ig(u) ¼ u(g) for
all u 2 Cp(Cp(X)), is continuous (Problem 166). Finally, observe that

igðwÞ ¼ wðgÞ ¼ wðf o eÞ ¼ l1f ðeðz1Þ þ � � � þ ln f ðeðznÞÞ
¼ l1f ðez1Þ þ � � � þ ln f ðeznÞ ¼ f̂ ðwÞ

for each w ¼ l1ez1 þ � � � þ lnezn 2 LpðXÞ. Thus the functional f̂ is continuous

because it coincides with the restriction of a continuous function ig to Lp(Z). Fact 6
is proved.

Returning to our solution observe that Rk coincides with Cp(D(k)); denote the

discrete space D(k) by D to simplify notation. We have a continuous linear onto

map ’ : Cp(D)! Cp(X) so ’� embeds Lp(X) in Lp(D) as a linear subspace (Fact 4).
The set ’�(E(X)) is linearly independent because ’� is a linear bijection between

Lp(X) and ’�(Lp(X)). Therefore there exists a Hamel basis H in the linear space

Lp(D) such that ’
�(E(X))�H (see Facts 1 and 5). Given any map p : ’�(E(X))! R,

take a map q : H! R defined by q( f )¼ p( f ) for any f 2 ’�(E(X)) and q(h) ¼ 0 for

any h 2 H \’�(E(X)). Then q : H! R so there is a linear functional u : Lp(D)! R
such that ujH ¼ q (Fact 3). The map v ¼ ujE(D) is continuous because E(D) is a
discrete space (recall that E(D) is homeomorphic toD!). Therefore there is a unique
continuous functional û : LpðDÞ ! R such that ûjEðDÞ ¼ u: But u is also a linear
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functional on Lp(D) with ujE(D) ¼ u so the functional u ¼ û is continuous. As a

consequence, the map p ¼ uj’�(E(X)) is continuous.
We proved that any map p : ’�(E(X))! R is continuous and therefore ’�(E(X))

is a discrete space. Since X is homeomorphic to ’�(E(X)), the space X is also

discrete so our solution is complete.

S.490. Prove that any open image of a projectively complete space is projectively
complete.

Solution. Suppose that X is projectively complete and f : X ! Y is an open

continuous onto map. If M is second countable and g : Y ! M is a continuous

open onto map then g 	 f is an open continuous map of X onto M. Since X is

projectively complete, the space M has to be Čech-complete so Y is projectively

complete.

S.491. Prove that any product of Čech-complete spaces is projectively complete.

Solution. Call a space X strongly pseudocomplete if it has a pseudocomplete

sequence of bases.

Fact 1. Let X be a Čech-complete space. Suppose that f : X ! Y is an open

continuous map of X onto a paracompact space Y. Then f is inductively perfect,
i.e., there exists a closed subset F � X such that f( f ) ¼ Y and f jF : F ! Y is a

perfect map.

Proof. There exists a continuous map g : b X ! b Y such that gjX ¼ f (Problem
257). It is clear that g(bX) ¼ bY so the map g is perfect (Problem 122). As a

consequence, the map h ¼ gjg�1(Y) : g�1(Y)! Y is also perfect (Fact 2 of S.261).

Let X0 ¼ g�1ðYÞ; we are going to prove that

(1) For any W 2 tðX0Þ such that f(W \ X) ¼ Y there is W02t(X0) such that

W
0 � W and f ðW0 \WÞ ¼ Y (the bar denotes the closure in X0).
To prove (1), for any point y 2 Y, choose a set V(y) 2 t(X0) such that V(y) \

f�1(y) 6¼ ; and VðyÞ � W. The family U ¼ ff ðVðyÞ \ XÞ : y 2 Yg is an open cover

of Y so there is an open locally finite refinement fUs : s 2 Sg of the family U. For
any s 2 S choose ys 2 Y such that Us � f(V(ys)\X) and consider the family

V ¼ fV(ysÞ \ h�1ðUs) : s 2 Sg. It is locally finite in X0 because the family

{h�1(Us) : s 2 S} is locally finite and V(ys) \ h�1(Us) � h�1(Us) for each s 2 S.
Every locally finite family is closure-preserving (Fact 2 of S.221), so we haveSV ¼ SfVðysÞ \ h�1ðUsÞ : s 2 Sg � W because VðysÞ � W for every s 2 S. This
shows thatW0 � W if W0 ¼ SV. Besides, for any y 2 Y there is s 2 S such that y 2
Us; hence y 2 f(V \ X) where V ¼ h�1 Usð Þ \ V ysð Þ 2 V: As a consequence

y 2 f ðV \ XÞ � f ðW 0 \ XÞ so (1) is proved.

Since X is Čech-complete, there exists a family fOn : n 2 og � tðX0Þ such that

X ¼ TfOn : n 2 og (Problem 259). Apply property (1) to construct a sequence

fGn : n 2 og � tðX0Þ such that f(Gn \ X) ¼ Y and Gn�1 � Gn \
Tn

i¼1 Oi

� �
for

each n 2 o. The set F ¼ TðGn : n 2 og ¼ TfGn : n 2 oÞ is closed in X0 so hjF :
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F! h( f ) is a perfect map (it is an easy exercise that the restriction of a perfect map

to a closed subset is a perfect map). Since Gn � On for each n 2 o, the set F is

contained in X so hjF ¼ gjF ¼ fjF. Given y 2 Y, we have gðGnÞ � f ðGn \ XÞ ¼ Y
and hence Pn ¼ h�1ðyÞ \ Gn 6¼ ; for any n 2 o. Since the set h�1(y) ¼ g�1(y) is
compact, the decreasing sequence {Pn : n 2 o} consists of compact sets so

P ¼ TfPn : n 2 og 6¼ ;. It is clear that, for any x 2 P, we have x 2 F and f(x) ¼
h(x) ¼ y which gives f( f ) ¼ Y showing that Fact 1 is proved.

Fact 2. Let Y and Z be any spaces. Suppose that ’ : Y! Z is an onto map and, for

every y 2 Y there is a local base By of Y at y such that Cy ¼ f’ðUÞ : U 2 Byg is a
local base of Z at ’(y). Then ’ is an open continuous map.

Proof.Given any y 2 Y and anyW 2 t(’(y), Z) there is V 2 By such that ’(y) 2 ’(V)
� W because Cy is a local base at ’(y). This proves continuity of ’ at every y 2 Y.
Now, if U 2 t(Y) and z 2 ’(U) then take any y 2 U such that ’(y)¼ z. There is a set
V 2 By such that V� U; it is clear that ’(V) 2 t(z,Z) and ’(V)� ’(U), i.e., each z 2
’(U) has a neighbourhood contained in ’(U). Thus ’(U) is open in Z and therefore

the map ’ is open. Fact 2 is proved.

To avoid confusion in what follows recall that we identify any ordinal with the

set of its predecessors; in particular, 0¼ ;, 1 ¼ {0}, 2¼ {0, 1} and, in general, n¼
{0,. . ., n – 1} for any n 2 N. It is convenient to consider that o0¼ 1 ¼ {;}; letO¼
{on : n 2 o} and On ¼

Sfok : kbng: Given any s 2 O, let l(s) ¼ n if s 2 on. In

other words,O is the set of all finite sequences of elements ofo including the empty

sequence; clearly, l(s) is the length of the sequence s. Given a separable metrizable

space X, call a family U ¼ fUs : s 2 Og � tðXÞ an A-system in X if

(A1) U; ¼ X and Us ¼
S
{Ut : t 2 onþ1 and tjn ¼ s} for any n 2 o and s 2 on.

(A2) If s 2 O and l(s) ¼ n 2 N then diam(Us) <
1
n.

(A3) For any f 2 oo, we have
T
{Ufjn : n 2 o}6¼ ;.

Fact 3. A separable metrizable space X is Čech-complete if and only if there exists

an A-system in X.

Proof. Assume that X is Čech-complete and fix a complete metric d in X (see 269).

It follows from the Lindel€of property of X that we can choose an open cover {Wn : n
2 o} of the space X such that diam(Wn)< 1 for all n 2 o. Letting U; ¼ X and Us ¼
Ws(0) for each s 2 o1 we obtain a family {Us : s 2 O1} � t(X). Suppose that n 2 N
and we have a family fUs : s 2 Ong � tðXÞ with the following properties:

(B1) U; ¼ X.
(B2) If k < n and s 2 ok then Ut � Us for any t 2 okþ1 with tjk ¼ s.
(B3) If k < n and s 2 ok then Us ¼ {Ut : t 2 okþ1 and tjk ¼ s}.
(B4) If s 2 On and l(s) ¼ k r 1 then diam(Us) < 1

k.

Take any s 2 on and find an open cover {Ws
k : k 2 o} of the set Us such that

Ws
k � Us and diam(Ws

k ) <
1

nþ1 for each k 2 o. For any t 2 onþ1, let Ut ¼ Ws
k where

s ¼ tjn and k ¼ t(n). It is immediate that we also have the properties (B1)–(B4)
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for the family {Us : s 2 Onþ1}. Therefore, we can continue this inductive construc-

tion which provides us with a family U ¼ fUs : s 2 Og with the properties

(B1)–(B4) for all n 2 N. Observe that (B1) and (B3) imply (A1), and (A2) follows

from (B4). Let us show that U also has (A3). Indeed, if f : o ! o then

Uf jn � Uf jðn�1Þ and diamðUf jnÞ ¼ diam Uf jn
� �

<1
n for all n 2 N. This shows thatT

Uf jn : n 2 o
� � ¼ T Uf jn : n 2 o

� � 6¼ ; (Problem 236) and therefore U is an A-

system in X so necessity is proved.

Now assume that a family U ¼ fUs : s 2 Og is an A-system in X. For any

function f 2 oo, observe that the set Pf ¼
T
{Ufjn : n 2 o} consists of precisely

one point because Pf 6¼ ; by (A3) and the diameters of the sets Ufjn tend to zero. Let
’( f )¼ xwhere x 2 X is the point for which Pf¼ {x}. We claim that ’ :oo! X is a

continuous open onto map.

Fix m 2 o and s 2 om and letWs¼ {f 2 oo : fjm¼ s}. It is straightforward from
the definition of ’ that ’(Ws) � Us. Take any x 2 Us and let sm ¼ s. Assume that

m b n 2 o and we have constructed functions {sk : m b k b n} with the following

properties:

(i) sk 2 ok for each k 2 {m, . . . , n}.
(ii) x 2 Usk for each k 2 {m, . . . , n}.
(iii) skþ1jk ¼ sk for all k 2 {m, . . . , n � 1}.

Since x 2 Usn ¼
SfUt : t 2 onþ1 and tjn ¼ sng, there is snþ1 2 onþ1 such that

snþ1jn ¼ sn and x 2 Usnþ1 . It is evident that (i)–(iii) hold for the sequence {sk : k b
n þ 1} so our inductive construction can be continued giving us a sequence {sn :
mb n< o} with the properties (i)–(iii). It follows from (iii) that there exists f 2 oo

such that f jn ¼ sn for each n r m. Condition (ii) implies that x 2 TfUf jn : n 2 og
and therefore ’( f ) ¼ x so ’(Ws) ¼ Us. Since s 2 O has been chosen arbitrarily, we

proved that

(�) ’(Ws) ¼ Us for any s 2 O.
If we take s¼ ; then we obtain ’(oo)¼ X, i.e., the map ’ is onto. For any point x

2 X take any f 2 oo such that ’( f )¼ x.Observe that the family Cx ¼ fUf jn : n 2 og
is a local base of X at x. Indeed, all elements of Cx are open in X and contain x. Given
any e > 0, choose n 2 N with 1

n< e and note that, for any y 2 Ufjn, we have d(x, y) b
diam(Uf jn)< 1

n so x 2 Ufjn � B(x, e) which proves that Cx is a local base at x. Besides,
the family Bf ¼ {{g 2 oo : gjn ¼ f jn} : n 2 o} is a local base of oo at f and
f’ðUÞ : U 2 Bf g ¼ Cx by (�), so we can apply Fact 2 to conclude that the map ’ is

continuous and open.

Since the space oo is Čech-complete (see Problems 204 and 207) and X is

paracompact, we can apply Fact 1 to conclude that there is a closed F � oo such

that ’( f ) ¼ X and ’jF is a perfect map. The set F is Čech-complete (Problem 260)

and a perfect image of a Čech-complete space is Čech-complete (Problem 261) so

X is Čech-complete and Fact 3 is proved.

Fact 4. Any strongly pseudocomplete space is projectively complete.
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Proof. Let Z be a strongly pseudocomplete space; fix a pseudocomplete sequence

fBn : n 2 Ng of bases in Z. Take any open map ’ : Z! M onto a separable metric

space (M, d). Let V; ¼ Z, U; ¼ M and suppose that n 2 o and we constructed sets

Us and Vs for all s 2 On such that the following properties are fulfilled:

(C1) V; ¼ X, U; ¼ M and ’(Vs) ¼ Us for all s 2 On.

(C2) Vs 2 Bk if l(s) ¼ k 2 {1, . . . , n}.
(C3) If k < n and s 2 ok then Vt � Vs for any t 2 okþ1 with tjk ¼ s.
(C4) If k < n and s 2 ok then Us ¼

S
{Ut : t 2 okþ1 and tjk ¼ s}.

(C5) If s 2 Ok and k 2 {1, . . . , n} then diam(Us) <
1
k.

Take any s 2 on; for any point z 2 Us ¼ ’(Vs) choose yz 2 Vs with ’(yz) ¼ z.
Since the mapping ’ is open and continuous, we can find Wz 2 Bnþ1 such that

yz 2 Wz � Wz � Vs; diamð’ðWzÞÞ< 1
nþ1 and ’(Wz) � Us. If Gz ¼ ’(Wz) for each

z 2 Us then {Gz : z 2 Us} is an open cover of the second countable (and hence

Lindel€of) space Us. We can choose a subfamilyWs ¼ fWs
n : n 2 og of the family

{Wz : z 2 Us} such that Gs ¼ fGs
n ¼ ’ðWs

nÞ : n 2 og covers Us. After we have

familiesWs and Gs for all s 2 on, let Ut ¼ W
tjn
tðnÞ for all t 2 onþ1.

Its is straightforward to verify that (C1)–(C5) are fulfilled for the families {Us

: s 2 Onþ1} and {Vs : s 2 Onþ1} so our inductive construction can go on giving

us families {Us : s 2 O} and {Vs : s 2 O} with (C1)–(C5) for all n 2 o. Observe
that (A1) and (A2) are fulfilled for the family U ¼ fUs : s 2 O by (C1), (C4) and

(C5). To see (A3) also holds, take any f 2 oo. If sn ¼ fjn then clZðVsnþ1Þ � Vsn by

(C3) and Vsn 2 Bn for all n 2 N by (C2). Since the sequence fBn : n 2 Ng is

pseudocomplete, there is y 2 TfVsn : n 2 og; if follows from Uf jn ¼ ’ðVsnÞ for
all n 2 o that ’ðyÞ 2 T Uf jn : n 2 o

� �
so the property (A3) is proved for U. As a

consequence, U is an A-system in M and hence M is Čech-complete by Fact 3.

Fact 4 is proved.

Given any space Z and any bases B and C in Z, let B½C 
 ¼ {U 2 B : there exists

V 2 such that U � V } � B. It is straightforward that B½C 
 is a base in Z.We write

B < C if, for any U 2 B, there is V 2 C such that U � V. This relation is clearly

transitive, i.e., for any basesA;B; C in the space Z, ifA < B and B <C thenA < C.
Another trivial observation is that A½B 
 < B for any bases A and B in the space Z.

Fact 5. Let Z be a strongly pseudocomplete space. Then there exists a pseudocom-

plete sequence {Bn : n 2 o} of bases in Z such that

(P1) Bnþ1 < Bn for each n 2 o;
(P2) for each m 2 o, if we have a family {Ui : i r m} such that Ui 2 Bi and
Uiþ1 � Ui for all i r m then

T
{Ui : i r m} 6¼ ;.

Proof. Let {Cn : n 2 o} be a pseudocomplete sequence of bases of Z. Note first that
if we take any base C0n � Cn for all n 2 o then the sequence {C0n : n 2 o} is also

pseudocomplete. If we let B0 ¼ C0 and Bnþ1 ¼ Cnþ1[Bn] for each n 2o then we get

a pseudocomplete sequence {Bn : n 2 o} of bases in Z such that Bnþ1 < Bn for all
n 2 o so (P1) is proved.
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Suppose that {Ui : i r m} is a family as in (P2). Since Bm < Bm�1, there exists
Um�1 2 Bm�1 such that Um � Um�1. Going “backwards” in this manner, we obtain

sets Um�1,. . ., U1, U0 such that Ui 2 Bi and Uiþ1 � Ui for all i < m. Since we have
the same property for all i r m, we have obtained a sequence {Ui : i 2 o} such that
Ui 2 Bi and Uiþ1 � Ui for all i 2 o. The sequence {Bi : i 2 o} being pseudocom-

plete, we have
T
{Ui : i r m} ¼ T {Ui : i 2 m} 6¼ ; so Fact 5 is proved.

Fact 6. Any product of strongly pseudocomplete spaces is strongly pseudo-

complete.

Proof. Let Xt be a strongly pseudocomplete non-empty space for each t 2 T; fix a

pseudocomplete sequence Btn : n 2 o
� �

of bases in Xt for each t 2 T. Fact 5 shows

that we can assume, without loss of generality, that the sequence Btn : n 2 o
� �

has

the properties (P1) and (P2) for all t 2 T. If Ot 2 t(Xt) for all t 2 T, the set
Q

t2T Ot is

called standard if Ot 6¼ Xt for only finitely many t. The family of all standard sets is

a base in the space X ¼ Q fXt : t 2 Tg (see Problem 101). If O ¼Qt2T Ot is a

standard set then supp(O) ¼ {t 2 T : Ot 6¼ Xt}. Let pt : X ! Xt be the natural

projection for all t 2 T.

Let Bn ¼ O ¼ Qt2T Ot 2 S : Ot 2 Btn for all t 2 suppðOÞ� �
for each n 2o.We

claim that Bn is a base in X for each n 2 o. Indeed, if x 2 U 2 t�(X) then there is

O ¼ Qt2T Ot 2 S with x 2 O � U. Since Btn is a base in Xt for all t 2 supp(O), there

is Vt 2 Btn with x(t) 2 Vt � Ot for each t 2 supp(O). Let Vt ¼ Xt for all t 2 T \ supp
(O); then V ¼QfVt : t 2 Tg 2 Bn and x 2 V� O� U which proves that each Bn is
a base in the space X.

We show next that the sequence fBn : n 2 og is pseudocomplete. Take any

family {Un : n 2 o} such that Un 2 Bn and Unþ1 � Un for all n 2 o. We have

Un ¼
Q

t2T U
n
t where Un

t 2 Btn for all n 2 o and t 2 supp(Un). Fix any s 2 T; we

claim that
T

Un
s : n 2 o

� � 6¼ ;. Indeed, if s =2Sfsupp(UnÞ:n 2 og then Un
s ¼ Xs

for all n 2 o and hence
T

Un
s : n 2 o

� � ¼ Xs 6¼ ;.
Observe that supp(Unþ1) � supp(Un) for all n 2 o. Indeed, Unþ1 � Un implies

that Unþ1
t ¼ ptðUnþ1Þ � ptðUnÞ ¼ Ut

n for all t 2 T. Consequently, if Un
t 6¼ Xt then

Unþ1
t 6¼ Xt, i.e., t 2 supp(Un) implies t 2 supp(Unþ1).
Now assume that s 2 supp(Un) for some n 2 o and let m 2 o be the smallest of

the numbers n 2o such that s 2 supp(Un). Thus,U
n
s ¼ Xs for all n<m and s 2 supp

(Un) for all n r m by our previous remark. Therefore Un
s 2 Bsn for all n r m. Given

any n r m, observe that Unþ1 ¼
Q

Unþ1
t : t 2 T

n o
and therefore Unþ1

s ¼ psðUnþ1Þ
� psðUnÞ ¼ Un

s for all nr m (all closures are denoted by a bar; we hope there is no

confusion as to in which space the closure is taken). By property (P2) for the

sequence Bsn : n 2 o
� �

, we have
T

Un
s : nrm

� � 6¼ ;. However, Un
s ¼ Xs for all

n < m so
T

Un
s : n 2 o

� � ¼ T Un
s : nrm

� � 6¼ ;.
We proved that there is xt 2

T
Un

t : n 2 o
� �

for each t 2 T. Letting x(t) ¼ xt f or
all t 2 T we obtain a point x 2 X such that x 2 T{Un : n 2 o} which shows that the

sequence {Un : n 2 o} of bases in X is pseudocomplete. Fact 6 is proved.

To finish our solution apply Fact 1 of S.465 to see that any Čech-complete space

is strongly pseudocomplete. By Fact 6, any product of Čech-complete spaces is
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strongly pseudocomplete. Finally, it follows from Fact 4 that any product of Čech-

complete spaces is projectively complete.

S.492. Prove that a separable metrizable space is projectively complete if and only
if it is Čech-complete. Give an example of a pseudocomplete space which is not
projectively complete.

Solution. If X is separable metrizable and projectively complete then the identity

map of X onto itself is an open map of X onto a second countable space, so the

image of X under this map, which is X, must be Čech-complete. This proves

necessity.

Sufficiency follows from the fact that any Čech-complete space is projectively

complete (see Problem 491; observe that second countability is not needed here).

Let P ¼ {(x, y) 2 R2 : y > 0} and Q ¼ Q � {0}. The space X ¼ P [ Q with the

topology inherited from R2 is pseudocomplete because P is a Čech-complete dense

subspace of X (Problem 468). Observe that X is not Čech-complete because Q is a

closed subspace of X which is not Čech-complete (Problem 260). Thus X is not

projectively complete because every projectively complete second countable space

must be Čech-complete.

S.493. Give an example of a projectively complete space which is not pseudocom-
plete.

Solution. Recall that a space X is called a P-space if every Gd-subset of X is open

in X. A space is zero-dimensional if it has a base which consists of clopen sets.

Fact 1. Every P-space is projectively complete.

Proof. Let X be a P-space; take any open map f : X! M onto a second countable

space M. Since {y} is a Gd-set in M for any y 2 M, the set f�1(y) is a Gd-set in X so

f�1(y) is open in X. The map f being open, the set {y} is open in M for any y 2 M.
Hence all points of M are isolated, i.e., M is discrete. Since any discrete space is

Čech-complete (Problem 204) the space M is Čech-complete so Fact 1 is proved.

Fact 2. Given any space Z and an infinite cardinal k, let (Z)k be the set Z with the

topology generated by the family of all Gk-subsets of Z. Then (Z)k is a Tychonoff
zero-dimensional space in which every Gk-set is open. The space (Z)k is called k-
modification of the space Z. In particular, the o-modification of any space is a

Tychonoff P-space.

Proof. If GðkÞ is the family of all Gk-subsets of Z then
SGðkÞ ¼ Z and the

intersection of any two elements from G(k) belongs to G(k). Thus G(k) is a base

for the topology of the space Z0 ¼ ðZÞk (Problem 006). For each z 2 Z, the set {z} is
closed in Z and hence in Z0 because every closed subspace of Z is closed in Z0;
Therefore Z0 is a T1-space. Besides, closed Gk-subsets of Z form a base in Z0 by
Fact 2 of S.328. Recalling again that any closed subset of Z is closed in Z0; we

conclude that Z0 has a base which consists of clopen subsets of Z0; i.e., the space

Z0 is zero-dimensional; Fact 1 of S.232 implies that Z0 is Tychonoff. To see
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that any Gk-subset of the space Z
0 is open in Z0; take any family U ¼ fUa : a< kg

� tðZ0Þ. Since G(k) is a base for Z0; for every z 2 TU and every a< k, there exists
Va 2 G(k) such that z 2 Va � Ua. It is easy to see that V ¼ TfVa :
a< kg 2 GðkÞ and z 2 V � TU. Thus every point from TU has a neighbourhood

contained in
TU which shows that

TU is open in Z0 so Fact 2 is proved.

If X is the o-modification of sðo1Þ ¼ fx 2 Ro1 : jx�1ðRnf0gÞj<og, then X is a

P-space by Fact 2. Let Xn ¼ {x 2 X : jx�1(R \ {0})j b n}. It is clear that

X ¼ SfXn : n 2 og; besides, each Xn is closed in X. Indeed, if x 2 s(o1) \ Xn

then take a1, . . . , anþ1 < o1 such that x(ai) 6¼ 0 for all ib nþ1. It is evident that the
set V¼ {y 2 s(o1) : y(ai) 6¼ 0 for all i ¼ 1, . . . , nþ 1} is open in s(o1) and x 2 V�
s(o1) \ Xn. This shows that Xn is closed in s(o1) and hence in X.

We show next that the set Xn is nowhere dense in X for all n 2 o; it suffices to
prove that every Xn has empty interior. Suppose that U 2 t�(X) and U � Xm for

some m 2 o. Take any x 2 U; since Gd-subsets of s(o1) form a base in X, there is a
Gd-set H in the space s(o1) such that x 2 H � U. It is easy to find a Gd-set H

0 in the
space Ro1 such that H0 \ sðo1Þ ¼ H. There exists a countable set A � o1 such that

Gðx;AÞ ¼ fy 2 Ro1 : yjA ¼ xjAg � H0 (see Fact 1 of S.426 applied to the discrete

space D(o1)). Consequently, G(x, A) \ s(o1) � Xm; since the set A is countable,

we can take distinct b1, . . . , bmþ1 2 o1 \ A. Define a point y 2 X by yjA ¼ xjA, y(bi)
¼ 1 for all i b m þ 1 and y(a) ¼ 0 for all a 2 o1 \ (A [ {b1, . . . , bmþ1}). It is
immediate that y 2 (X \Xm) \ G(x, A) which is a contradiction. This shows that

each Xm is nowhere dense in X and therefore X is of first category in itself. As a

consequence, X is a projectively complete space (Fact 1) that is not pseudocomplete

because each pseudocomplete space has the Baire property by Problem 464.

S.494. Suppose that Cp(X) is projectively complete. Prove that any open subspace
of Cp(X) is also projectively complete.

Solution. If X is finite then Cp(X) ¼ RX is Čech-complete as well as any of its open

subspaces. As any Čech-complete space is projectively complete (Problem 491),

there is nothing more to prove in this case. In what follows we assume that the space

X is infinite. The expression Y ’ Z says that the spaces Y and Z are homeomorphic.

Given a space Z, distinct points z1, . . . , zn 2 Z andO1, . . . ,On 2 t�(R), let [z1, . . . ,
zn;O1, . . . , On]Z¼ {f 2 Cp(Z) : f(zi) 2Oi for all ib n}. The family CZ¼ {[z1, . . . , zn;
O1, . . . ,On]Z : n 2N, z1, . . . , zn 2 Z andO1, . . . ,On are non-trivial rational intervals}

is a base in the space Cp(Z) (Problem 056).

Fact 1.Given an arbitrary space Z, for any distinct {z1, . . . , zm}� Z and any rational

non-empty intervals O1, . . . , Om, the space W ¼ [z1, . . . , zm; O1, . . . , Om]Z is

homeomorphic to the space IZK � O1 � � � � � Om, where K ¼ {z1, . . . , zm} and

IZK ¼ ff 2 CpðZ) : f jK � 0g.
Proof. Fix Ui 2 t(zi, Z), i ¼ 1, . . . , m such that the family {U1, . . . , Um} is disjoint.

There exists fi 2 C(Z) such that fi(zi) ¼ 1 and fij(X \Ui) � 0 for all i b m. Given an

arbitrary function f 2 W, let r( f ) ¼ f (z1) f1 þ� � � þ f (zm) · fm and ’( f ) ¼ ( f � r( f ),
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f jK). It is immediate that r( f )(zi) ¼ f (zi) for all i b m so f � rðf Þ 2 IZK . It follows
from f(zi) 2 Oi for all ib m that f jK 2 O¼ O1�� � � �Om so we have ’ð f Þ 2 IZK � O
for each f 2 W, i.e., ’ : W ! IZK � O. Given any i b m, the map ezi : Cp(Z) ! R
defined by ezið f Þ ¼ f ðziÞ, is continuous (Problem 166). Therefore the map f ↦
f(zi) · fi is continuous for any i b m (Problem 116). This shows that the map r is
continuous and hence so is the map f ↦ f – r( f ); an immediate consequence is that

the map ’ is continuous.

Now, if g 2 IZK and h 2O then letting f ¼ dðg; hÞ ¼ gþPm
i¼1 hðziÞ � fi we obtain

f 2 W such that ’( f ) ¼ (g, h), i.e., the map ’ is onto. Now, suppose that f ; f 0 2 W
and f 6¼ f 0: If f jK 6¼ f 0jK then ’ð f Þ 6¼ ’ð f 0Þ because the second coordinates of

’( f ) and ’ð f 0Þ are distinct. If f jK ¼ f 0jK then rð f Þ ¼ rð f 0Þ and therefore

f � rð f Þ 6¼ f 0 � rð f 0Þ so again ’ð f Þ 6¼ ’ð f 0Þ. Thus the map ’ is a bijection and

d : IZK � O! W is the inverse of ’. To see that d is a continuous map, observe that

it maps IZK � O into a product, namely RZ , so it suffices to verify that, for any z 2 Z,
the map dz ¼ p{z} 	 d is continuous. Note first that the map (g, h)! g! g(z) is
continuous being a composition of two natural projections. Since fi(z) is a constant,
the map h! h(zi) · fi(z) is a natural projectionmultiplied by a constant; hence the map

d is continuous being a composition of arithmetical operations with natural projec-

tions. This shows that ’ : W ! IZK � O is a homeomorphism so Fact 1 is proved.

Take any W ¼ [x1, . . . , xm; O1, . . . , Om]X 2 X. We know that the space Cp(X)
is homeomorphic to IXK � RK where K ¼ {x1, . . . , xm} � X (Fact 1 of S.409). Since

Oi ’ R for each i b m, we can apply Fact 1 to conclude that W ’ IXK � O1

� � � � � On ’ IXK � RK ’ CpðXÞ. This proves that
(�) Every element of X is homeomorphic to Cp(X).
Now take any openU� Cp(X); suppose thatM is second countable and ’ :U!M

is an open continuous onto map. For any y 2M, choose any f 2 U with ’( f )¼ y and
V 2 CX such that f 2 V� U. The map ’jV is open; since V is homeomorphic to Cp(X)
by (�), it is projectively complete soWy ¼ ’(V) is an open Čech-complete subspace

of M with y 2 Wy.

Consider the space L ¼ {Wy : y 2 M}. We will identify each Wy with the

respective clopen subset of L. Since each Wy is Čech-complete, the space L is also

Čech-complete (Problem 262). Any Wy is also a subset of M so if x 2 Wy � L, we
denote by x0 is twin in M. This makes it possible to define a map x : L ! M by

xðxÞ ¼ x0 for each x 2 L. Given any y 2 M, note that y 2 Wy so if we consider that

Wy� L then the point y has a twin z inWy considered as a subspace of L. Of course,
we have x(z) ¼ y so the map x is onto.

To see that x is continuous, take any x 2 L and y 2 Y with x 2Wy � L. It is clear
that xjWy :Wy! x(Wy) is a homeomorphism and hence the map xjWy :Wy! M is

continuous. Since Wy is open in L, the map x is continuous by Fact 1 of S.472.

To show that x is open, take any open W � L. Then W \ Wy is open in Wy for

every y 2 M. Since xjWy is a homeomorphism of Wy onto an open subset of M, the

set x(W \ Wy) is open inM and therefore xðWÞ ¼ SfxðW \Wy) : y 2 Mg is open
in X so the map x is open.
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Finally, apply Fact 1 of S.491 to conclude that there is a closed set F � L such

that x( f )¼M and xjF : F!M is a perfect map. Since the space F is Čech-complete

by Problem 260, the space M is also Čech-complete by Problem 261. This shows

that U is projectively complete.

S.495. Suppose that Cp(X) is projectively complete. Prove that any countable closed
A � X is discrete and C-embedded in X.

Solution. Recall that, since the set A is closed in the space X, the restriction map

pA : Cp(X)! Cp(AjX) ¼ pA(Cp(X)) � Cp(A) is open by Problem 152. As Cp(X) is
projectively complete, the space Cp(AjX) has to be Čech-complete. The set

Cp(AjX) is dense in Cp(A) and hence in RA (Problem 152). Since Cp(A) has a

dense Čechcomplete subspace, the space A is discrete (Problem 265). Assume

that Cp(AjX) 6¼ RA; note that Cp(AjX) is an algebra and, in particular we have,

f – g 2 Cp(AjX) for any f, g 2 Cp(AjX). Take any h 2 RA \Cp(AjX); the map Th :

RA ! RA defined by Th(g) ¼ h þ g, is a homeomorphism (Problem 079) and

Th(Cp(AjX)) \ Cp(AjX) ¼ ;. Indeed, if g 2 Cp(AjX) and f ¼ hþg 2 Cp(AjX)
then h ¼ f – g 2 Cp(AjX) which is a contradiction. Therefore RA has two

disjoint dense Čech-complete subspaces Cp(AjX) and Th(Cp(AjX)) which contra-

dicts Problem 264. Thus Cp(AjX) ¼ RA and this means that A is discrete and

C-embedded in X.

S.496. Prove that Cp(bo) is not projectively complete.

Solution. To avoid going into a general theory, let us define a linear space as a

subspace L of some RT such that f, g 2 L implies af þ bg 2 L for any a, b 2 R. The
set T will be always clear from the context; we will also consider L to be a

topological space with the topology inherited from RT . For example, any Cp(X) is
a linear space with T ¼ X. Observe that any linear space L � RT contains the

function 0L which is identically zero on T. For any linear spaces L andM, a map u :
L!M is called linear if u(afþ bg)¼ au( f )þ bu(g) for any f, g 2 L and a, b 2R. It
is easy to see that u(0L) ¼ 0M for any linear map u : L! M.

Fact 1. If L is a linear space and z 2 L then the map QL
z : L! L defined by

QL
z ðxÞ ¼ xþ z for all x 2 L, is a homeomorphism for any z 2 L.

Proof. Indeed, if L � RT then let Pz(y) ¼ y þ z for any y 2 RT . The map Pz :

RT ! RT is a homeomorphism (Problem 079). We have Pz(L) ¼ L because L is a

linear space; besides, PzjL ¼ QL
z so Fact 1 is proved.

Fact 2. Given linear spaces L and M, a linear map u : L! M is continuous if and

only if it is continuous at 0L.

Proof. It is clear that we only must prove sufficiency so assume that u is continuous
at 0L and take any x 2 L. Let y ¼ u(x); for anyW 2 t(y, M), the setW0 ¼ QM

�yðWÞ is
an open neighbourhood of 0M by Fact 1. Since u is continuous at 0L, there is

V 0 2 tð0L; LÞ such that uðV0Þ � W0. Applying Fact 1 again, we convince ourselves

that V ¼ QL
x ðV0Þ is an open neighbourhood of x.
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For any z 2 V there is z0 2 V0 such that z0 þ x ¼ z. We have the equalities

uðzÞ ¼ uðxþ z0Þ ¼ uðxÞ þ uðz0Þ ¼ yþ uðz0Þ ; in addition, t0 ¼ uðz0Þ 2 W0 because
uðV0Þ � W0. This shows that there exists t 2 W such that tþ ð�yÞ ¼ t0. Therefore
uðzÞ ¼ yþ uðz0Þ ¼ yþ t0 ¼ yþ ðtþ ð�yÞ ¼ t 2 W. The point z 2 V has been cho-

sen arbitrarily so u(V) �W and hence we established continuity of u at an arbitrary
point x 2 L. Fact 2 is proved.

Fact 3. Given linear spaces L and M, a continuous linear onto map u : L ! M is

open if and only if it is open at 0L, i.e., for any W 2 t(0L, L) there is V 2 t(0M, M)

such that u(W) � V.

Proof. We must only prove that u(G) is an open set for any G 2 t(L). It suffices to
show that, for every z 2 u(G), there is Vz 2 t(z, M) such that Vz � u(G).

Take any y 2 G with u(y) ¼ z; the map QL
�y : L! L is a homeomorphism by

Fact 1 soW ¼ QL
�yðGÞ is an open neighbourhood of 0L. Since u is open at 0L, there

is V 2 t(0M,M) such that u(W)� V. The set Vz ¼ QM
z ðVÞ is an open neighbourhood

of z by Fact 1 so it suffices to show that Vz � u(G).
Take any z0 2 Vz; then z

0 ¼ zþ t for some t 2 V. Since V, u(W), there exists x0 2W
with u(x0) ¼ t0. In addition, x0 ¼ g – y for some g 2 G so we have z0 ¼ zþ t ¼
zþ uðx0Þ ¼ zþ uðg� yÞ ¼ zþ uðgÞ � uðyÞ ¼ zþ uðgÞ � z ¼ uðgÞ 2 uðGÞ, which
proves that Vz, u(G) and hence u(G) is open in M. Fact 3 is proved.

Let M ¼ C�(D(o)) ¼ {f 2 Ro : f is bounded} � Ro; clearly, M is a linear space

which is dense in the space Ro. We have M ¼ S{[�n, n]o : n 2 N}; observe that
Mn¼ [�n, n]o is nowhere dense inM for each n 2N. Indeed, ifU 2 t�ðMÞ andU�
[�n, n]o for some n 2 N then there is V 2 tðRoÞ with V \ M ¼ U; therefore

V ¼ U � Mn (the closure is taken in Ro) becauseMn is compact. It turns out that V
�Mn and hence each point of V is a point of local compactness of Ro. Take any f 2
V ; since there are homeomorphisms of Ro onto itself which send f onto any given

element of Ro (Problem 079), the space Ro is locally compact which contradicts

Problem 186. This proves that eachMn is nowhere dense soM is of first category in

itself and, in particular, M is not Čech-complete.

It is easy to find a disjoint family {An : n 2 o} � exp(o) such that jAnj ¼ nþ 1

for all n 2 o and o ¼ SfAn : n 2 og. Given any function f 2 CpðboÞ, let

’ð f ÞðnÞ ¼Pf 1
nþ1 � f ðkÞ : k 2 Ang for each n 2 o. In other words, ’( f ) (n) is the

arithmetic mean of the values of f on the set An. It is clear that ’( f ) 2 Ro for any

f 2 CpðboÞ ; thus ’ : CpðboÞ ! Ro. In fact, ’maps Cp(bo) toM; to see this, take

any f 2 Cp(bo). There is r 2 R such that j f(k)j < r for any k 2 o. Given any n 2 o,
we have j’ðf ÞðnÞjbPf 1

nþ1 � j f ðkÞj : k 2 AngbPf 1
nþ1 � r : k 2 Ang ¼ r, so the

function ’( f ) is bounded by r and hence ’( f ) 2 M.
We claim that the map ’ : Cp(bo)!M is open, continuous and onto. Given any

g 2M, there is r 2 R such that jg(n)jb r for all n 2 o. For all n 2 o, let f(k) ¼ g(n)
for each k 2 An. This determines a function f : o! R; for each k 2 o there is n 2 o
such that j f ðkÞj ¼ jgðnÞjbr so j f ðkÞj r for each k 2 o, i.e., f is bounded. Since the
function f is continuous on D(o), there exists a continuous h : bo ! R such that

hjo ¼ f. It is easy to see that ’(h) ¼ g so we established that ’ is surjective.
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It is straightforward that the map ’ is linear so, by Fact 2, to prove continuity of

’ it is sufficient to establish that ’ is continuous at the point 0 2 Cp(bo) that is
identically zero on bo. Given any n 2 o and e > 0, let H(n, e) ¼ {y 2M : jy(i)j < e
for all i b n}. It is evident that the family {H(n, e) : n 2 o and e > 0} is a local

base ofM at 0M. Given an arbitrary n 2 o, e > 0 and a finite set C � bo \o, the set
G(n, C, e) ¼ {f 2 Cp(bo) : jf(x)j < e for all x 2 A0 [ � � � [ An [ C} is an open

neighbourhood of 0. It is clear that the family {G(n, C, e) : n 2 o, e > 0 and C �
bo \o is finite} is a local base of Cp(bo) at 0. Let us show that

(�) ’(G(n, C, e)) ¼ H(n, e) for any n 2 o, e > 0 and any finite set C � bo \o.
Take an arbitrary function f 2 G(n, C, e); then, for every i b n, we have

j’ðf ÞðiÞjbPf 1
iþ1 � jf ðkÞj : k 2 Aig<

Pf 1
iþ1 � e : k 2 Aig ¼ e which shows that

’( f ) 2 H(n, e). Therefore ’(G(n, C, e)) � H(n, e).
Now, let h 2H(n, e); denote bym the number of elements of C and take r 2R for

which jh(k)j< r for all k 2 o. For each lr m þ 1, we have l þ 1 ¼ kl(m þ 1) þ rl
where kl, rl 2 N and 0 b rn b m. For each l r m þ 1, choose an arbitrary partition

fAi
l : i 2 f0; . . . ;mgg of the set Al such that jA0

l j ¼ kl þ rl and jAi
lj ¼ kl for i 2

{1, . . . , m}. If Bi =
SfAi

l : lrmþ 1g for all i b m, then B0, . . . , Bm are infinite

disjoint sets such that tl ¼ Alj j
Al\Bij jb 2mþ 1 for each i b m and l r mþ1. Indeed,

Al \ Bi ¼ Ai
l and therefore tlb lþ1

kl
¼ mþ 1þ rl

kl
bmþ 1þ m ¼ 2mþ 1. The sets

B0; . . . ;Bm are disjoint by Fact 2 of S.369; this implies Bk \ C ¼ ; for some k b m
(the bar denotes the closure in bo). Define a function g0: o! R as follows: g0(x)¼
h(l) if x 2 Al and lbm; if x 2 Al for some lr mþ 1 then g0(x)¼ tlh(l) if x 2 Al \ Bk

and g0(x) ¼ 0 for all x 2 Al \Bk.

For every x 2 o we have jg0(x)j ¼ jh(l)j or jg0(x)j ¼ jtlh(l)j for some l 2 o.
Therefore, jg0(x)j b tljh(l)j < tlr b (2m þ 1)r which shows that g0 is bounded on

o. As a consequence, there is g 2 C(bo) with gjo ¼ g0. Observe that g(x) ¼ 0 for

all x 2 o \ Bk; since Bk \ C ¼ ;, we have C � onBk whence g(C) ¼ {0}. It is

easy to check that ’(g) ¼ h; besides, g(C) ¼ {0} and, for all x 2 A0 [ � � � [ An,

there is i b n such that jgðxÞj ¼ jhðiÞj< e; i:e:; jgðxÞj< e for all x 2 A0 [ � � � [ An

which implies g 2 G(n, C, e) and therefore ’(G(n, C, e)) � H(n, e) so (�) is

proved.

Now, take an arbitrary W 2 t 0M;Mð Þ. There exist n 2 o and e > 0 such that

H(n,e) � W. As a consequence, V ¼ Gðn; ;; eÞ 2 tð0;CpðboÞÞ and it follows from

(�) that ’(V) ¼ H(n, e) � W which proves continuity at 0. Therefore ’ is a

continuous map by Fact 2.

Now, assume that V 2 tð0;CpðboÞÞ ; there are n 2 o, e > 0 and a finite set C �
bo \o such that G(n, C, e) � V. It is an immediate consequence of (�) that

’ðVÞ � ’ðGðn;C; eÞÞ ¼ Hðn; eÞ 2 tð0M;MÞ which shows that ’ is open at the

point 0. Hence the map ’ is open by Fact 3. Thus ’ is an open map of Cp(bo)
onto a second countable spaceM that is not Čech-complete and hence Cp(bo) is not
projectively complete.

S.497. Suppose that A has a countable network for each countable A � X. Prove
that, if Cp(X) is projectively complete, then it is pseudocomplete.
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Solution. Take any countable A � X; if the set A is countable then A is

discrete and C-embedded in X by 495. This implies that A is also discrete and

C-embedded in X.

Fact 1. Every uncountable space with a countable network has a non-trivial

convergent sequence.

Proof. Take any uncountable Z with nw(Z) b o; let N be a countable network in

the space Z. The set B¼ {z 2 Z : the set {z} is a finite intersection of some elements

of N } is countable so there exists y 2 Z \ B. Since N 0 ¼ fN 2 N : y 2 Ng is

also countable, we can choose an enumeration {Ni : i 2 o} of the family N 0.
Given any k 2 o, the setMk¼ \ {Ni : ib k} cannot be finite. Indeed, ifMk is finite,

then P ¼Mk \ {y} is also finite so there is N 2 N such that y 2 N � Z \ P; therefore
{y} ¼ Mk \ N is a finite intersection of elements of N which contradicts the

choice of y. Thus Mk is infinite and hence it is possible to choose yk 2 Mk \ {y} for

each k 2 o. Observe that the sequence {yn : n 2 o} converges to y. Indeed, given
any U 2 tðy; ZÞ there is N 2 N such that y 2 N � U. We have enumerated

all elements of N that contain y and therefore N ¼ Nk for some k 2 o. It is clear
that yi 2 Mi � Mk � Nk ¼ N � U for all i r k which shows that yn ! y. The
sequence {yn : n 2 o} has to be non-trivial because yn 6¼ y for each n 2 o so Fact 1

is proved.

Now, assume that A is uncountable for some countable set A � X. Since

nwðAÞ ¼ o, we can apply Fact 1 to observe that there is a non-trivial convergent

sequence C � A. If x is the limit of C then C [ {x} is a non-discrete countable

closed subspace of X which contradicts Problem 495. This contradiction shows that

the closure of every countable A � X is countable; hence A is discrete and C-
embedded in X by 495. This implies that A is also discrete and C-embedded in X.
Therefore each countable subset of X is closed and C-embedded in X so we can

apply Problem 485 to conclude that Cp(X) is pseudocomplete.

S.498. Let X be any space. Prove that, if Cp(X) is pseudocomplete then it is
projectively complete.

Solution. Take any open continuous map ’ : Cp(X) ! M of Cp(X) onto a second

countable space M. Apply Problem 300 to find a countable A � X and a continuous

map p : pAðCpðXÞÞ ! M such that p 	 pA ¼ ’. Since Cp(X) is pseudocomplete, we

have CpðAjXÞ ¼ pAðCpðXÞÞ ¼ RA by Problem 485 soCp(AjX) is Čech-complete (see

Problems 205, 207 and 269).

Given any open U � Cp(AjX), the set pðUÞ ¼ ’ðp�1A ðUÞÞ is open in M because

the map ’ is open. Thus we have an open map p of a Čech-complete space Cp(AjX)
onto a metrizable (and hence paracompact) space M. By Fact 1 of S.491 there is a

closed F � Cp(AjX) such that p( f ) ¼M and the map pjF is perfect. Apply Problem

260 to conclude that F is Čech-complete. Any perfect image of a Čech-complete

space is Čech-complete (Problem 261) so M is also Čech-complete. This proves

that Cp(X) is projectively complete.
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S.499. Prove that C(X) and C(Y) are isomorphic as algebraic rings if and only if uX
is homeomorphic to uY.

Solution. Given a space T, call a set A � T a zero-set in T if there is f 2 C(T) such
that A ¼ f�1ð0Þ. It is evident that each zero-set is closed in T. Denote by T the

family of all zero-sets of T.A non-empty family F � ZT is called a z-filter on T if it

has the following properties:

(ZF1) ; =2 F .
(ZF2) A, B 2 F implies A \ B 2 F .
(ZF3) If A 2 F and A � B 2 ZT then B 2 F .

A z-filter U on T is called a z-ultrafilter on T if it is a maximal z-filter, i.e., if is a

z-filter on T and U � F then U ¼ F . A family � exp(T) is countably centered ifTF0 6¼ ; for any countable F0 � F .
Given r 2 R, let cr(x) ¼ r for any x 2 T, i.e., cr is a function on T which

is identically r at all points of T.Anon-empty set I�C(T) is called an ideal inC(T) if

(I1) af þ bg 2 I for any f, g 2 I and a, b 2 R.
(I2) I 6¼ CðTÞ and fg 2 I for any f 2 I and g 2 C(T).

An ideal I in C(T) is maximal if it is maximal with respect to inclusion, i.e., for

any ideal I0 � C(T), if I � I0 then I0 ¼ I. A maximal ideal I � C(T) is called a real
ideal if, for any f 2 C(T), there is r 2 R such that f þ cr 2 I.

Let us state some simple facts on zero-sets.

Fact 1. Given an arbitrary space T, we have

(1) Any finite union of zero-sets in T is a zero-set in T.
(2) If A is a zero-set in T then there is g 2 C(T, [0,1]) such that A ¼ g�1ð0Þ.
(3) Any countable intersection of zero-sets in T is a zero-set in T.
(4) If f : T! T0 is a continuous map and P is a zero-set in T0 then f�1(P) is a zero-set

in T.
(5) If P is a closed subset of R and f 2 C(T) then f�1(P) is a zero-set in T.

Proof. (1) If f1, . . . , fn 2 C(T) and Pi ¼ f�1i ð0Þ for all i b n then the function f ¼
f1, . . . , fn is continuous on T and P ¼ P1 [ � � � [ Pn ¼ f�1(0) so P1 [ � � � [ Pn is a

zero-set in T.
(2) Fix a function f 2 C(T) such that A ¼ f�1(0). The function h ¼ j f j defined by

h(x) ¼ j f(x)j for any x 2 T, is continuous, non-negative and A ¼ h�1(0). The
function g ¼ min(h, c1) is continuous on T (Problem 028); it is clear that we have

g 2 C(T, [0, 1]) and A ¼ g�1(0).
(3) if Ai is a zero-set in T for all i 2 o then we can apply (2) to find a function fi 2

C(T, [0, 1]) with Ai ¼ f�1i ð0Þ for all i 2 o. If gn ¼
Pn

i¼1 2�i � fi then the sequence

{gn : n 2 o} converges uniformly to a function g 2 C(T, [0,1)) (see Problem 030)

and it is immediate that g�1(0) ¼ \ {An : n 2 o}.
(4) Take any h 2 C(T0) with P ¼ h�1(0); then g ¼ h 	 f 2 C(T) and we have

f�1(P) ¼ f�1(h�1(0)) ¼ g�1(0) which proves that f�1(P) is a zero-set in T.
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(5) Any closed subset of R is a Gd-set in R; since R is normal, any closed subset

ofR is a zero-set inR by Fact 1 of S.358. Hence P is a zero-set inR so we can apply

(4) to conclude that f�1(P) is a zero-set in T. Fact 1 is proved.

Fact 2. Given an arbitrary space T, we have

(1) Any z-filter is a centered family.

(2) For any centered family C � ZT , there exists a z-ultrafilter U � C.
In particular, any z-filter on T is contained in a z-ultrafilter on T.

Proof. (1) if F is a z-filter and F1; . . . ;Fn 2 F then an evident consequence of

(ZF2) is that F ¼ F1 \ � � � \ Fn 2 F so F 6¼ ; by (ZF1). This shows that F is a

centered family.

(2) Let P be the family of all z-filters that contain C. Observe first that P 6¼ ; ;
indeed, let F ¼ fF 2 ZT : there exists a finite C0 � C such that

T C0 � Fg : The
axiom (ZF1) holds for F because each element of F contains a finite intersection of

elements of C and no such intersection is empty due to the fact that C is centered.
Now, if F1;F2 2 F then there are finite C1 � C and C2 � C such that F1 �

T C1
and F1 �

T C2. It is clear that the family C0 ¼ C1 [ C2 � C is finite and

F1 \ F2 �
T C0. Since F1 \ F2 is a z-set y Fact 1, we have F1 \ F2 2 F , i.e.,

(ZF2) is proved for F . Finally, if F 2 F and G is a z-set with F � G then take any

finite C0 � C such that
T C0 � F; it is immediate that

T C0 � G so G 2 F and we

proved that F is a z-filter that contains C. As a consequence, P 6¼ ;.
Now assume that P0 is a chain of elements of P; we claim that F ¼ SP0 is a

z-filter. Indeed, if ; 2 F then there is G 2 P0 such that ; 2 G which contradicts the

fact that G is a z-filter. Now, assume that F,G 2 F ; there exist G;G0 2 P such that

F 2 G andG 2 G0. Since P is a chain, we can assume, without loss of generality, that

G � G0. Thus F,G 2 G0 and therefore F \G 2 G0 because G0 is a z-filter. This proves
that F \ G 2 F so the axiom (ZF2) is checked for F . Finally, ifG is a z-set in T and

G� F 2 F then there is G 2 P such that F 2 G. Since G is a z-filter, we have G 2 G
and therefore G 2 F which proves that F is a z-filter.

This shows that we can apply the Zorn’s lemma to conclude that there is a

maximal z-filter U 2 P. It is clear that U is a z-ultrafilter that contains C so Fact

2 is proved.

Fact 3. Let F be a z-filter on a space T. If P 2 ZT and P \ F 6¼ ; for all F 2 F then

the family F [ fPg is centered. In particular, if F is a z-ultrafilter then P 2 F .
Proof. Take any F1, . . . , Fn 2 F [ fPg. We can consider that P ¼ Fi for some ib n
for otherwise

Tn
i¼1 Fi 6¼ ; because F1, . . . , Fn 2 F and F is centered by Fact 2.

Thus we do not lose generality supposing that P ¼ Fn. An immediate consequence

of (ZF2) is that F ¼ F1 \ � � � \ Fn�1 2 F so F1 \ � � � \ Fn ¼ F \ P 6¼ ; by our

hypothesis. This shows that F0 ¼ F [ fPg is a centered family.

Now, if the family F is a z-ultrafilter then apply Fact 2 to observe that there is a

z-ultrafilter U � F 0 � F . Since every z-ultrafilter is a z-filter and F is maximal, we

have F ¼ F0 ¼ U so P 2 F0 ¼ F and Fact 3 is proved.
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Fact 4. If T is a realcompact space then any countably centered z-ultrafilter on T has

a non-empty intersection.

Proof. Let F be a countably centered z-ultrafilter on the space T. There exists a

point q 2T{clbT ( f ) : F 2 F}. Assume first that q 2 bT \ T. Since T is realcompact,

there is a closed Gd-set H in the space bT such that q 2 H� bT \ T (see Problem 401

and Fact 2 of S.328). Now apply Fact 1 of S.358 and Fact 1 of this Solution to

conclude that there is f 2 C(bT, [0, 1]) such that f�1(0)¼H. If g¼ f jT then g(x)> 0

for all x 2 T.Observe also that q2 clbT ( f ) implies f�1ð½0; 1nÞÞ \ F 6¼ ; for any F 2 F .
Since F � T, we obtain ; 6¼ F \ f�1 0; 1n

	 
� � \ T ¼ F \ g�1 0; 1n
	 
� �

for each n 2 N
and F 2 F .

The set Fn ¼ g�1ð½0; 1n
Þ is zero-set in T for all n 2 N by Fact 1. In addition,

Fn \ F 6¼ ; or all F 2 F and therefore Fn 2 F for all n 2 N because the familyF is a

z-ultrafilter (see Fact 3). Since g(x) > 0 for all x 2 T, we obtain
TfFn : n 2 Ng ¼ ;

which is contradictory becauseF is countably centered. This contradiction shows that

q2 T; thus q 2 clbT ( f ) \ T¼ F for each F 2 F because F is closed in T. This proves

that q 2 \F and hence
TF 6¼ ; so Fact 4 is proved.

Fact 5. Let T be an arbitrary space.

(1) If I � C(T) is an ideal in C(T) then the family Z(I) ¼ {f�1(0) : f 2 I} is a

z-filter in T.
(2) If F is a z-filter on T then the set I(F ) ¼ {f 2 C(T) : f�1(0) 2 F} is an ideal

in C(T).
(3) If I � C(T) is a maximal ideal then Z(I) is a z-ultrafilter on T and I(Z(I)) ¼ I. In

particular, if f 2 C(T) and f�1(0) 2 Z(I) then f 2 I.
(4) If F is a z-ultrafilter on T then I(F ) is a maximal ideal in C(T).

Proof. (1) If ; 2 ZðIÞ then there is a function f 2 I such that f(x) 6¼ 0 for all x 2 T.
Then g ¼ 1

f 2 CðTÞ and therefore c1 ¼ g · f 2 I; this implies f ¼ f · c1 2 I for any
function f 2 C(T), i.e., I ¼ C(T) which is a contradiction with (I2). This proves that

f�1ð0Þ 6¼ ; for any f 2 I and hence ; =2 ZðIÞ so (ZF1) holds for Z(I).

Given any A, B 2 Z(I) we have A¼ f�1(0), B¼ g�1(0) for some f, g 2 I. Then, for
the function h ¼ f2 þ g2, we have h 2 I and h�1(0) ¼ A \ B so A \ B 2 Z(I) and
(ZF2) is also fulfilled for Z(I).

To check (ZF3), take any A 2 Z(I) and any B 2 ZT with A� B. There is f 2 I and
g 2 C(T) such that A ¼ f�1(0) and B ¼ g�1(0). We have h ¼ f · g 2 I by (I2) and

h�1(0) ¼ B so B 2 Z(I) and hence Z(I) is a z-filter in T.
(2) To prove (I1) for I(F ), observe that f�1(0) 2 F and g�1(0) 2 F imply that

H ¼ f�1(0) \ g�1(0) 2 F . Now, if h ¼ af þ bg then H � h�1(0); since F is a

z-filter, we have h�1(0) 2 F and hence h 2 I(F ) so (I1) is established for I(F ).
Since C�11 ð0Þ ¼ ; =2 F , we have c1 =2 I(F ) and hence I(F ) 6¼ C(T). Finally, take

any f 2 I(1), any g 2 C(T) and let h¼ f � g. It is clear that f�1(0)� h�1(0); since F is

a z-filter and f�1(0) 2 F , we have h�1(0) 2 F , i.e., h 2 I(F ). This proves (I2) for
I(F ) and shows that I(F ) is indeed an ideal in C(T).
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(3) The set I(Z(I)) is an ideal in C(T) by (2); it is immediate that I� I(Z(I)). Since
I is maximal, we have I ¼ I(Z(I)). Suppose that F is a z-filter and Z(I) � F . Then I
(F ) is an ideal in C(T) by (2) and it is immediate that I� I(Z(I))� I(F ). The ideal I
being maximal, we have I ¼ I(F ) so, for any F 2 F there is f 2 I such that F ¼
f�1(0). But f�1(0) 2 Z(I) by the definition of Z(I) so F 2 Z(I). The set F 2 F has been

chosen arbitrarily, so we have F � Z(I) which proves that F ¼ Z(I) and therefore

Z(I) is a z-ultrafilter.
(4) Suppose that I � C(T) is an ideal and I(F )� I. The family Z(I) is z-filter on T

by (1) and F ¼ Z(I(F )) � Z(I). Since F is a z-ultrafilter, we have F ¼ Z(I) and
hence f�1(0) 2 F for any f 2 I so we have f 2 I(F ) by the definition of I(F ). The
function f 2 I has been chosen arbitrarily, so we proved that I � I(F ) whence I ¼
I(F ) and hence I(F ) is a maximal ideal. Fact 5 is proved.

Fact 6. For any space T and any real ideal I � C(T), the family Z(I) is countably
centered.

Proof. Any real ideal is maximal so Z(I) is a z-ultrafilter in T by Fact 5. Take any

sequence {Fi : i 2 N} � Z(I) and fix a family of functions { fi : i 2 N} � I such that

Fi ¼ f�1i ð0Þ for all i 2 N. It is clear that gi ¼ f 2i 2 I and g�1i ð0Þ ¼ Fi for all i 2 N.
Furthermore, if hi ¼ min(gi, 1) then hi 2 C(T, [0, 1]) and we have h�1i ð0Þ ¼
g�1i ð0Þ ¼ Fi for all i 2 N. Thus h�1i ð0Þ 2 ZðIÞ and hence hi 2 I(Z(I)) ¼ I for all
i 2 N by Fact 5. If wn ¼

Pn
i¼1 2

�i � hi for all n 2 N then wn 2 I for all n 2 N and the

sequence {wn : n 2 N} converges uniformly to a function w 2 C(T) (see Problem

030). It is immediate that w�1ð0Þ ¼ Tf f�1i ð0Þ : i 2 Ng ; the ideal I is real so there

is r 2 R such that u ¼ w þ cr 2 I. If w0n ¼ wn � u then w0n 2 I for all n 2 N and the

sequence fw0n : n 2 Ng converges uniformly to w � u ¼ �cr (see Problem 035).

If e ¼ jrj 6¼ 0 then there is n 2 N such that w0nðxÞ þ r
�� ��< e for every x 2 T which

shows that w0nðxÞ 6¼ 0 for all x 2 T. Consequently, ðw0nÞ�1ð0Þ ¼ ; which is

a contradiction with ðw0nÞ�1ð0Þ 2 ZðIÞ and the fact that no element of Z(I) can be

empty by (ZF1). This contradiction shows that r ¼ 0 and hence w ¼ u 2 I. We

established that w�1(0) ¼ T{Fi : i 2 N} 2 Z(I) so Fact 6 is proved.

Fact 7. For any space T and any x 2 T, the set Ix ¼ ITx ¼ ff 2 CðTÞ : f ðxÞ ¼ 0g is a
real ideal of C(T). If T is realcompact then an ideal I � C(T) is real if and only if

there is x 2 T such that I ¼ Ix.

Proof. It is easy to check that the set Ix is an ideal; to see that Ix is maximal,

assume that J is an ideal in C(T) with Ix � J. If there exists f 2 J \ Ix then x =2 f�1(0)
and therefore we can find g 2 C(T) for which g(x) ¼ 0 and g( f�1(0)) ¼ {1}.

The function g belongs to Ix and hence to J. Therefore h ¼ f2 þ g2 2 J and h(z) > 0

for any z 2 T. It follows from h 2 J that c1 ¼ h � 1h 2 J. Therefore g ¼ g � c1 2 J
for each g 2 C(T). It turns out that J ¼ C(T) which is a contradiction. This shows

that Ix is a maximal ideal. Finally, the ideal Ix is real because, for any f 2 C(T) we
have f � cf(x) 2 Ix.

Now assume that T is realcompact and I is a real ideal in C(T). The family Z(I) is
a countably centered z-ultrafilter by Facts 5 and 6. Therefore

T
ZðIÞ 6¼ ; by Fact 4.
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It is evident that I � Ix for any x 2 TZ(I); thus I ¼ Ix by maximality of I. Fact 7
is proved.

Returning to our solution, assume that C(X) is isomorphic to C(Y). It is easy to

check that the restriction map pX : C(uX)! C(X) is an isomorphism. Analogously,

C(Y) is isomorphic to C(uY). This shows that there is an isomorphism ’ : C(uX)! C
(uY). Observe that the notion of a real ideal is defined in algebraic terms and hence

’(I) is a real ideal in C(uY) for any real ideal I� C(uX). For any x 2 uX, the set IuXx x
is a real ideal of C(uX) by Fact 7; hence ’ðIuXx Þ is a real ideal of C(uY). Since uY is

realcompact, we can apply Fact 7 again to conclude that there is y 2 uY such that

’ðIuXx Þ ¼ IuYy . Letting y ¼ f(x), we obtain a function f : uX ! uY. Since ’ is an

isomorphism, the map IuXx 7!’ðIxÞ is a bijection between the families of all real

ideals in C(uX) and in C(uY). Applying Fact 7 we see that f is also a bijection.

Finally, let A � uX. Given x 2 A, we have IuXx �
TfIuXz : z 2 ðAÞg by Fact 3 of

S.183. Since ’ is a bijection, we have IuYf ðxÞ �
TfIuYz : z 2 f ðAÞg and hence

f ðxÞ 2 f ðAÞ by Fact 3 of S.183. This proves that f ðAÞ � f ðAÞ and hence f is a

continuous map. The same reasoning is applicable to f�1 so f�1 is also continuous

which proves that f is a homeomorphism and settles necessity.

Finally, if h : uX ! uY is a homeomorphism then h� : C(uY) ! C(uX) is an

isomorphism: this is an easy exercise (see the first paragraph of S.183). We

mentioned already that C(X) is isomorphic to C(uX) and C(Y) is isomorphic to

C(uY) so C(X) is isomorphic to C(Y) and hence our solution is complete.

S.500. Prove that C� (X) and C� (Y) are isomorphic as algebraic rings if and only if
bX is homeomorphic to bY.

Solution. Observe that the restriction map pX : C(bX)! C�(X) is an isomorphism.

Analogously, pY : C(bY) ! C�(Y) is an isomorphism so if C�(X) is isomorphic to

C�(Y) then C(bX) is isomorphic to C(bY). As a consequence, bX is homeomorphic

to bY by Problem 183.

On the other hand, if a map h : bX! bY is a homeomorphism then the dual map

h� : C(bY) ! C(bX) is an isomorphism: this is an easy exercise (see the first

paragraph of S.183). We mentioned already that C�X) is isomorphic to C(bX) and
C�Y) is isomorphic to C(bY) so C�(X) is isomorphic to C�(Y) and hence our solution
is complete.
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3

Bonus Results: Some Hidden Statements

The reader has, evidently, noticed that an essential percentage of the problems of

the main text is formed by pure topological statements some of which are quite

famous and difficult theorems. A common saying among Cp-theorists is that any

result on Cp-theory contains only 20% of Cp-theory; the rest is general topology.

It is evident that the author could not foresee all topology which would be

needed for the development of Cp-theory so a lot of material had to be dealt with

in the form of auxiliary assertions. After accumulating more than 700 such asser-

tions, the author decided that some deserve to be formulated together to give a “big

picture” of the additional material that can be found in solutions of problems.

This chapter presents 100 topological statements which have been proved in the

solutions of problems of this volume without being formulated in the main text. In

these formulations the main principle is to make them clear for an average topolo-

gist. A student could lack the knowledge of some concepts of the formulation so the

index of this book can be used to find the definitions of the necessary notions.

After every statement, we indicate the exact place (in this book) where it was

proved. We did not include any facts from Cp-theory because more general state-

ments are proved sooner or later in the main text.

The author considers that most of the results that follow are very useful and

have many applications in topology. Some of them are folkloric statements and

quite a few are published theorems, sometimes famous ones. For example, Fact 3

of S.271 is the Wallace Theorem mentioned and proved in the book of Engelking

[1977]. Fact 4 of S.307 is a famous theorem of Arhangel’skii [1959]. The

statement of Fact 1 of S.373 is a particular case of Theorem 11 of Shapirovsky

[1978]. The result of Fact 1 of S.491 is actually Pasynkov’s Theorem proved in

Pasynkov [1967].

To help the reader find a result he/she might need, we have classified the material

of this section according to the following topics: standard spaces, metrizable
spaces and compact spaces, properties of continuous maps, covering properties,
normality and open families, product spaces and cardinal invariants. The last

section is entitled Raznoie (which in Russian means “miscellaneous”) and contains

unclassified results. The author hopes that, once we understand in which section a

result should be, then it will be easy to find it.

V.V. Tkachuk, A Cp-Theory Problem Book: Topological and Function Spaces,
Problem Books in Mathematics, DOI 10.1007/978-1-4419-7442-6_3,
# Springer ScienceþBusiness Media, LLC 2011
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3.1 Standard Spaces

By standard spaces we mean the real line, its subspaces and it powers, Tychonoff

and Cantor cubes as well as ordinals together with the Alexandroff and Stone–Čech

compactifications of discrete spaces.

S.154. Fact 2. There is a maximal almost disjoint family M on o such that the
respective Mrowka space M (see Problem 142) can be mapped continuously onto I.

S.186. Fact 2. The space R
o is not s-pseudocompact and hence it is neither

s-countably compact nor s-compact.
S.195. Fact 1. For any e> 0, if a polynomial is bounded on R\(�e, e) then it is a

constant function.
S.215. Fact 2. The spaces No1 and Ro1 are not normal.
S.215. Fact 3. extðNo1Þ ¼ extðRo1Þ ¼ o1.

S.286. Fact 2. Let us identify the discrete space D(o) with o. Suppose that K is a
compact extension of o such that clKðAÞ \ clKðBÞ ¼ ; for any A, B � o with
A \ B ¼ ;. Then there exists a homeomorphism f : bo ! K such that f(n) ¼ n for
any n 2 o. In particular, any map from o to a compact space can be extended
continuously over K.

S.319. Fact 1. Given a second countable space M, let ’ : (o1 þ 1) ! M be a
continuous onto map. Then M is countable.

S.334. Fact 1. If f : o1 ! R is an arbitrary continuous function then, for any
e > 0, the set A( f, e) ¼ {a < o1 : jf(a) � f(a þ 1)j � e} is finite.

S.373. Fact 1. Any subspace X of the space S(k) has a point-countable p-base.
S.373. Fact 3. The space bo\o does not have a point-countable p-base.
S.376. Fact 1. The space bo embeds in o* and the space o* maps continuously

onto bo.
S.382. Fact 1. Assume that D is an infinite discrete space. If A, B � D and

A \ B ¼ ; then A \ B ¼ ; (the bar denotes the closure in the space bD).
S.382. Fact 2. Let E be a countable discrete subspace of bD. Suppose that A,

B � E and A \ B ¼ ;. Then A \ B ¼ ;.
S.382. Fact 3. Let A and B be countable discrete disjoint subsets of bD. If A is

infinite then there is an infinite A0 � A such that A0 \ B ¼ ;.
S.382. Fact 5. Given any n 2 N, let Dn ¼ {x ¼ (x1,. . ., xn) 2 (bD)n : there exist

i, j � n such that i 6¼ j and xi ¼ xj}. Then the space Dn ¼ (bD)n \Dn is countably
compact for all n 2 N.

S.483. Fact 1. If A is an infinite subset of bo then A ¼ 2c.
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3.2 Metrizable Spaces and Compact Spaces

The results of this section deal with metrizable spaces in some way. We almost

always assume the Tychonoff separation axiom so our second countable spaces are

metrizable and hence present here too. We also present some results about compact,

countably compact and pseudocompact spaces.

S.088. Claim. Let Z be a space which has a countable base B. If C is any other
base of Z then there is a countable C0 � C such that C0 is a base in Z. In other words,
if there is a countable base in a space then any base of this space contains a
countable base.

S.212. Fact 1. Take any metric d on X with t (d)¼ t (X). Given A� X, let dA(x)¼
inf{d(x, a) : a 2 A}. Then the map dA : X ! R is continuous.

S.221. Fact 4. Assume that D ¼ fdi : i 2 og is a family of pseudometrics on a
space X with the following properties:

(1) The function di : X � X !R is continuous for all i 2 o.
(2) di(x, y) � 1 for all x, y 2 X and i 2 o.
(3) For every x 2 X and every non-empty closed A� X with x =2 A there exists i 2 o

such that di(x, A) ¼ inf{di(x, a) : a 2 A} > 0.

Then the space X is metrizable and the function dðx; yÞ ¼ P1
i¼0 ð1=2iÞdiðx; yÞ is

a metric on X which generates t (X).
S.224. Fact 2. Suppose that Xt is a metrizable space for each t 2 T. Then the

space X ¼ �fXt : t 2 Tg is metrizable.
S.228. Fact 3. Let Y be a metrizable space. Suppose that Z is a space in which

any point is a limit of a non-trivial convergent sequence. Then any closed map h :

Y ! Z is irreducible on some closed subset of Y, i.e., there is a closed F � Y such
that h(F) ¼ Z and hF ¼ hjF is irreducible.

S.269. Fact 1. Let (X, d) be a metric space. Suppose that P is a Gd-subset of X.
Then P embeds in X � R

o as a closed subspace.
S.154. Fact 3. If X is a pseudocompact space and Y is a second countable space

then every continuous surjective map f : X ! Y is R-quotient.
S.232. Fact 5. Any countably compact normal space Y is collectionwise normal.
S.307. Fact 4. We have w(Z) ¼ nw(Z) for any compact space Z.
S.307. Fact 5. Any continuous image of a metrizable compact space is a

metrizable compact space.
S.322. Fact 1. Let Z and T be Fréchet–Urysohn countably compact spaces. Then

Z � T is countably compact.
S.326. Fact 1. Let Z be any space; suppose that F is a family of compact subsets

of Z and G ¼ \ F . Then, for any U 2 t (G, Z) there is a finite F0 � F such
that \ F0 � U.

S.350. Fact 1. A space Z is not pseudocompact if and only if there exists a
countably infinite closed discrete D � Z such that D is C-embedded in Z.

S.351. Fact 18. If a space Z has a dense pseudocompact subspace then Z is also
pseudocompact.
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S.361. Fact 1. If X is a dyadic space and x 2 X is not an isolated point then there
is a sequence {xn : n 2 o} � X\{x} which converges to x.

S.368. Fact 3. If a space X is compact and Y is a continuous image of X then
w(Y) � w(X).

S.433. Fact 1. Suppose that Z is a pseudocompact space and f : Z ! R is a
strictly o-continuous function. Then there exists a strictly o-continuous function
f *: Z* !R such that f *jZ ¼ f.
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3.3 Properties of Continuous Maps

We consider the most common classes of continuous maps: open, closed, perfect

and quotient. The respective results basically deal with preservation of topological

properties by direct and inverse images.

S.223. Fact 1. Any open image of a first countable space is first countable.
S.224. Fact 1. Any quotient image of a sequential space is sequential.
S.226. Fact 4. A perfect image of a paracompact space is a paracompact

space.
S.228. Fact 1. Assume that h : Y ! Z is an irreducible closed map. Then c(Y) ¼

c(Z) and pw(Y) ¼ pw(Z).
S.248. Fact 1. Suppose that T is a space and (Z, d) is a metric space. Assume that

hn 2 C(T, Z) of each n 2 o and hn!!h for some h : T ! Z. Then the function h is
continuous.

S.259. Fact 2. Suppose that f : Y ! Z is a perfect map and K � Z is compact.
Then L ¼ f�1(K) is a compact subspace of Y.

S.261. Fact 1. Let f : X! Y be a closed map. Then, for any subspace A � Y, the
map fA ¼ f jf�1(A) : f�1(A) ! A is closed.

S.261. Fact 2. Let f : X! Y be a perfect map. Then, for any subspace A � Y, the
map fA ¼ f jf�1(A) : f�1(A) ! A is perfect.

S.261. Fact 3. A map f : X ! Y is perfect if and only if ~f ðbXnXÞ ¼ bYnY.
S.271. Fact 1. Any product of continuous maps is a continuous map.
S.271. Fact 2. A continuous onto map g : Y ! Z is closed if and only if for any

z 2 Z and any O 2 t (g�1(z), Y), there exists O0 2 t (z, Z) such that g�1(O0) � O.
S.271. Fact 4. Any product of perfect maps is a perfect map.
S.271. Fact 5. Any perfect preimage of a Lindel€of space is Lindel€of.
S.288. Fact 3. For any space Z and any compact P the natural projection p :

Z � P ! Z is a perfect map.
S.351. Fact 0. Let Y and Z be any spaces. Suppose that D is dense in Y and f, g :

Y ! Z are continuous maps such that fjD ¼ gjD. Then f ¼ g.
S.373. Fact 2. If f : X! Y is a closed and irreducible map then, for any p-base ß

of the space Y, the family n ¼ { f�1(U ) : U 2 ß} is a p-base in X.
S.390. Fact 4. Let X and Y be Hausdorff (not necessarily Tychonoff) spaces.

If f : X ! Y is a continuous map then

(1) The set G( f) ¼ {(x, f(x)) : x 2 X} is a closed subset of X � Y.
(2) If pX : X � Y ! X is the natural projection then pXjG( f ) : G( f ) ! X is a

homeomorphism. In particular G(f) is a closed subspace of X � Y homeomor-
phic to X. The set G( f) is called the graph of the function f.

S.408. Fact 1. Let R be a realcompact space. Suppose that Z is an arbitrary
space and f : R ! Z is a continuous map. Then f �1(B) is realcompact for any
realcompact B � Z.

S.424. Fact 1. Let Y and Z be any spaces; given an open continuous onto map
f : Y ! Z, we have clY (f

�1(A)) ¼ f �1(clZ(A)) for each A � Z.
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S.460. Fact 1. Let R be a Dieudonné complete space. Suppose that Z is an
arbitrary space and f : R ! Z is a continuous map. Then f�1(B) is Dieudonné
complete for any Dieudonné complete B � Z.

S.462. Fact 1. For any paracompact space X and any p 2 bX\X there exists a
metric space M and a continuous map ’: X ! M such that ’̂ðpÞ 2 bMnM.

S.472. Fact 1. Given arbitrary spaces Y and Z, a map f : Y ! Z is continuous if
and only if, for any g 2 Y, there is U 2 t (g, Y) such that f jU : U! Y is continuous.

S.491. Fact 1. Let X be a Čech-complete space. Suppose that f : X! Y is an open
continuous map of X onto a paracompact space Y. Then the map f is inductively
perfect, i.e., there exists a closed subset F� X such that f(F)¼ Y and fjF : F! Y is
a perfect map.

S.491. Fact 2. Let Y and Z be any spaces. Suppose that ’ : Y ! Z is an onto
map and, for every g 2 Y there is a local base ßy of Y at y such that the family Cy ¼
{’(U) : U 2 ßy} is a local base of Z at ’(g). Then ’ is an open continuous map.
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3.4 Covering Properties, Normality and Open Families

This section contains results on the covering properties which are traditionally

considered not to be related to compactness, such as the Lindel€of property, para-
compactness and its derivatives.

S.018. Claim 1. Suppose that a space Z is a finite union of its clopen normal
subspaces. Then Z is normal.

S.219. Fact 1. Every Lindel€of space is paracompact.
S.219. Fact 2. If Z is a paracompact space with c(Z) ¼ o then Z is Lindel€of.
S.221. Fact 1. Given an arbitrary space X, suppose that for any closed set F � X

and any W 2 t (F, X) there exists a family {Wi : i 2 o} � t (X) such that

F � [fWn : n 2 og and Wn � W for each n 2 o. Then X is normal.
S.221. Fact 2. Any locally finite family is closure-preserving.
S.226. Fact 2. Suppose that Z is a paracompact space. Given an open cover

U ¼ fUs : s 2 Sg of the space Z, there exists a closed locally finite cover {Fs : s 2 S}
of Z such that Fs � Us for each s 2 S.

S.288. Fact 1. The following conditions are equivalent for any space X:

(a) X is countably paracompact.
(b) For any countable open cover {Ui : i 2 o} of the space X there exists a locally

finite open cover {Vi :2 o} of X such that Vi � Ui for every i 2 o.
(c) For any increasing sequence W0 � W1 �. . . of open subsets of X satisfying

[i2o Wi ¼ X there exists a sequence {Fi : i 2 o} of closed subsets of X such
that Fi � Wi for all i 2 o and [i2o IntðFiÞ ¼ X.

(d) For any decreasing sequence G0 � G1 �. . . of closed subsets of X satisfying
\i2o Gi ¼ ; there exists a sequence {Oi : i 2 o} of open subsets of X such that
Gi � Oi for all i 2 o and \i2o �Oi ¼ ;.
S.288. Fact 2. The following conditions are equivalent for any normal space X:

(a) X is countably paracompact.
(b) For any decreasing sequence F0 � F1 �. . . of closed subsets of X satisfying

\i2o Fi ¼ ; there exists a sequence {Wi : i 2 o} of open subsets of X such that
Fi � Wi for all i 2 o and \i2o Wi ¼ ;.

(c) For any countable open cover {Ui : i 2 o} of the space X there exists a locally
finite open cover {Vi :2 o} of X such that Vi � Ui for every i 2 o.

(d) For any countable open cover {Ui : i 2 o} of the space X there exists a closed

cover {Gi : i 2 o} of X such that Gi � Ui for every i 2 o.

S.289. Fact 1. Let Y be a normal space. Then any Fs-subspace of Y is also
normal.

S.289. Fact 2. Suppose that Y � R is normal for some space Y. Then Y � R is
countably paracompact.

S.292. Fact 1. Any perfectly normal space is countably paracompact.
S.292. Fact 2. If X is a space such that X� A(o) is hereditarily normal then X is

perfectly normal.
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S.292. Fact 3. If X is a perfectly normal space then X�M is perfectly normal for
any second countable space M.

S.293. Fact 1. Given a space X and a set M � X, let tM ¼ {U [ A : U2 t (X) and
A � X \ M}. It is easy to check that tM is a topology on X; denote by XM the space
(X, tM). The space XM is Tychonoff for any Tychonoff space X; all points of X \ M
are isolated in XM and the topology induced on M from XM coincides with the
topology induced from X to M.

S.293. Fact 2. Suppose that a subspace M of a space X has the following
property:
(*) If A and B are closed subsets of M such that A \ B ¼ ; then there exist sets

U 2 t (A, X), V 2 t (B, X) such that U \ V ¼ ;.
Then XM is a normal space.
S.302. Fact 1. Suppose that, for any discrete family {Fs : s 2 S} of closed subsets

of a space X, there exists a disjoint family {Us : s 2 S} of open subsets of X such that
Fs � Us for any s 2 S. Then X is collectionwise normal.

S.336. Fact 2. A space Z is Lindel€of if and only if any countably centered family
of closed subsets of Z has a non-empty intersection.

S.354. Fact 2. Every metalindel€of space of countable extent is Lindel€of.
S.390. Fact 5. Let X be a zero-dimensional Lindel€of space. Then any open

Fs-subset of X is homeomorphic to a closed subspace of X � o.
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3.5 Product Spaces and Cardinal Invariants

The space Cp(X) being dense in R
X, the results on topological products form a

fundamental part of Cp-theory. The main line here is to classify spaces which could

be embedded in (or expressed as a continuous image of) a nice subspace of a

product. To classify function spaces using cardinal invariants often gives crucial

information so some classical results on this topic are included in this section.

S.307. Fact 6. Suppose that Mt is a second countable compact space for each
t 2 T and let M ¼P{Mt : t 2 T}. Then

(i) For any a 2 M, if a compact space Z is a continuous image of the space
S(a) ¼ {x 2 M : the set {t 2 T : x(t) 6¼ a(t)} is at most countable} then Z is
metrizable.

(ii) If a compact space Z of countable tightness is a continuous image of M then Z is
metrizable.

S.271. Fact 3. Assume that Kt is a compact subspace of a space Xt for all t 2 T;
let X¼P{Xt : t 2 T} and K¼P{Kt : t 2 T}. Then, for every set W 2 t (K, X) we can
choose sets Ut 2 t (Kt, Xt), t 2 T such that Ut 6¼ Xt only for finitely many t andP{Ut :

t 2 T} � W.
S.271. Fact 7. Suppose that Y is a space and Xt � Y for each t 2 T. Then the

space X ¼ \ {Xt : t 2 T} embeds in P{Xt : t 2 T} as a closed subspace.
S.281. Fact 1. Call a subset A of a space Z residual if Z\A is of first category. Let

Z be an arbitrary space. Suppose that T is a second countable space and the map
p : Z � T ! Z is the natural projection. If we have a countable family U of open
dense subsets of Z�T then the set A ¼ {z 2 Z : p�1(z) \ U is dense in p�1(z) for any
U 2 U} is residual in Z.

S.286. Fact 1. Fix an arbitrary set M. Given any set B � M, denote by
pB : IM ! IB the projection defined by pB(x)¼ xjB for any x E IM. A dense subspace

X � IM is pseudocompact if and only if pBðXÞ ¼ IB for every countable B � M.
S.291. Fact 3. Assume that Mt is a second countable space for all t 2 T and D is a

dense subspace of the product M ¼ P{Mt : t 2 T}. Suppose also that A, B are
arbitrary subsets of D. Then A and B are open-separated in the space D if and only
if there exists a countable S � T such that pS(A) and pS(B) are separated in the
space MS ¼ P{Mt : t 2 S}.

S.433. Fact 2. Suppose that Mt is a second countable compact space for each
t 2 T. A dense set D of the product M ¼ P{Mt : t 2 T} is pseudocompact if and
only if pS(D) ¼ MS ¼ Pt2S Mt for any countable S � T. Here pS : M ! MS is the
natural projection onto the face MS.

S.158. Fact 1. Let T be a dense subset of a space Z. Then, for each t 2 T, we have
w(t, T) ¼ w(t, Z).

S.162. Lemma. Given an infinite cardinal k and a space Z, we have t(Z) � k if
and only if, for any non-closed A� Z, there is B� A such that jBj � k and BnA 6¼ ;.

S.265. Fact 2. Let Y be a dense subspace of a space X. Then w(F, Y)¼ w(F, X) for
any compact F � Y. In particular this is true if F is a point of Y.

S.368. Fact 2. For any space X, we have w(X) � 2d(X).
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3.6 Raznoie (Unclassified Results)

Last, but not least, we place here some interesting results which do not fit in any of

the earlier sections.

S.497. Fact 1. Every uncountable space with a countable network has a non-
trivial convergent sequence.

S.217. Fact 1. If X is any space and D is a dense subspace of X then �U ¼ U \ D
for any U 2 t (X).

S.368. Fact 1. Suppose that X is any space and Y is a dense subspace of X. If U
and V are regular open subsets of X and U \ Y ¼ V \ Y then U ¼ V.

S.369. Fact 1. Suppose that X is a space and a subspace E ¼ {xn : n 2 o} � X is
discrete and faithfully indexed, i.e., m 6¼ n implies xm 6¼ xn. Then there exists a
disjoint family {Un : n 2 o} � t (X) such that xn 2 Un for all n 2 o.

S.382. Fact 4. Let A be an infinite subspace of a space X. Then there is an infinite
B � A such that the subspace B is discrete.

S.393. Fact 1. If Z is any space and Z � Y � bZ then bY ¼ bZ.
S.408. Fact 2. Any Fs-subset P of any space Z is an intersection of functionally

open subsets of Z.
S.451. Fact 2. Let Z be an arbitrary space. If F is C*-embedded in Z then the

space clbZ(F) is canonically homeomorphic to bF. In particular, if Z is a normal
space and F is a closed subset of Z then the space clbZ(F) is canonically homeo-
morphic to bF which we will write as clbZ(F) ¼ bF.

S.489. Fact 1. If L is a linear space then, for any linearly independent set A � L,
there exists a Hamel basis B of the space L such that A � B.

S.493. Fact 2. Given any space Z and an infinite cardinal k, let (Z)k be the set Z
with the topology generated by the family of all Gk-subsets of Z. Then (Z)k is a
Tychonoff zero-dimensional space in which every Gk-set is open. The space (Z)k is
called k-modification of the space Z. In particular, the o-modification of any space
is a Tychonoff P-space.

S.499. Fact 4. If T is a realcompact space then any countably centered z-
ultrafilter on T has a non-empty intersection.

S.232. Fact 1. Any zero-dimensional T0-space Y is Tychonoff.
S.304. Fact 2. For any linearly ordered space L, we have s(L) ¼ c(L).
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4

Open Problems

The unsolved problems form an incentive for the development of any area of

mathematics. Since this book has an ambitious purpose to embrace all or almost

all modern Cp-theory, it was impossible to avoid dealing with open questions.

In this book, we have a wide selection of unsolved problems of Cp-theory. Of

course, “unsolved” means “unsolved to the best of the knowledge of the author”.

I give a classification by topics but there is no mention whatsoever of whether the

given problem is difficult or not. One good parameter is the year of publication but

sometimes the problem is not solved for many years because of lack of interest or

effort and not because it is too difficult.

I believe that almost all unsolved problems of importance in Cp-theory can be

found in this book. The reader understands, of course, that there is a big difference

between the textbook material and open questions to which an author must be

assigned. I decided that it was my obligation to make this assignment and did my

best to be frowned at (or hated!) by the least possible number of potential authors of

open problems.

This volume contains 100 unsolved problems which are classified by topics

presented in ten sections, the names of which outline what the given group of

problems is about. At the beginning of each section we define the notions which are
not defined in the main text. Each published problem has a reference to the

respective paper or book. If it is unpublished, then my opinion on who is the author,

is expressed. The last part of each problem is a very brief explanation of its

motivation and/or comments referring to the problems of the main text or some

papers for additional information. If the paper is published and the background

material is presented in the main text, we mention the respective exercises. If the

main text contains no background, we refer the reader to the original paper. If no

paper is mentioned in the motivation part, then the reader must consult the paper/

book in which the unsolved problem was published.

To do my best to assign the right author to every problem I implemented the

following simple principles:

1. If the unsolved problem is published, then I cite the publication and consider

myself not to be involved in the decision about who is the author. Some

problems are published many times and I have generally preferred to cite the

V.V. Tkachuk, A Cp-Theory Problem Book: Topological and Function Spaces,
Problem Books in Mathematics, DOI 10.1007/978-1-4419-7442-6_4,
# Springer ScienceþBusiness Media, LLC 2011
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articles in journals/books which are more available for the Western reader.

Therefore, it may happen that I do not cite the earliest paper where the problem

was formulated. Of course, I mention it explicitly; if the author of the publica-

tion attributes the problem to someone else.

2. If, to the best of my knowledge, the problem is unpublished then I mention the

author according to my records. The information I have is based upon my

personal acquaintance and communication with practically all specialists in

Cp-theory. I am aware that it is a weak point and it might happen that the

problem I attributed to someone was published (or invented) by another person.

However, I did an extensive work ploughing through the literature to make sure

that this does not happen.
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4.1 Local Properties

The nice algebraic structure of Cp (X) implies very strong dependencies between

local and global properties of Cp (X). For example, countable powers preserve

tightness in Cp (X) and if Cp(X) is first countable then it is second countable. The

problems below show some hypothesis about possible additional dependencies

between the local, global and convergence properties in Cp(X).

4.1.1. Suppose that Cp(X) and Cp(Y) are Fréchet–Urysohn spaces. Is is true that

Cp(X) � Cp(Y) is a Fréchet–Urysohn space?

Published in Arhangel’skii [1992b]

Related to Problems 144–145

4.1.2. Is it true that every space of countable tightness embeds (as a closed

subspace) into a linear topological space of countable tightness?

Published in Arhangel´skii [1989a]

Motivated by the fact that not every space X of countable tightness is embeddable in a Cp(Y)
with t(Cp(Y)) ¼ o because tightness is countably multiplicative in Cp-

spaces (Problems 148–150).

4.1.3. Suppose that Cp(X) has a closure-preserving local base at any point. Must

X be countable?

Author V.V. Tkachuk

Motivated by the fact that any first countable space has a closure-preserving base at every

point.

4.1.4. Suppose that X is compact and Cp(X) has a closure-preserving local base at
any point. Must X be countable?

Author V.V. Tkachuk

Motivated by the fact that any first countable space has a closure-preserving base at every

point.
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4.2 Discreteness of X and Completeness of Cp(X)

A space X is discrete if and only if Cp(X) is homeomorphic to RX. The problems of

this section outline some ways to generalize this result. The existing progress in this

direction was obtained by assuming that Cp(X) has some completeness property or

there exists a nice map of a power of a real line (or, more generally, of a product of

second countable spaces) onto Cp(X).

4.2.1. Suppose that Cp(X) is an open continuous image of Rk for some cardinal k.
Must X be discrete?

Published in Tkachuk [1998]

Related to Problems 485–489

4.2.2. Suppose that a dense subspace of Cp(X) is an open continuous image ofRk

for some cardinal k. Must X be discrete?

Published in Tkachuk [1998]

Related to Problems 485–489

4.2.3. Suppose that a dense subspace of Cp(X) is a closed continuous image ofRk

for some cardinal k. Must X be discrete?

Published in Tkachuk [1998]

Related to Problems 485–489

4.2.4. Suppose that Cp(X) has a dense subspace homeomorphic to Rk for some

cardinal k. Must X be discrete?

Published in Tkachuk [1998]

Related to Problems 485–489

4.2.5. Suppose that Cp(X) can be perfectly mapped onto Rk for some cardinal k.
Must X be discrete?

Published in Tkachuk [1998]

Motivated by the fact that this is true if the respective map is irreducible.

4.2.6. Is it true that, for any space X, the space Cp(X) is projectively complete if

and only if it is pseudocomplete?

Published in Arhangel’skii [1989a]

Related to Problems 490–498

4.2.7. Let X be a compact space such that Cp(X) is projectively complete. Must X
be finite?

Published in Arhangel´skii [1983a]

Motivated by the fact that it is true if Cp(X) is pseudocomplete (Problem 485).
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4.2.8. Suppose that Cp(X) is projectively complete. Must Cp(X) have the Baire

property?

Published in Arhangel’skii [1983a]

Motivated by the suspicion that projective completeness and pseudocompleteness may

coincide in Cp-spaces.

4.2.9. Suppose that Cp(X) is projectively complete. Is it true that the space Cp(X)
� Cp(X) is projectively complete?

Published in Arhangel’skii [1988b]

Motivated by the suspicion that projective completeness and pseudocompleteness may

coincide in Cp-spaces.

4.2.10. Suppose that CpðX; IÞ is pseudocomplete. Must it be pseudocompact?

Author V.V. Tkachuk

Motivated by the fact that this is true for normal X (Problem 478).

4.2.11. Suppose that X is finite and Cp(Cp(Cp(X))) is (linearly) homeo-morphic to

Cp(Cp(Cp(Y))). Must Y be finite?

Published in Arhangel’skii [1988a]

Motivated by the fact that discreteness is preserved by homeomorphisms of Cp(X) (Problem
487).

4.2.12. Suppose that Cp(Cp(X)) is homeomorphic to Cp(Cp(Y)) and Y is discrete.

Must X be discrete?

Published in Arhangel’skii [1989a]

Motivated by the fact that discreteness is preserved by homeomorphisms of Cp(X) (Problem
487).
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4.3 Dense Subspaces

It is standard in general topology to try to prove some nice properties of a space Z if

it has a nice dense subspace. The same approach is valid for the spaces Cp(X). For
example, Cp(X) is second countable if it has a dense metrizable subspace. The most

interesting line of research in this direction is to find properties P such that every

Cp(X) has a dense subspace with the property P.

4.3.1. Is it true that every space Cp(X) has a dense zero-dimensional subspace?

Author attributed to Arhangel´skii in the paper of Ciesielski [1993]

Motivated

by

a result of Ciesielski [1993] which says that it is consistent with ZFC that some

linear subspaces of a power of the real line do not have dense totally

disconnected subspaces.

4.3.2. Is it true that every space Cp(X) has a dense realcompact subspace?

Author V.V. Tkachuk

Motivated by the absence of a dense Lindel€of (or even dense normal) subspace in the space

Cp(o1 þ 1) (Problem 317).

4.3.3. Is it true that, for any X, the space Cp(X) has a dense subspace of countable
pseudocharacter?

Author V.V. Tkachuk

Motivated by the fact that many dense subspace of Rk have dense subspaces of countable

pseudocharacter.

4.3.4. Is it true that, for any X, the space Cp(X) has a dense subspace of countable
tightness?

Author V.V. Tkachuk

Motivated by the fact that many dense subspaces of Rk have dense subspaces of countable

tightness.

4.3.5. Is it true that, for any X, the space Cp(X) has a dense subspace of countable
functional tightness?

Author V.V. Tkachuk

Motivated by the fact that many dense subspaces of Rk have dense subspaces of countable

tightness.
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4.4 The Lindel€of Property in X and Cp(X)

There is no need to explain why the Lindel€of property is of vital importance in

general topology and Cp-theory. However, after decades of very hard work on the

subject, there is still no acceptable characterization of the Lindel€of property in

Cp(X). As a consequence, many basic questions solved in topology remain unan-

swered for the spaces Cp(X).

4.4.1. Is it possible to embed the Sorgenfrey line into a Lindel€of Cp(X) as a

closed subspace? What happens if we drop “closed”?

Published in Arhangel’skii [1992b]

4.4.2. Suppose that D is Lindel€of for any discrete D � Cp(X). Must Cp(X) be
Lindel€of?

Author V.V. Tkachuk

Motivated by the fact that this problem is open even for arbitrary spaces. See Tkachuk

[1987b], for more information.

4.4.3. Suppose that Cp(X) is Lindel€of. Is it true that vX is also Lindel€of?

Published in Arhangel’skii [1989a]

4.4.4. Let X be a compact space. Suppose that Y is a dense normal subspace of

Cp(X). Must Y be Lindel€of?

Published in Arhangel’skii [1989a]

Related to Problems 294–295, 269

4.4.5. Suppose that every continuous image of Cp(X) is a Hewitt space. Must

Cp(X) be Lindel€of?

Author V.V. Tkachuk

Motivated by by the fact that this problem is open for arbitrary spaces. See Arhangel´skii and

Okunev [1985].

4.4.6. Let X be a space. Given a family g � exp(X), and x 2 X, let

Stðx; gÞ ¼ [fU : x 2 U 2 gg. A sequence of open covers fUn : n 2 og of a space

X is called a development of X if fStðx;UnÞ : n 2 og is a base at x for all x 2 X. A
space X is Moore if it has a development. Suppose that X is a (separable) Moore

space with Cp(X) Lindel€of. Must X be metrizable?

Published in Arhangel’skii [1989a]

Comment if X is normal then the answer is positive (Arhangel´skii [1989a]).

4.4.7. A base B of a space X is called a uniform base if, for any point x 2 X
and any O 2 t(x, X), the family fU 2 B : x 2 U and U \ ðXnOÞ 6¼ ;g is finite.
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Suppose that X has a uniform base and Cp(X) is Lindel€of. Is it true that X is

metrizable?

Published in Arhangel´skii [1989a]

Comment It suffices to show that X has to be paracompact.

4.4.8. Let X be a space for which Cp(X) is Lindel€of. Suppose that Y is a

continuous image of Cp(X) and c(Y) ¼ o. Is it true that jYj � c?

Published in Arhangel’skii [1988b]

Motivated by the fact that it is unknown whether there is a ZFC example of a Lindel€of space
of countable pseudocharacter of cardinality greater than c.

4.4.9. Let X be a Lindel€of space. Is it true that Cp(X) condenses onto a space of

countable tightness?

Published in Arhangel’skii [1998b]

Motivated by the fact that Cp(X) has countable tightness in case all finite powers of X are

Lindel€of (Problems 148–149).

4.4.10. Is it true that every space X of countable tightness is homeomorphic to a

(closed) subspace of Cp(Y) for some Lindel€of Y?

Published in Arhangel’skii [1990]

Motivated by the fact that not every space of countable tightness is embeddable in a Cp-space

of countable tightness (Problems 148–150).

4.4.11. Let X be a hereditarily Lindel€of space. Is it true that Cp(X) condenses
onto a space of countable tightness?

Published in Arhangel’skii [1998b]

Motivated by the fact that Cp(X) has countable tightness in case all finite powers of X are

Lindel€of (Problems 149–150).
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4.5 Other Covering Properties

This section contains a selection of some natural questions on subparacompact

spaces, orthocompact spaces and meta-Lindel€of ones. There has been little progress
so far in dealing with these properties in Cp-theory so the most basic questions that

could come to one´s mind turn out to be open. An important advance was achieved

in a paper of Dow, Junnila and Pelant [1997]: they proved, among other things, that

Cp(X) need not be metalindel€of even if X is compact. They also established that if X
is compact and w(X) � o1 then Cp(X) is metalindel€of.

4.5.1. A space Z is called subparacompact if any open cover of Z has a closed s-
discrete refinement. Suppose that Cp(X) is subparacompact. Is it true that Cp(X) is
Lindel€of? What happens if X is compact?

Author V.V. Tkachuk

Comment the answer is “yes” when Cp(X) is normal.

Related to Problems 295 and 219

4.5.2. Suppose that Cp(X) is subparacompact. Must Cp(X) � Cp(X) be subpar-

acompact? Is this true if X is compact?

Author V.V. Tkachuk

Motivated by the analogous problem about Lindel€of spaces Cp(X).

4.5.3. Suppose that Cp(X) is Lindel€of. Must the space Cp(X) � Cp(X) be

subparacompact? Is this true if X is compact?

Author V.V. Tkachuk

Motivated

by

the fact that almost nothing is known about Cp (X) � Cp(X) in case when Cp(X) is
Lindel€of.

4.5.4. Suppose that Cp,n (X) is subparacompact for all n 2 N. Must Cp(X) be
Lindel€of? What happens if X is compact?

Author V.V. Tkachuk

Motivated by the fact that nothing is known about subparacompactness in Cp(X).

4.5.5. Suppose that Cp(X) is hereditarily subparacompact. Must Cp(X) be (hered-
itarily) Lindel€of? What happens if X is compact?

Author V.V. Tkachuk

Motivated

by

the fact that a hereditarily paracompact Cp(X) is hereditarily Lindel€of (Problems 219

and 292).

4.5.6. Suppose that Cp(X) is hereditarily subparacompact. Must the space Cp(X)
� Cp(X) be hereditarily subparacompact? What happens if X is compact?

Author V.V. Tkachuk

Motivated by the analogous problem about hereditarily Lindel€of spaces Cp(X).
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4.5.7. Suppose that Cp,n(X) is hereditarily subparacompact for all n 2 N. Must

Cp(X) be (hereditarily) Lindel€of? What happens if X is compact?

Author V.V. Tkachuk

Motivated by the fact that a hereditarily paracompact Cp(X) is hereditarily Lindel€of
(Problems 219 and 292).

4.5.8. Is it true that Cp(o1 þ 1) is subparacompact?

Author V.V. Tkachuk

Motivated by the fact that nothing is known about subparacompactness in Cp(X).

4.5.9. A family U of open subsets of a space Z is called interior-preserving if

\ U0 is open for any U0 � U. The space Z is orthocompact if any open cover of Z
has an open interior-preserving refinement. Suppose that Cp(X) is (hereditarily)

orthocompact. Must it be metacompact (or Lindel€of)?

Author V.V. Tkachuk

Motivated by the fact that nothing is known about orthocompactness in Cp(X).

4.5.10. Is it true that Cp(X) is (hereditarily) orthocompact for any compact space

X?

Author V.V. Tkachuk

Motivated by the fact that nothing is known about orthocompactness in Cp(X).

4.5.11. Suppose that Cp(X) is (hereditarily) orthocompact. Is it true that Cp(X) �
Cp(X) is also hereditarily orthocompact?

Author V.V. Tkachuk

Motivated by the analogous problem for (hereditarily) Lindel€of Cp(X).

4.5.12. A space Z is called screenable if every open cover of Z has an open

s-disjoint refinement. Suppose that Cp(X) is hereditarily screenable. Must it be

hereditarily Lindel€of?

Author V. V. Tkachuk

Motivated by the fact that every screenable Cp(X) is Lindel€of (this is an easy consequence of
the Souslin property of Cp(X)).

4.5.13. A family U of a space Z is locally countable if every z 2 Z has a

neighbourhood which intersects at most countably many elements of U. A space

Z is paralindel€of if every open cover of Z has an open locally countable refinement.

Suppose that Cp(X) is hereditarily paralindel€of. Is it true that Cp(X) is hereditarily
Lindel€of? What happens if X is compact?

Author V.V. Tkachuk

Motivated by the fact that any paralindel€of space Cp(X) is Lindel€of (this is an easy

consequence of the Souslin property of Cp(X)).

4.5.14. A family U of a space Z is point countable if every z 2 Z belongs to at

most countably many elements of U. A space Z is metalindel€of if every open cover

of Z has an open point-countable refinement. Suppose that Cp(X) is metalindel€of.
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Is it true that Cp(X) � Cp(X) is also metalindel€of? Is Cp(X) � Cp(X) metalindel€of in
case Cp(X) is Lindel€of? What happens if X is compact?

Author V.V. Tkachuk

Motivated by the analogous problems for Lindel€of spaces Cp(X).

4.5.15. Let X be a compact space with Cp,n(X) metalindel€of for every n 2 N. Is it

true that Cp(X) is Lindel€of?

Author V.V. Tkachuk

Motivated by the fact that little is known about metalindel€of spaces Cp(X).

4.5.16. A space Z is called submetalindel€of if, for any open cover U of the space

Z, there exists an open refinement V ¼ [fVn : n 2 og for U such that [ Vn ¼ X for

all n 2o and, for any z 2 Z, there is an n 2o such that the set fV 2 Vn : z 2 Vg is at
most countable. Suppose that Cp(X) is a submetalindel€of. Is it true that it is

metalindel€of?

Author V.V. Tkachuk

Motivated by the fact that little is known about metalindel€of Cp(X).

4.5.17. Suppose that Cp(X) is (hereditarily) submetalindel€of. Must it be (heredi-

tarily) submetacompact?

Author V.V. Tkachuk

Motivated

by

the fact that any submetacompact space is submetalindel€of. Thus, a positive answer
would imply coincidence of the classes in question in spaces Cp(X).

4.5.18. Let X be a zero-dimensional space such that CpðX;DÞ is normal. Must the

space CpðX;DÞ be collectionwise normal?

Published in Arhangel´skii [1989a]

Related to Problems 295–296

4.5.19. Let X be a zero-dimensional compact space. Suppose that the space

CpðX;DÞ is (normal and) metacompact. Is it true that CpðX;DÞ is Lindel€of?
Author V.V. Tkachuk

Motivated by the fact that a normal metacompact space Cp(X) is Lindel€of.

4.5.20. Say that a space Z is subparacompact if any open cover of Z has a s-
discrete closed refinement. Suppose that X is a zero-dimensional compact space

such that CpðX;DÞ is subparacompact. Must the space CpðX;DÞ be Lindel€of?
Author V.V. Tkachuk

Motivated by the fact that a normal subparacompact space Cp(X) is Lindel€of.

4.5.21. Suppose that X is a zero-dimensional compact space such that CpðX;DÞ is
hereditarily metacompact. Must the space CpðX;DÞ be (hereditarily) Lindel€of?
Author V.V. Tkachuk

Motivated by the fact that a normal metacompact space Cp(X) is Lindel€of.
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4.6 Mappings Which Involve Cp-spaces

The existence of an algebraic structure compatible with the topology of Cp(X)
radically improves its topological properties. In particular, if Cp(X) is an open

continuous image of some nice space Z then Cp(X) might have even better proper-

ties than Z. For example, if Cp(X) is an open image of a metrizable space then it is

second countable. Also, if a space Z is a continuous image of Cp(X) then we can

expect very strong restrictions on Z if, say, Z is compact. A lot of research has been

done in this area and this section contains a compilation of the respective open

questions.

4.6.1. LetMt be a complete metric space (or a Čech-complete space) for all t 2 T.
For the spaceM ¼ QfMt : t 2 Tg assume that there is an open continuous map ofM
onto Cp(X). Must X be discrete?

Published in Tkachuk [1998]

Motivated by the fact that it is true if T is countable (Problem 265).

4.6.2. Let Mt be a separable complete metric space for all t 2 T. For the space

M ¼ QfMt : t 2 Tg assume that there is an open continuous map of M onto (a

dense subset of) Cp(X). Must X be discrete?

Published in Tkachuk [1998]

Motivated by the fact that it is true if T is countable (Problem 265).

4.6.3. Let Mt be a separable complete metric space for all t 2 T. For the space

M ¼ QfMt : t 2 Tg assume that there is a dense embedding ofM in Cp(X). Must X
be discrete?

Published in Tkachuk [1998]

Motivated by the fact that it is true if T is countable (Problem 265).

4.6.4. Is it true that every space Cp(X) can be represented as an open continuous

image of a product of metric spaces?

Published in Tkachuk [1998]

Motivated by the fact that no restrictions on X are known in this situation.

4.6.5. Suppose that X is compact and Cp(X) can be represented as an open

continuous image of a product of metric spaces. Must X be metrizable?

Published in Tkachuk [1998]

Comment this is true for the case of the product of separable metric spaces.

4.6.6. Suppose that Cp(X) can be perfectly mapped onto a product of (separable)

complete metric spaces. Must X be discrete?

Published in Tkachuk [1998]

Comment this is true if the respective map is irreducible (Tkachuk [1991]).
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4.6.7. Suppose that Cp(Cp(X)) is homeomorphic to Cp(Cp(Y)) and Y is countable

(has cardinality k). Must X be countable (have cardinality k)?

Published in Arhangel´skii [1988a]

Motivated by the fact that cardinality of a space is equal to the character of Cp(X) (Problem
169).
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4.7 Very General Questions

The questions of this section are, in fact, outlines of research programs. They

usually say that no general technique is known for studying some phenomenon in

Cp-theory and contain an invitation to create the necessary methods.

4.7.1. Given a class P of topological spaces, and a space Y, when can Y be

topologically embedded into Cp(X) for some X 2 P? In particular, if we have

spaces X and Y, when can Cp(X) be embedded into Cp(Y)?

Published in Arhangel´skii [1998b]

4.7.2. When does Cp(X) belong to a certain hereditary class Q of spaces?

Published in Arhangel´skii [1998b]

4.7.3. Call a space X almost t-dyadic (l-dyadic) if Cp(X) (linearly) topologically
embeds into CpðDkÞ for some cardinal number k. Find out, what part of the theory

of dyadic compacta generalizes to the case of almost t-dyadic (or l-dyadic)
compacta.

Published in Arhangel´skii [1998b]

4.7.4.Which topological properties of a space X are preserved by embeddings of

the respective Cp’s in Cp(X)? In other words, for which properties P, if X has P and

Cp(Y) embeds into Cp(X) then Y has P?
Published in Arhangel´skii [1998b]

Motivated by the fact that if Y is a continuous image of a space X then Cp(Y) embeds in Cp(X).

4.7.5. Given a class P of spaces, which compact spaces can be embedded in

Cp(X) for some X 2 P?
Published in Arhangel´skii [1998b]

4.7.6. Given a property P, find a characterization in terms of the topology of X
for existence of a Z 2 P such that CpðXÞ � Z � RX.

Published in Arhangel´skii [1989c]
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4.8 Fuzzy Questions

A question belongs to this section if it does not say exactly what its author wants us

to prove or find out but rather expresses an intuitive idea of what should be done.

Such questions can have many different solutions and their inherent difficulty

consists in impossibility to be sure whether a given solution is satisfactory.

4.8.1.What spaces X can be represented as a continuous image of a space Y with

Cp(Y) Lindel€of?

Published in Arhangel’skii [1989a]

4.8.2. When is Cp(X) Lindel€of?

Published in Arhangel’skii [1992b]

4.8.3. Which compact spaces embed in Cp(X) for a Lindel€of space X?

Published in Arhangel’skii [1998b]

4.8.4. When are all compact subsets of Cp(X) metrizable?

Published in Arhangel’skii [1998b]

4.8.5. When does every Lindel€of subspace of Cp(X) have a countable network?

Published in Arhangel’skii [1998b]

4.8.6. When can Cp(X) be condensed onto a s-compact (or Lindel€of) space?

Published in Arhangel’skii [1992b]

4.8.7. What restrictions on a Tychonoff space X guarantee that every compact

subspace of Cp(X) is Fréchet–Urysohn?

Published in Arhangel’skii [1997]

4.8.8. A space Z is isocompact if any countably compact closed subspace of Z is

compact. For which spaces X the space Cp(X) is isocompact?

Published in Arhangel’skii [1997]

4.8.9. Suppose that n 2 N and Cp,n(X) is homeomorphic to Cp,n(K) for some

compact K. How “non-compact” can be X?

Published in Arhangel’skii [1988a]

4.8.10. Characterize those spaces X for which Cp(X) is a Ksd-space.

Published in Arhangel’skii [1988a]

4.8.11. When is Cp(X) projectively complete?

Published in Arhangel’skii [1988b]
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4.8.12. Characterize those spaces X for which there exists a Lindel€of Z such that

CpðXÞ � Z � RX.

Published in Arhangel’skii [1989c]

4.8.13. Characterize those spaces X for which there exists a normal Z such that

CpðXÞ � Z � RX.

Published in Arhangel’skii [1989c]

4.8.14. Find a general method of constructing uniformly dense subspaces in

Cp(X) for a non-compact space X (if X is compact, a general method is to take any

set B � Cp(X) which separates the points of X; then the algebra generated by B is

uniformly dense in Cp(X)).
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4.9 Naı̈ve Questions

Some open questions might cause curiosity even if their solution does not represent

a major step in a study of an area of mathematics. They are not very popular

because, in spite of often being very difficult, in most cases their solution will give

no general method or better understanding of a phenomenon.

4.9.1. Does there exist a non-empty space X which can be mapped continuously

onto Cp(X)?

Author V.V. Tkachuk

Motivated by the fact that such a space X cannot be discrete.

4.9.2. Is there a non-empty space X which is homeomorphic to Cp(X)?

Author M.V. Matveev

Motivated by the fact that such a space X cannot be discrete.

4.9.3. Does there exist spaces X and Y such that Cp;17ðXÞ ’ Cp;17ðYÞ while it is
not true that Cp;16ðXÞ ’ Cp;16ðYÞ?
Author V.V. Tkachuk

Motivated by the fact that it is curious isn’t it?

4.9.4. Does there exist a space X such that Cp,i(X) is Lindel€of for all i � 17 and

Cp,i(X) is not Lindel€of for all i > 17?

Author V.V. Tkachuk

Motivated by the fact that it is curious isn’t it?

4.9.5. Is Cp;2007ðIÞ homeomorphic to Cp;2009ðIÞ?
Author V.V. Tkachuk

Motivated by the fact that it is curious isn’t it?

4.9.6. Is it true that the space Cp(X) can always be mapped continuously onto

Cp(X) � Cp(X)?

Published in Arhangel’skii [1989a]

Motivated by the fact that a positive answer would mean that Cp(X) � Cp(X) is Lindel€of
whenever Cp(X) is Lindel€of.
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4.10 Raznoie (Unclassified Questions)

It is usually impossible to completely classify a complex data set such as the open

problems in Cp-theory. This last group of problems contains the open questions

which do not fit into any of the nine earlier sections.

4.10.1. Suppose that Cp(X) is realcompact. Can it be condensed onto a Lindel€of
space or onto a s-compact space?

Published in Arhangel’skii [1992b]

Motivated by the fact that it is not known whether any realcompact space can be condensed

onto a Lindel€of space.

4.10.2. Suppose that Cp(X) is realcompact. Is it true that X has a dense subspace

of countable tightness?

Published in Arhangel’skii [1992b]

Motivated by the fact that the tm(X) ¼ o (Problem 429).

4.10.3. Let X be a pseudocompact space such that for any countable A� X, there
exists a (linear) continuous map ’ : C�

pðAÞ ! CpðXÞ with ’( f)jA ¼ f for any

f 2 C�
pðAÞ. Must X be finite?

Published in Arhangel’skii [1992b]

Motivated by the fact that no pseudocompact space can have an infinite closed discrete

C-embedded subset.

4.10.4. Let X be a compact space. Is it true that every normal subspace of Cp(X)
is countably paracompact?

Published in Arhangel’skii [1998b]

Related to Problems 288–290

4.10.5. Does there exist in ZFC a non-separable space X of countable tightness

such that, for every Y � X, each compact subspace of Cp(Y) is metrizable?

Published in Arhangel’skii [1998b]

4.10.6. Given a space X, a family A ¼ [fAn : n 2 og of subsets of X is called

weakly s-point-finite if for any point x 2 X we have the equality

A ¼ [fAn : the family An is point-finite at xg. It is immediate that any s-point-
finite family is weakly s-point-finite. Now suppose that D is a discrete space. Is it

true that any weakly s-point-finite family of open non-empty subsets of Cp(bD) is
countable? Is the same true for any extremally disconnected compact space?

Published in Tkachuk [2001]

Motivated by the fact that p(Cp(bD)) ¼ o (Problem 382).
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4.10.7. Suppose that CpðXÞ ’ CpðboÞ. Must X be compact?

Author V.V. Tkachuk

Motivated by Problems 399 and 400 which show that there exists a space Y such that

CpðXÞ ’ CpðYÞ implies that X is pseudocompact.

4.10.8. Does Cp(bo) condense onto a compact space?

Published in Arhangel’skii [1992b]

Related to Problems 377–378

4.10.9. Does CpðbonoÞ condense onto a s-compact space?

Published in Arhangel’skii [1992b]

Related to Problems 377–378

4.10.10. Does the space CpCpðbonoÞ have a dense subspace of countable

tightness?

Published in Arhangel’skii [1992b]

4.10.11. A point x of a space X is called a weak P-point if x 62 A for any

countable A � Xnfxg. Let X be the subspace of all weak P-points of bono. Is it
true that, for any countable A � X, there exists a (linear) continuous map

’ : C�
pðAÞ ! CpðXÞ such that ’ ( f)j A ¼ f for any f 2 C�

pðAÞ?

Published in Arhangel’skii [1992b]

Motivated by the fact that every countable A � X is closed and C*-embedded (Arhangel’skii

[1992b]).

4.10.12. Call a space Z projectively Baire if, for any open surjective continuous

map f : Z ! M of Z onto a second countable space M, the space M has the Baire

property. Is it true that Cpðbo;DÞ is projectively Baire?

Published in Popov [xxxx]

Related to Problem 496

4.10.13. Is there a dense (hereditarily) Lindel€of subspace Y � Cp(bo)?

Author V.V. Tkachuk

Related to Problem 317

4.10.14. Is there a (hereditarily) Lindel€of Y� Cp(bo) which separates the points
of bo?

Author V.V. Tkachuk

Related to Problem 317
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List of Special Symbols

For every symbol of this list we refer the reader to a place where it was defined.

There could be many such places but we only mention one here. We never use page
numbers; instead, we have the following three types of references:

(a) To an introductory part of a section
For example,

exp(X). . . . . . . . . . . . . . . . 1.1

says that exp(X) is defined in the Introductory Part of Sect. 1.1.

(b) To a problem
For example,

Cu(X). . . . . . . . . . . . . . . . 084

says that the expression Cu(X) is defined in Problem 084

(c) To a solution
For example,

O( f, K, e). . . . . . . . . . . . . . . . S.321

says that the definition of O( f, K, e) can be found in the Solution of Problem

321 which is indexed as S.321.

Every problem is short so it won’t be difficult to find a reference in it. An

introductory part is never longer than two pages so, hopefully, it is not hard to find a
reference in it either. Please, keep in mind that a solution of a problem can be pretty

long but its definitions are always given in the beginning.
The symbols are arranged in alphabetical order; this makes it easy to find the

expressions B(x, r) and bX but it is not immediate what to do if we are looking forL
t2TXt. I hope that the placement of the expressions which start with Greek letters

or mathematical symbols is intuitive enough to be of help to the reader. Even if it is

not, then there are only two pages to plough through. The alphabetic order is by line
and not by column. For example, the first two lines contain symbols which start

with “A” or something similar and lines 2–4 are for the expressions beginning with

“B”, “b” or “B”.

475



A(k) . . . . . . . . . . . . . . . . . . . . . 1.2
AD(X). . . . . . . . . . . . . . . . . . . . 1.4
B(x, r). . . . . . . . . . . . . . . . . . . . 1.3
bX . . . . . . . . . . . . . . . . . . . . . . 1.3

clX(A) . . . . . . . . . . . . . . . . . . . . 1.1
C(X) . . . . . . . . . . . . . . . . . . . . . 1.1
C(X, Y) . . . . . . . . . . . . . . . . . . . 1.1
Cu(X) . . . . . . . . . . . . . . . . . . . .084
Cp(X) . . . . . . . . . . . . . . . . . . . . 1.1
w(A, X) . . . . . . . . . . . . . . . . . . . 1.2
w(X) . . . . . . . . . . . . . . . . . . . . . 1.2
D(k) . . . . . . . . . . . . . . . . . . . . . 1.2
DX . . . . . . . . . . . . . . . . . . . . . . 1.2

Dt2T ft . . . . . . . . . . . . . . . . . . . . 1.5
exp(X) . . . . . . . . . . . . . . . . . . . 1.1

fn ⇒ f . . . . . . . . . . . . . . . . . . . . 1.1
Fin(A) . . . . . . . . . . . . . . . . . S.326

Fs. . . . . . . . . . . . . . . . . . . . . . . 1.3

Gd . . . . . . . . . . . . . . . . . . . . . . 1.3

h#(U) . . . . . . . . . . . . . . . . . . S.228
Int(A) . . . . . . . . . . . . . . . . . . . . 1.1
iw(X) . . . . . . . . . . . . . . . . . . . . 1.2
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t2T Xt . . . . . . . . . . . . . . . . . . 1.4

p(X) . . . . . . . . . . . . . . . . . . . . . 1.2

a(X) . . . . . . . . . . . . . . . . . . . . . . . . .1.5
(B1)–(B2). . . . . . . . . . . . . . . . . . . . 006

Bd(x, r) . . . . . . . . . . . . . . . . . . . . . . .1.3
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Čech-complete space, 3, 259–265, 268, 270,

271, 273, 287, 465, 467–469, 491, 492,

S.259, S.260, S.494, S.498

countable product, S.262

perfect preimage, S.261

with countable network, S.270

clopen normal subspaces, S.018

closed and bounded subset, 131

closed discrete subspaces, S.452, S.454

closed discrete uncountable subset, S.326

closed discrete uncountable subspace, S.320

closed disjoint subspaces, S.292

closed Gk-set, S.328

closed image of second countable space,

S.227

closed maps, 153, S.153, S.261, S.373

closed s-discrete refinement, 4.5.1

closed subsets, 003, S.003, S.267, S.288, S.302,

S.390, S.393, S.398–S.400, S.451,

S.481, S.485, S.497

479



closed subspace, 090, S.271, S.353, S.380,

S.381, S.401, S.403, S.455, S.456,

S.458, S.459

of countable product, S.338

closure-preserving local base

at any point, 4.3, 4.4

closure-preserving refinement, S.230

coefficient of contraction, S.241

collectionwise normal metrizable space, S.231

collectionwise normal paracompact space,

S.231

collectionwise normal space, S.294, S.295,

S.296

collectionwise normality, S.302

compact extension

of countable discrete space, S.286

of space, S.258, S.259

compact metric space, S.247, S.251

compact metrizable subspace, S.307

compact spaces, 3.2, 4.2.7, 4.4.4, 4.5.15, 4.7.5,

4.8.3, 4.10.8, 119–123, 324–330, 336,

358, 366, 367, 375, 377, 396,

S.119–S.123, S.126, S.131, S.186,

S.307, S.351, S.358, S.361, S.364,

S.366, S.368, S.377, S.383

compact subsets, S.326

compact subspace, S.259, S.271

complete accumulation point, 118

complete metric space, 4.6.1, 205–209, S.239

completely metrizable space, S.208

completeness, 4.2

condensation, 2, S.307

of countably compact space, S.322

continuous function, 014, 020, 029, 032, 033,

043, 168, 202, 314, S.014, S.020, S.029,

S.032, S.033, S.043, S.044, S.049,

S.074, S.098, S.168

continuous maps, S.027, S.028, S.092

k, 421
linear functionals, 076–078, 197, S.078,

S.196, S.197

maps, 3.3, 009, 021–023, 051, 053–055,

067, 080, 082, 083, 091, 092, 097, 102,

115, 257, 258, S.021, S.022, S.053,

S.055, S.067, S.080, S.082, S.083,

S.086, S.091, S.102, S.115, S.116,

S.157, S.158, S.163, S.257, S.271,

S.316, S.321, S.326, S.335, S.336,

S.340, S.351, S.390, S.408,

S.412–S.414, S.425, S.460–S.462,

S.472

continuous image, 157, 158

of space, S.311

continuous non-trivial linear multiplicative

functional, S.199

continuous space, 1, 086

continuous surjective map, S.154, S.366, S.383

continuously differentiable functions, S.051

convex hull, 073

convex sets, 069– 072, S.069–S.072

countable base space, 045, 088, 170–172,

S.045–S.047, S.088, S.149, S.150,

S.151, S.169–S.174

countable dense subspace, S.380

countable discrete disjoint subsets, S.382

countable discrete family, S.188

countable discrete subspace, S.382

countable functional tightness, 4.3.5

countable local base, 046, 085, S.085.

countable metrizable space, S.209, S.210

countable network, S.497

countable open cover, S.288

countable pseudocharacter, 4.3.3, S.349, S.444

countable set, S.061

countable space, S.343

countable subset, 393

countable tightness, 4.3.4, 4.4.9–4.4.11, 4.10.5,

4.10.10

countably centered family of closed subsets,

S.336

countably centered z-ultrafilter, S.499
countably compact non-compact space, S.411

countably compact normal space, S.232

countably compact spaces, 2, 3.2, 133–135,

137, 479, 480, 483, 484, S.132–S.137,

S.232, S.322, S.356, S.369, S.382,

S.397, S.479, S.480, S.482–S.484

countably compact subsets, S.322

countably compact subspaces, 322, 323

countably compact o-bounded space, S.310,

S.314

countably paracompact space, 289, 290,

S.288–S.290, S.292

Cp-theory, 3.5, 4.4

D

d*-Cauchy sequence, S.206
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pseudocompact non-closed subspace, S.351

pseudocompact non-metrizable subspace,

S.323

pseudocompact realcompact space, S.407

pseudocompact spaces, 3.2, 4.2.10, 4.10.3, 139,

140, 181, 472, 473, 481, 483, S.154,

S.181, S.226, S.350, S.398, S.433,

S.469, S.472, S.473, S.478, S.481,

S.483

pseudocompact subspace, S.284

pseudocomplete non- Čech-complete spaces,

S.469

pseudocomplete sequence, 5

pseudocomplete space, 4.2.6, 4.2.10, 470, 471,

474–478, 485–497, S.464–S.477,

S.485–S.488, S.497, S.498

pseudometric function, S.221

pseudometrics, S.221

Q

quotient image of sequential space, S.224

quotient map, 162, S.162

R

R-quotient condensation, 155, S.155

R-quotient image of space, S.312

R-quotient map, S.420

R-quotient non-quotient map, 154, S.154

rational numbers, S.326

rational open interval, 056, 057, S.056, S.057

realcompact extension, S.413, S.417, S.438

realcompact space, 401–404, 406–413,

427–432, 442–447, 452–454

realcompact spaces, 4.10.1, 4.10.2,

S.401–S.404, S.406, S.408–S.410,

S.413, S.415, S.417, S.431, S.432,

S.434, S.435, S.438, S.442, S.444,

S.453, S.454, S.458, S.486, S.499

realcompact subspaces, S.405, S.443

regular open set, S.368

regular open subset, S.368

restriction map, 152, S.152, S.280, S.283,

S.300, S.309, S.315, S.321, S.336,

S.436, S.437

retraction, S.351, S.398

Reznichenko’s theorem, 294, S.294, S.295,

S.296

S

s-bounded space, 398, 399, 400, S.398, S.399,

S.416

s-compact bounded subset, 415, 416

s-compact space, 2, 4.10.1, 4.10.9, S.186

s-compact subset, 338, 339, S.338

s-compact subspace, S.341, S.378

s-countably compact space, S.186, S.396,

S.397

s-discrete open refinement, S.452

s-discrete refinement, S.463

s-disjoint family, S.354

s-disjoint open refinement, S.354

s-pseudocompact space, 398–400, S.186,

S.398–S.400

second countable space, 1, 173, 174, 300,

S.154, S.281, S.291, S.292, S.319

separable compact space, S.375

separable complete metric space, 4.6.2, 4.6.3

separable metrizable space, S.342, S.491,

S.492

sequential compact space, S.387

sequential space, 3, S.224

set theory, S.330

Shapirovsky’s theorem, 331, 332, S.331, S.332

Sorgenfrey line, 4, 4.4.1, 165, 272, S.165,

S.272, S.384, S.386

Souslin number, 2

Souslin property, 109, 111, S.109, S.111,

S.160, S.214, S.325, S.458

space

bo, S.376
bo\o, S.373
P, S.355, S.356, S.396, S.479, S.480, S.482,

S.484, S.493

T1, 010, S.010

T2, 011, S.011 (see also Hausdorff)

T3, 1, 012, S.012

T1
2
(see Tychonoff space)

T4, 1, 018, 019, S.018, S.019

Ti, 017, 105, S.017, S.105

o*, S.376

oo, S.491

standard Gk-set, S.426

standard open set, S.382, S.426

standard open subset, S.424, S.475, S.478

standard set, S.271, S.298, S.310

star refinement, S.230

Stone theorem, 218, S.218

Stone–Weierstrass theorem, 191, S.191

strictly o-continuous function, S.433, S.438,
S.439, S.485

strongly dense Fréchet–Urysohn subspace,

S.348

strongly dense s-compact subspace, S.344,

S.345, S.352, S.3465

strongly dense s-countably compact set,

S.351
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strongly dense s-pseudocompact subspace,

349–353, 357, S.350

strongly dense subset, 344–347, S.347

strongly dense subspace, S.349

strongly pseudocomplete space, S.491

subbase, 1

submetalindel€of space, 4.5.16
subparacompact spaces, 4.5, 4.5.1–4.5.4,

4.5.20

supremum, 099

T

T1-space, 010, S.010

T2-space, 011, S.011 (see also Hausdorff)

T3-space, 1, 012, S.012

T1
2
space (see Tychonoff space)

T4-space, 1, 018, 019, S.018, S.019

Theorem of J. Nagata, 200, S.200

Ti-space, 017, 105, S.017, S.105

Tietze-Urysohn theorem, 031, S.031

topological isomorphism, 1, S.200

topological property, S.333

topological spaces, 1, 4.7.1, S.002

topology

family, 1

generated by a base, 006

generated by families, 007

generated by subbase, 008

generated by the metric, 3

generated by the order, 4

of pointwise convergence, 1

of subspace, S.203

subbase, S.008, S.009

uniform convergence, 3, 084, S.344

totally bounded metric space, 3, S.212,

S.249

transfinite induction, S.331, S.332

triangle inequality, S.130

trivial functional, S.196

two arrows space, 384, 385, 386

Tychonoff and compact topology, S.256

Tychonoff P-space, S.493
Tychonoff product topology, 2

Tychonoff property, S.293, S.337

Tychonoff separation axiom, 3.2

Tychonoff space, 1, 4.8.7, 013, 016, 034, 068,

087, 100, 202, S.013, S.016, S.034,

S.039, S.068, S.100, S.125, S.127,

S.227, S.255, S.293, S.310

Tychonoff theorem, 125

Tychonoff topology, S.469

Tychonoff zero-dimensional space, S.493

U

ultrafilter, 3, 117, 279, 448, 449, 450

uncountable closed discrete subset, S.297

uncountable closed discrete subspace, S.294

uncountable space, S.497

uniform base, 4.4.7

uniform convergence, 1, 030, 190, S.036,

S.050, S.084, S.184, S.191, S.254

uniformly continuous function, 049

uniformly continuous map, 3

uniformly equicontinuous family, 246

uniformly equicontinuous set, S.246

uniformly uncountable space, S.343

Urysohn’s lemma, 015, S.015

Uspenskij’s theorem, S.434

V

Vedenissov’s lemma, S.358

W

o* space, S.376
o-modification, S.493

o-placed, S.427, S.429
o1-complete ultrafilter, S.448–S.454

Wallace theorem, S.271

weak P-point, 4.10.11
weakly s-point-finite family, 4.10.6

winning strategy, S.279

oo space, S.491

Z

z-filter, S.499
z-ultrafilter, S.499
zero-dimensional compact space,

4.5.19–4.5.21

zero-dimensional Lindel€of space, S.390
zero-dimensional space, 4.5.18, S.232, S.390,

S.493

zero-dimensional T0-space, S.232

zero-set, S.499

Zorn’s lemma, S.489
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